一元二次方程的定义及解法【专项练习】

合集下载

(完整版)一元二次方程解法及其经典练习题

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题方法一:直接开平方法(依据平方根的定义)平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式一、 用直接开平方法解下列一元二次方程。

1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x方法二:配方法解一元二次方程1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2. 配方法解一元二次方程的步骤:(1) (2)(3) 4) (5)二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=- 39642=-x x 、4、0542=--x x5、01322=-+x x6、07232=-+x x方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0)解:二次项系数化为1,得 ,移项 ,得 ,配方, 得 ,方程左边写成平方式 ,∵a ≠0,∴4a 2 0,有以下三种情况:(1)当b 2-4ac>0时,=1x , =2x(2)当b 2-4ac=0时,==21x x 。

(3)b 2-4ac<0时,方程根的情况为 。

3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因(1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。

当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。

《一元二次方程》总复习、练习、中考真题【题型解析】

《一元二次方程》总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。

x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。

步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。

步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。

一元二次方程经典例题及详细解答

一元二次方程经典例题及详细解答

一、概述二、一元二次方程的定义三、一元二次方程的解法1.配方法2.公式法四、一元二次方程的经典例题及详细解答1.例题一2.例题二3.例题三五、总结概述一元二次方程是数学中常见的代数方程,它的解法丰富多样,具有很高的实用价值。

本文将详细介绍一元二次方程的定义、解法,以及一些经典例题的详细解答。

一元二次方程的定义一元二次方程是指形式为ax²+bx+c=0的方程,其中a≠0,x是未知数,a、b、c均为已知系数。

一元二次方程的一般形式是ax²+bx+c=0,其中a、b、c是常数,且a≠0。

一元二次方程的解法一元二次方程的解法主要包括两种:配方法和公式法。

1.配方法配方法也称补全平方法,是指利用平方公式将一元二次方程转化为一个完全平方式。

这种方法常用于一元二次方程系数a=1的情况。

2.公式法公式法是通过一元二次方程的求根公式来解方程,一元二次方程ax²+bx+c=0的根可以用公式x1,2=(-b±√(b²-4ac))/(2a)求得。

一元二次方程的经典例题及详细解答下面将结合具体的例题,详细解答一元二次方程的解题过程。

1.例题一已知一元二次方程x²-5x+6=0,求方程的根。

解:根据公式法,将方程的系数代入求根公式x1,2=(-b±√(b²-4ac))/(2a)中,得到:x1,2=(5±√(5²-4*1*6))/(2*1)= (5±√1)/2即x1=3,x2=2。

所以方程的根为x1=3,x2=2。

2.例题二已知一元二次方程2x²-7x+3=0,求方程的根。

解:同样使用公式法,将方程的系数代入求根公式x1,2=(-b±√(b²-4ac))/(2a)中,得到:x1,2=(7±√(7²-4*2*3))/(2*2)即x1=3/2,x2=2。

所以方程的根为x1=3/2,x2=2。

一元二次方程概念专项练习

一元二次方程概念专项练习

一元二次方程概念专项练习知识梳理:1.一元二次方程的一般形式:a x2+bx+c=0(a≠0)2.一元二次方程的特点:①整式方程②a不为0③只含有一个未知数④未知数的最高次数为23.重点:一元二次方程的识别与判断4.难点:题目不表明所需要判断的方程是一元二次方程还是一元一次方程时,需要分类讨论一、选择题1、在下列方程中是一元二次方程的是()A.x2-2xy+y2=0 B.x(x+3)=x2-1 C.x2-2x=3 D.x+ =02、下列方程为一元二次方程的是 ( )A. B. C. D.3、下列方程中,一元二次方程个数()①、;②、;③、;④、;⑤、.A、5个B、4个C、3个D、2个4、已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥25、以1,-2为根的一元二次方程是A.x2+x-2=0B.x2-x+2=0C.x2-x-2=0D.x2+x+2=06、已知x=0是二次方程(m +1)x2+ mx + 4m2- 4 = 0的一个解,那么m的值是()A.0 B.1 C.- 1 D.7、若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()A.1 B.-1 C.2 D.-28、若关于x的一元二次方程的常数项为0,则m的值等于A.1 B.2 C.1或2 D.09、定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A. B. C. D.10、若为方程的解,则的值为()A.12B.6C.9D.16二、填空题11、如果,则一元二次方程必有一个根是.12、已知是方程的解,则代数式的值为 .13、已知,则的值是 .14、某中学摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有名学生,则根据题意列出的方程是。

初中数学《一元二次方程的定义及一元二次方程的解》同步练习(含答案)

初中数学《一元二次方程的定义及一元二次方程的解》同步练习(含答案)

一元二次方程的定义及一元二次方程的解一 、选择题(本大题共4小题)1.若2(3)330n m x nx ---+=是关于x 的一元二次方程,则m 、n 的取值范围是( )A.0m ≠、3n =B.3m ≠、4n =C.0m ≠,4n =D.3m ≠、0n ≠2.关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在3.关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在4.已知关于x 的方程22(3)230m x x m m ++++-=一根为0,则m 的值为( )A.1B.3-C.1或3-D.以上均不对二 、填空题(本大题共7小题)5.关于x 的方程2((3)4m m x m x m --+=是一元二次方程,则m 的取值范围是 .6.若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________.7.若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________.8.关于x 的方程2((3)4m m x m x m -+=是一元二次方程,则m 的取值范围是9.已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,则a 的取值范围是 .10.一元二次方程2()0ax b bx c +++=的二次项系数为 ,一次项系数为 ,常数项为11.关于x 的方程27(3)30m m x x ---+=是一元二次方程,则______m =三 、解答题(本大题共6小题) 12.已知关于x 的方程22()(2)x a ax -=-是一元二次方程,求a 的取值范围.13.把下列方程化成一般形式,并写出它的二次项系数、一次项系数以及常数项 ⑴2(21)(32)2x x x -+=+⑵2)(3)x x x =+14.已知关于x 的一元二次方程22(21)330x k x k k -+-+=⑴求证:原方程总有两个实数根⑵请找出k 的一个合适的值,使这个方程的两个根都是整数,并求出这两个根15.已知方程20a b a b x x ab +---=是关于x 的一元二次方程,求a 、b 的值.16.已知:关于x 的一元二次方程2220kx x k ++-=.⑴若原方程有实数根,求k 的取值范围;⑵设原方程的两个实数根分别为1x ,2x ,当k 取哪些整数时,1x ,2x 均为整数;17.阅读材料解答下列问题为解方程222(1)5(1)40x x ---+=,我们可以将21x -视为一个整体,设21x y -=,则222(1)x y -=,原方程化为2540y y -+=①,解得14y =,21y =当4y =时,214x -=,∴x =当1y =时,211x -=,∴x =∴原方程的解为1x =,2x =3x =,4x =解答问题:⑴填空:在由原方程得到方程①的过程中,利用 方法达到降次的目的,体现了 的数学思想⑵解方程:4260x x --=一元二次方程的定义答案解析一 、选择题1.B;关于一元二次方程的定义考查点有两个:①二次项系数不为0,②最高次项的次数为22.C;21a +恒大于03.C ;21a +恒大于04.A二 、填空题5.22m =,∴m =,且0m ≠,∴m = 6.2-;由题意可知,240m -=,20m -≠,故2m =-.7.-2;由题意可知,240m -=,20m -≠,故2m =-.8.22m =,∴m =,且0m ≠,∴m = 9.3a ≠;整理方程得:2(3)10a x ax --+=,当3a ≠时,原方程是一元二次方程.10.二次项系数为2a ,一次项系数为2ab b +,常数项为2b c + 11.3m =-三 、解答题12.整理得:222(1)4420a x ax a a --+-+=,当210a -≠,即1a ≠±,则原方程是一元二次方程.13.⑴化简后为2540x x +-=,因此二次项系数为5;一次项系数为1;常数项为4- ⑵化简后为22610x x ++=,二次项系数为2;一次项系数为6;常数项为114.⑴2222(21)4(33)1681(41)0k k k k k k ∆=+--=-+=-≥ ∴原方程总有两个实根⑵由求根公式得x =,∴13x k =,21x k =- 不妨设1k =,此时方程的两根为13x =,20x =15.本题有3种情况:22a b a b +=⎧⎨-=⎩;21a b a b +=⎧⎨-=⎩;12a b a b +=⎧⎨-=⎩;解得20a b =⎧⎨=⎩;3212a b ⎧=⎪⎪⎨⎪=⎪⎩;3212a b ⎧=⎪⎪⎨⎪=-⎪⎩. 16.⑴∵原方程有实数根 ∴44(2)0k k ∆=--≥,整理得24(1)0k -≥,对任意的k 都成立但又因为0k ≠,∴k 的取值范围是0k ≠⑵由求根公式得11x =-,2221k x k k -==- ∵1x 、2x 均为整数 ∴k 的值为1±、2±17.⑴换元、转化。

专题01 一元二次方程(四大类型)(题型专练)(解析版)

专题01  一元二次方程(四大类型)(题型专练)(解析版)

专题01 一元二次方程(四大类型)【题型1 判断一元二次方程】【题型2 一元二次方程定义-求含参数取值范围】【题型3 一元二次方程的一般式】【题型4 一元二次方程的解】【题型1 判断一元二次方程】1.(2023春•洞头区期中)在下列方程中,属于一元二次方程的是( )A.x2=2+3x B.2(x﹣1)+x=2C.D.x2﹣xy+4=0【答案】A【解答】解:A、由原方程,得x2﹣3x﹣2=0,符合一元二次方程的定义,故本选项符合题意;B、由原方程,得3x﹣4=0,未知数x的最高次数是1;故本选项不符合题意;C、由原方程,得x3+3x2﹣2=0,未知数x的最高次数是3;故本选项不符合题意;D、未知数x的最高次数是3;故本选项错不符合题意;故选:A.2.(2023春•瑶海区期中)下列方程是一元二次方程的是( )A.B.ax2+bx+c=0(a、b、c为常数)C.(x﹣1)(x+2)=1D.3x2﹣2xy﹣5y2=0【答案】C【解答】解:根据一元二次方程的定义可知,A选项不是整式方程,故A不符合题意;B选项,当a=0时,不是一元二次方程,故B不符合题意;C选项符合题意;D选项是二元二次方程,故D不符合题意,故选:C.3.(2022秋•武侯区期末)下列方程中,属于一元二次方程的是( )A.x﹣2y=1B.x2﹣2x+1=0C.x2﹣2y+4=0D.x2+3=【答案】B【解答】解:选项A,方程中含有两个未知数,不是一元二次方程,故该选项不符合题意;选项B,方程中只含有一个未知数,并且未知数的最高次数是2次的整式方程,是一元二次方程.该选项符合题意.选项C,方程中含有两个未知数,不是一元二次方程,故该项不符合题意;选项D,方程不是整式方程,不是一元二次方程,故该选项不符合题意.故选:B.4.(2022秋•襄州区期末)关于x的方程(a﹣1)x2+4x﹣3=0是一元二次方程,则( )A.a>1B.a=1C.a≠1D.a≥0【答案】C【解答】解:由题意得:a﹣1≠0,解得:a≠1,故选:C.5.(2022秋•颍州区期末)下列方程中,二元二次方程是( )A.2x2+3x﹣4=0B.y2+2x=0C.y(x2+x)=2D.【答案】B【解答】解:A、方程中含有一个未知数;故本选项错误;B、方程中含有两个未知数,且未知数的次数是2,符合二元二次方程的定义;故本选项正确;C、由原方程,得yx2+yx=2,该方程的最高次数是3;故本选项错误;D、由原方程,得y2x﹣3y2+1=0该方程的最高次数是3;故本选项错误.故选:B.【题型2 一元二次方程定义-求含参数取值范围】6.(2023春•西湖区校级期中)若是关于x的一元二次方程,则m 的值是( )A.2B.﹣2C.0D.2或﹣2【答案】D【解答】解:∵是关于x的一元二次方程,∴m2﹣2=2,∴m=2或m=﹣2,故选:D.7.(2023春•谯城区校级月考)若方程(m+2)x2+mx﹣5=0是关于x的一元二次方程,则m应满足 m≠﹣2 .【答案】m≠﹣2.【解答】解:根据题意,得m+2≠0,解得m≠﹣2.故答案为:m≠﹣2.8.(2023春•环翠区期中)若(m+1)x m(m﹣1)+2mx﹣1=0是关于x的一元二次方程,则m的值是 2 .【答案】2.【解答】解:∵(m+1)x m(m﹣1)+2mx﹣1=0是关于x的一元二次方程,∴m+1≠0且m(m﹣1)=2,解得m=2,故答案为:2.9.(2022秋•保山期末)如果关于x的方程(m+3)x|m+1|+4x﹣2=0是一元二次方程,则m的值是 1 .【答案】1.【解答】解:由题意知,|m+1|=2,且m+3≠0.解得m=1或﹣3且m≠﹣3,∴m=1.故答案是:1.【题型3 一元二次方程的一般式】10.(2022秋•洪泽区期中)方程x2﹣5x=0二次项系数、一次项系数、常数项分别是( )A.1,5,0B.0,5,0C.0,﹣5,0D.1,﹣5,0【答案】D【解答】解:方程x2﹣5x=0二次项系数、一次项系数、常数项分别是1,﹣5,0.故选:D.11.(2022秋•禹州市期中)将一元二次方程(2x+1)(x﹣3)=5化成一般形式,正确的是( )A.2x2﹣7x﹣8=0B.2x2﹣5x﹣8=0C.2x2﹣7x+2=0D.2x2﹣5x+2=0【答案】B【解答】解:将一元二次方程(2x+1)(x﹣3)=5化成一般形式得2x2﹣5x+8=0.故选:B.12.(2022秋•龙胜县期中)方程x2=3(2x﹣1)的一般形式( )A.x2+6x﹣3=0B.x2+6x﹣1=0C.x2﹣6x+1=0D.x2﹣6x+3=0【答案】D【解答】解:将方程x2=3(2x﹣1)转化为一般形式得x2﹣6x+3=0.故选:D.13.(2022秋•新洲区月考)将一元二次方程2x2﹣3=x化成一般形式ax2+bx+c=0后,一次项系数和常数项分别是( )A.1,﹣3B.﹣1,﹣3C.﹣3,﹣1D.﹣3,1【答案】B【解答】解:将一元二次方程2x2﹣3=x化成一般形式是2x2﹣x﹣3=0,则一次项系数和常数项分别是﹣1和﹣3.故选:B.14.(2022秋•易县期中)方程2x2﹣3x=1的二次项系数、一次项系数、常数项分别为( )A.2、3、1B.2、﹣3、1C.2、3、﹣1D.2、﹣3、﹣1【答案】D【解答】解:方程整理得:2x2﹣3x﹣1=0,则二次项系数、一次项系数、常数项分别是2,﹣3,﹣1,故选:D.15.(2022秋•惠东县期末)已知关于x的一元二次方程x2+3x﹣m=0的一个根是x=2,则m的值为( )A.﹣10B.﹣2C.2D.10【答案】D【解答】解:把x=2代入可得22+3×2﹣m=0,解得m=10,故选:D.16.(2023春•靖西市期中)将一元二次方程(x﹣2)(x+3)=12化为一般形式ax2+bx+c=0(a≠0,a,b,c为常数),其中c的值是( )A.﹣18B.﹣6C.6D.18【答案】A【解答】解:(x﹣2)(x+3)=12,x2+3x﹣2x﹣6﹣12=0,x2+x﹣18=0,所以c=﹣18,故选:A.17.(2023春•崇左月考)把一元二次方程x(x﹣1)=4(x+1)化为一般形式是 x2﹣5x﹣4=0 .【答案】x2﹣5x﹣4=0.【解答】解:x2﹣x=4x+4,x2﹣5x﹣4=0,故答案为:x2﹣5x﹣4=0.18.(2022秋•铜仁市期末)一元二次方程x2+2x=1的二次项系数、一次项系数与常数项的和等于 2 .【答案】2.【解答】解:x2+2x=1的一般形式为x2+2x﹣1=0,∴二次项系数、一次项系数与常数项分别为1,2,﹣1,∴1+2﹣1=2,故答案为:2.19.(2022秋•双牌县期末)将方程2x(x﹣1)=3(x﹣5)化为一般形式 2x2﹣5x+15=0 .【答案】2x2﹣5x+15=0.【解答】解:2x(x﹣1)=3(x﹣5),去括号,得2x2﹣2x=3x﹣15,移项,得2x2﹣2x﹣3x+15=0,合并同类项,得2x2﹣5x+15=0,故答案为:2x2﹣5x+15=0.20.(2022秋•颍州区期末)若一个一元二次方程的二次项系数为1,常数项为0,其中一个根为x=3,则该方程的一般形式为 x2﹣3x=0 .【答案】见试题解答内容【解答】解:由题意可得,该方程的一般形式为:x2﹣3x=0.故答案为:x2﹣3x=0.【题型4 一元二次方程的解】21.(2022秋•光山县期末)若x=1是关于x的一元二次方程x2﹣mx+3=0的一个解,则m的值是( )A.6B.5C.4D.3【答案】C【解答】解:∵x=1是关于x的一元二次方程x2﹣mx+3=0的一个解,∴1﹣m+3=0,解得m=4.故选:C.22.(2022秋•武安市期末)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2018的值为( )A.2018B.2019C.2020D.2021【答案】D【解答】解:∵m是方程2x2﹣3x﹣1=0的一个根,∴2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴6m2﹣9m+2018=3(2m2﹣3m)+2018=3×1+2018=3+2018=2021,故选:D.23.(2023春•西湖区校级期中)已知m是方程x2﹣3x﹣1=0的一个根,则代数式2m2﹣6m的值为( )A.0B.2C.﹣2D.4【答案】B【解答】解:∵m是方程x2﹣3x﹣1=0的一个根,∴m2﹣3m﹣1=0,∴m2﹣3m=1,∴2m2﹣6m=2(m2﹣3m)=2×1=2,故选:B.24.(2022秋•魏都区校级期末)x=﹣2是关于x的一元二次方程2x2+3ax﹣2a2=0的一个根,则a的值为( )A.1或4B.﹣1或﹣4C.﹣1或4D.1或﹣4【答案】D【解答】解:∵一元二次方程2x2+3ax﹣2a2=0有一个根为x=﹣2,∴2×(﹣2)2+3ax﹣2a2=0,解得,a=1或﹣4,故选:D.25.(2023春•温州期中)已知a是方程x2+2x﹣1=0的一个解,则代数式﹣a2﹣2a+8的值为( )A.0B.5C.6D.7【答案】D【解答】解:∵a是方程x2+2x﹣1=0的一个解,∴a2+2a=1,则﹣a2﹣2a+8=﹣(a2+2a)+8=﹣1+8=7.故选:D.26.(2023春•富阳区期中)若关于x的一元二次方程(m﹣3)x2+x+m2﹣9=0的一个根为0,则m的值为( )A.3B.0C.﹣3D.﹣3或3【答案】C【解答】解:∵关于x的一元二次方程(m﹣3)x2+x+m2﹣9=0的一个根为0,∴m﹣3≠0且m2﹣9=0,解得:m=﹣3.故选:C.27.(2023•陇南模拟)关于x的一元二次方程2x a﹣2+m=4的解为x=1,则a+m 的值为( )A.9B.8C.6D.4【答案】C【解答】解:因为关于x的一元二次方程2x a﹣2+m=4的解为x=1,可得:a﹣2=2,2+m=4,解得:a=4,m=2,所以a+m=4+2=6.故选:C.28.(2023•南海区模拟)已知a是方程x2﹣2x﹣2023=0的根,则代数式2a2﹣4a﹣2的值为( )A.4044B.﹣4044C.2024D.﹣2024【答案】A【解答】解:∵a是方程x2﹣2x﹣2023=0的根,∴a2﹣2a﹣2023=0,即a2﹣2a=2023,∴2a2﹣4a﹣2=2(a2﹣2a)﹣2=2×2023﹣2=4046﹣2=4044.故选:A.29.(2023•桂林一模)已知m是一元二次方程x2﹣4x+2=0的一个根,则8m﹣2m2+2的值为( )A.6﹣16B.﹣6C.6D.6+16【答案】C【解答】解:∵m是一元二次方程x2﹣4x+2=0的一个根,∴m2﹣4m+2=0,∴m2﹣4m=﹣2,∴8m﹣2m2+2=﹣2(m2﹣4m)+2=﹣2×(﹣2)+2=4+2=6,故选:C.30.(2023•官渡区校级模拟)已知a是方程x2+3x+2=0的一个根,则代数式a2+3a 的值为( )A.﹣2B.2C.﹣4D.﹣4或﹣10【答案】A【解答】解:∵a是方程x2+3x+2=0的一个根,∴a2+3a+2=0,∴a2+3a=﹣2,故选:A.31.(2023•襄州区开学)若关于x的一元二次方程ax2+bx+5=0的一个根是x=﹣1,则2018﹣a+b的值是( )A.2013B.2016C.2023D.2021【答案】C【解答】解:把x=﹣1代入方程ax2+bx+5=0得a﹣b+5=0,所以a﹣b=﹣5,所以2018﹣a+b=2018﹣(a﹣b)=2018﹣(﹣5)=2023.故选:C.32.(2022秋•铜梁区校级期末)已知m为一元二次方程x2+3x﹣2023=0的根,那么2m2+6m的值为( )A.﹣4046B.﹣2023C.0D.4046【答案】D【解答】解:∵m为一元二次方程x2+3x﹣2023=0的一个根.∴m2+3m=2023,∴2m2+6m=2(m2+3m)=2×2023=4046.故选:D.33.(2022秋•香洲区期末)已知a是方程x2﹣2x﹣1=0的解,则代数式2a2﹣4a的值为( )A.2B.﹣1C.1D.﹣2【答案】A【解答】解:∵a是方程x2﹣2x﹣1=0的一个解,∴a2﹣2a﹣1=0,即a2﹣2a=1,∴2a2﹣4a=2(a2﹣2a)=2×1=2.故选:A.34.(2022秋•雷州市期末)已知方程x2﹣2x﹣2=0的一个根是m,则代数式3m2﹣6m+2017的值为( )A.2022B.2023C.2024D.2025【答案】B∴m2﹣2m﹣2=0,即m2﹣2m=2,∴3m2﹣6m+2017=3(m2﹣2m)+2017=6+2017=2023,故选:B.35.(2022秋•朔城区期末)已知t为一元二次方程x2﹣1011x+2023=0的一个解,则2t2﹣2022t值为( )A.﹣2023B.﹣2022C.﹣4046D.﹣4044【答案】C【解答】解:∵t为一元二次方程x2﹣1011x+2023=0的一个解,∴t2﹣1011t+2023=0,∴t2﹣1011t=﹣2023,∴2t2﹣2022t=2(t2﹣1011t)=2×(﹣2023)=﹣4046,故选:C.36.(2022秋•城西区校级期末)若m是方程x2+x﹣1=0的根,则2m2+2m+2022的值为( )A.2024B.2023C.2022D.2021【答案】A【解答】解:∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,∴m2+m=1,∴2m2+2m+2022=2(m2+m)+2022=2×1+2022=2024.故选:A.37.(2022秋•孝南区期末)已知a是方程2x2+4x﹣3=0的一个根,则a2+2a﹣1的值是( )A.1B.2C.D.【答案】C∴2a2+4a﹣3=0,整理得,a2+2a=,∴a2+2a﹣1=﹣1=,故选:C.38.(2022秋•武安市期末)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2018的值为( )A.2018B.2019C.2020D.2021【答案】D【解答】解:∵m是方程2x2﹣3x﹣1=0的一个根,∴2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴6m2﹣9m+2018=3(2m2﹣3m)+2018=3×1+2018=3+2018=2021,故选:D.39.(2023春•西湖区校级期中)若a为方程x2﹣3x﹣6=0的一个根,则代数式﹣3a2+9a﹣5的值为 ﹣23 .【答案】﹣23.【解答】解:∵a为方程x2﹣3x﹣6=0的一个根,∴a2﹣3a﹣6=0,∴a2﹣3a=6,∴﹣3a2+9a﹣5=﹣3(a2﹣3a)﹣5=﹣3×6﹣5=﹣23.故答案为:﹣23.40.(2023春•涡阳县期中)若x=﹣a是一元二次方程x2+x﹣3=0的一个根,则2029﹣2a2+2a= 2023 .【答案】2023.【解答】解:∵x=﹣a是一元二次方程x2+x﹣3=0的一个根,∴(﹣a)2﹣a﹣3=0,∴a2﹣a=3,∴2029﹣2a2+2a=2029﹣2(a2﹣a)=2029﹣2×3=2023.故答案为:2023.41.(2023春•义乌市校级月考)已知a是方程2x2﹣3x﹣5=0的一个解,则﹣4a2+6a的值为 ﹣10 .【答案】﹣10.【解答】解:把x=a代入方程得:2a2﹣3a﹣5=0,则2a2﹣3a=5,则﹣4a2+6a=﹣2(2a2﹣3a)=﹣10.故答案为:﹣10.。

一元二次方程概念及解法练习题

一元二次方程概念及解法练习题

一元二次方程之概念定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?一元二次方程之根一、选择题1.方程x(x-1)=2的两根为().A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=22.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=a B.x1=b,x2=1aC.x1=a,x2=1aD.x1=a2,x2=b23.已知x=-1是方程ax2+bx+c=0的根(b≠0)().A.1 B.-1 C.0 D.2二、填空题1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.3.方程(x+1)2+2x (x+1)=0,那么方程的根x 1=______;x 2=________.一元二次方程的解法1、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 23 ()()0165852=+---x x2、利用开平方法解下列方程025x 2=-. 51)12(212=-y 4(x-3)2=25 24)23(2=+x081)2x (42=--。

最新数学一元二次方程的解法以及练习试题专练

最新数学一元二次方程的解法以及练习试题专练

一元二次方程的解法以及练习利用因式分解解一元二次方程的方法叫做因式分解法. 这种方法把解一个一元二次方程转化为解两个一元一次方程.课时训练A组基础训练1. 已知AB=0,那么下列结论正确的是()A. A=0B. A=B=0C. B=0D. A=0或B=02. 一元二次方程x2-2x=0的根是()A. x1=0,x2=-2B. x1=1,x2=2C. x1=1,x2=-2D. x1=0,x2=23. 方程(x-2)(x+3)=-6的两根分别为()A. x=2B. x=-3C. x1=2,x2=-3D. x1=0,x2=-14. 方程x-2=x(x-2)的解是(D )A. x=0B. x1=0,x2=2C. x=2 D . x1=1,x2=25. 已知等腰三角形的三边满足方程(x-3)(x-6)=0,则它的周长为()A. 9B. 18C. 9或18D. 9或15或186. 若关于x的方程x2+2x+k=0的一个根是0,则另一个根是 .7. 请写出一个两根分别是1,-2的一元二次方程 .8. 解方程:(1)x2-6x=0;(2)4y2-16=0;(3)9(x+1)2-16(x-2)2=0;(4)3(4x2-9)=2(2x-3);(5)2x2-4x+4=0.29. 文文给明明出了一道解一元二次方程的题目如下:解方程(x-1)2=2(x-1). 明明的求解过程为:解:方程两边同除以x-1,得x-1=2第1步移项,得x=3第2步∴方程的解是x1=x2=3第3步文文说:你的求解过程的第1步就错了…(1)文文的说法对吗?请说明理由;(2)你会如何解这个方程?给出过程.10. 在实数范围内定义一种新运算“※”,其规则为a ※b=(a-1)2-b 2. 根据这个规则,求方程(x+3)※5=0的解.11. 若n (n ≠0)是关于x 的方程x 2+mx-9n=0的根,求的值.B 组 自主提高12. 已知方程x 2+px+q=0的两根分别为3或-4,则x 2+px+q 可分解为 .13. 已知△ABC 的两边长分别为2和3,第三边的长是方程x 2-7x+10=0的根,求△ABC 的周长.14. 阅读下列材料:对于关于x 的一元二次方程ax 2+bx+c=0(a ≠0),如果a+b+c=0,那么它的两个根分别为x 1=1,x 2=.证明:∵a+b+c=0,∴c=-a-b. 将c=-a-b 代入ax 2+bx+c=0,得ax 2+bx-a-b=0,即a (x 2-1)+b (x-1)=0,∴(x-1)(ax+a+b )n m ac=0,∴x 1=1,x 2=.(1)请利用上述结论,快速求解下列方程: ①5x 2-4x-1=0,x 1= ,x 2= ; ②5x 2+4x-9=0,x 1= ,x 2= . (2)请写出两个一元二次方程,使它们都有一个根是1.ac参考答案2.2 一元二次方程的解法(第1课时)【课时训练】 1—5. DDDDD 6. -27. 答案不唯一. 如:(x-1)(x+2)=08. (1)x 1=0,x 2=6 (2)y 1=2,y 2=-2 (3)x 1=,x 2=11 (4)x 1=,x 2=-(5)x 1=x 2=9. ((1)文文的说法正确.只有当x-1≠0时,方程两边才能同除以x-1;(2)移项得(x-1)2-2(x-1)=0,(x-1)(x-1-2)=0,解得:x 1=1,x 2=3. 10. x 1=3,x 2=-711. 把x=n 代入得n 2+mn-9n=0,n (n+m-9)=0,∵n ≠0,∴n+m-9=0,∴m+n=9,∴=3.12. (x-3)(x+4)13. 7 将方程x 2-7x+10=0的左边因式分解,得(x-2)(x-5)=0,故x 1=2,x 2=5. 因为2+3=5,则第三边长为5不合题意,应舍去,所以只取第三边的长为2,此时,△ABC 的周长为2+2+3=7.7523672n m一.14. (1)①1 - ②1 - (2)答案不唯一. 如:3x 2-2x-1=0和-2x 2-3x+5=0二. 填空选择题(每小题6分,36分) 1. 下列各方程中,是一元二次方程的是( ) A. B.C. D.A.B.C.5)2)(3+=-+x x x (D.02-x 573x 32=+3.一元二次方程的一次项系数( )A.4B.-4C.4xD.-4x4.关于 的一元二次方程 的一个根是 ,则 的值是( )A.-1B.1C.1或-1D.-1或051592. 下列方程中不一定是一元二次方程的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专项练习:一元二次方程的定义及解法
一、选择题(每小题3分,共30分)
1.下列关于x 的方程:①ax 2+bx +c =0;②x 2
+4x -3=0;③x 2-4+x 5=0;④3x =x 2.其中是一元二次方程的有( )
A .1个
B .2个
C .3个
D .4个
2.方程3x 2-3x +3=0的二次项系数与一次项系数及常数项之积为( )
A .3
B .- 3
C 3
D .-9
3.方程3x (x -1)=5(x -1)的根为( )
A .x =53
B .x =1
C .x 1=1,x 2=53
D .x 1=1,x 2=35
4.把方程x 2-4x -1=0化为(x +m)2=n 的形式,则m ,n 的值是( )
A .m =2,n =-5
B .m =2,n =5
C .m =-2,n =5
D .m =-2,n =-5
5.一元二次方程3x 2-4x +1=0的根的情况为( )
A .没有实数根
B .只有一个实数根
C .有两个相等的实数根
D .有两个不相等的实数根
6.已知关于x 的一元二次方程x 2-(k +1)x -6=0的一个根是2,则此方程的另一个根和k 的值分别是( )
A .3和2
B .3和-2
C .-3和-2
D .-2和3
7.甲、乙两个同学分别解一道一元二次方程,甲把一次项系数看错了,解得两根为-3和5,乙把常数项看错了,解得两根相等,均为2,则原方程是( )
A .x 2+4x -15=0
B .x 2-4x -15=0
C .x 2+4x +15=0
D .x 2-4x +15=0
8.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )
A .k <12
B .k <12
且k ≠0 C .-12≤k <12 D .-12≤k <12
且k ≠0
9.如图,菱形ABCD 的边长是5,两条对角线交于点O ,且AO ,BO 的长分别是关于x 的方程x 2+(2m -1)x +m 2+3=0的根,则m 的值为
( )
A .-3
B .5
C .5或-3
D .-5或3
10.已知m ,n 是一元二次方程x 2-3x +2=0的两个实数根,则2m 2-4mn -6m 的值为( )
A .-12
B .10
C .-8
D .-10
二、填空题(每小题3分,共18分)。

相关文档
最新文档