平面向量图形结合问题
平面向量与图形的结合(重难点)
CBA 平面向量与平面图形的结合类型平面向量与三角形的结合问题,难度是远高于平面向量的坐标运算类型,这里的问题多数都需要先进行深入的分析,然后才能找到题目突破口,进而才能计算,而不是那种先去算,计算过程中发现突破口的问题。
1. 基于向量本身的问题,主要包括向量的夹角注意事项、平面向量基本定理的拆分向量思路、向量加法减法的运算法则(平行四边形法则主要用于解决向量的加法问题、三角形法则主要用于解决向量的减法问题)、向量垂直、共线的充要条件等这几个基础问题。
这里要特别强调向量的拆分思路,将题中待求的向量或题中给出的向量,拆分成模长或夹角已知的向量,如果题中给出基底向量,则将所有非基底向量拆分成基底向量。
2. 基于向量与三角形的结合,尤其是三角形的各种心与平面向量的结合,这里应该清楚三角形的各种心用向量如何表达,本书相关专项有总结,水平高的学生还应该能够进行正确地推导。
1. 已知,,A B C 为圆O 上的三点,若()12AO AB AC =+,则AB 与AC 的夹角为2. 在ABC 中,已知tan AB AC A ⋅=,当30A =时,ABC 的面积为3.如右下图示,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A . 0AD BE CF ++= B. 0BD CF DF -+= C .0AD CE CF +-=D. 0BD BE FC --=4.在ABCD 中,1AD =,3BAD π∠=,E 为CD 的中点,若1AC BE ⋅=,则AB =5.在ABC 中,某23A π∠=,1AB AC ⋅=-,则BC 的最小值为6.在ABC 中,若2AB AB AC BA BC CA CB =⋅+⋅+⋅,则ABC 为___7.正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅的 值为_________8.ABCD 中,8AB =,5AD =,3CP PD =,2AP BP ⋅=,则_____AB AD ⋅=9.已知AB 与AC 夹角为23π,3AB =,2AC =,若AP AB AC λ=+,且AP BC ⊥,则_____λ=10.在ABCD 中,若AB a =,AD b =,E 为OD 的中点,延长AE 交CD 于F 点,则____AF a b =+11.△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB _________12.已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________13.若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____14.若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为___15. 设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( )A.0PA PB +=B.0PC PA +=C.0PB PC +=D.0PA PB PC ++=16.如图,在ABCD 中,AP BD ⊥,垂足为p ,且3AP =,则AP AC ⋅=17. 在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c18.在ABC ∆中,2,3,1,AB AC AB BC ==⋅=则BC 的长度为__________19. 在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.20.在等边ABC 中,P 在线段AB 上,且()01AP AB λλ=<<,若CP AB PA PB ⋅=⋅,则实数____λ=21.已知ABC ∆为等边三角形,2AB =,设点,P Q 满足,(1),,AP AB AQ AC R λλλ==-∈若3,2BQ CP ⋅=-则λ的值为____________参考答案1.解:,,A B C 是圆O 上的三点,()12AO AB AC =+,∴根据向量加法的运算,几何意义得出O 为BC 的中点,即BC 为圆O 的直径。
2020年高考数学(理)总复习:平面向量(解析版)
2020年高考数学(理)总复习:平面向量题型一 平面向量的概念及线性运算 【题型要点】对于利用向量的线性运算、共线向量定理和平面向量基本定理解决“用已知向量(基向量)来表示一些未知向量”的问题.解决的关键是:①结合图形,合理运用平行四边形法则或三角形法则进行运算;②善于用待定系数法【例1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2【解析】 如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z =0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3.【答案】 A【例2】.点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,设△OBC 与△ABC 的面积分别为S 1、S 2,则S 1S 2=( )A.18B.16C.14D.12【解析】 延长OC 到D ,使OD =4OC ,延长CO 交AB 于E .∵O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,∴OD →+OA →+OB →=0,∴O 为△DAB 重心,E 为AB 中点,∴OD ∶OE =2∶1,∴OC ∶OE=1∶2,∴CE ∶OE =3∶2,∴S △AEC =S △BEC ,S △BOE =2S △BOC .∵△OBC 与△ABC 的面积分别为S 1、S 2,∴S 1S 2=16.故选B.【答案】 B .题组训练一 平面向量的概念及线性运算1.在梯形ABCD 中,AB →=3DC →,则BC →等于( ) A .-13AB →+23AD →B .-23AB →+43AD →C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形,则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【答案】 D2.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++C O B O A O22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】 如图所示:设AB 的中点是E ,∵O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,∵2EO →=OC →, ∴OP →=13()4EO →+OE →=EO →,∴P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【答案】 B3.设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【答案】 B题型二 平面向量的平行与垂直 【题型要点】(1)设a =(x 1,y 1),b =(x 2,y 2): ①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)设非零向量a =(x 1,y 1),b =(x 2,y 2):a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (3)利用向量平行或垂直的充要条件可建立方程或函数是求参数的取值.【例3】已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( )A.9 B.3C.109 D.310【解析】向量a=(2,-4),b=(-3,x),c=(1,-1),∴2a+b=(1,x-8),由(2a+b)⊥c,可得1+8-x=0,解得x=9.则|b|=(-3)2+92=310.故选D.【答案】 B【例4】.已知a=(3,2),b=(2,-1),若λa+b与a+λb平行,则λ=________.【解析】∵a=(3,2),b=(2,-1),∴λa+b=(3λ+2,2λ-1),a+λb=(3+2λ,2-λ),∵λa+b∥a+λb,∴(3λ+2)(2-λ)=(2λ-1)(3+2λ),解得λ=±1【答案】±1题组训练二平面向量的平行与垂直1.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________.【解析】由|a+b|2=|a|2+|b|2,得a⊥b,所以m×1+1×2=0,解得m=-2.【答案】-22.已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是()A.55 B.15C.-55D.-15【解析】∵a=(3,1),b=(1,3),c=(k,-2),∴a-c=(3-k,3),∵(a-c)∥b,∴(3-k)·3=3×1,∴k=2,∴a·c=3×2+1×(-2)=4,∴|a|=10,|c|=22,∴cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A. 【答案】 A题型三 平面向量的数量积 【题型要点】(1)涉及数量积和模的计算问题,通常有两种求解思路: ①直接利用数量积的定义; ②建立坐标系,通过坐标运算求解.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.求平面向量的模时,常把模的平方转化为向量的平方.【例5】在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2D .211【解析】如图,取AE 的中点G ,连接BG ∵AE →=23AD →,BF →=13BC →,∴AG →=12AE →=13AD →=13BC →=BF →,∴EF →=GB →,∴|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,∴|EF →|=|GB →|=25,故选B. 【答案】 B【例6】.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB →|=2,OC →=53OA →-23OB →.若M是线段AB 的中点,则OC →·OM →的值为( )A .3B .2 3C .2D .-3【解析】 因为点M 是线段AB 的中点,所以OM →=12()OA →+OB →,|OA =|OB |=|AB |=2,所以△ABC 是等边三角形,即〈OA →,OB →〉=60°,OA →·OB →=2×2×cos60°=2,OC →·OM →=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛-B O A O B O A O21213235=56OA →2-13OB 2+12OA →·OB → =56×22-13×22+12×2=3,故选A. 【答案】 A题组训练三 平面向量的数量积1.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( )A .-2B .-32C .-43D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ) 所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32 当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.【答案】 B2.已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB 的夹角为60°,且OC →⊥AB →,则实数mn的值为( )A.16B.14 C .6D .4【解析】 OA →·OB →=3×2×cos60°=3, ∵OC →=mOA →+nOB →,OC →⊥AB →,∴(mOA →+nOB →)·AB →=(mOA →+nOB →)·(OB →-OA →)=(m -n )OA →·OB →-mOA →2+nOB →2=0,∴3(m -n )-9m +4n =0,∴m n =16,故选A.【答案】 A题型四 数与形相辅相成求解向量问题【例7】 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1] 【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解. 如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),∴OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, ∴OA →+OB →+OD →=OD →-ON →=ND →,∴|OA →+OB →+OD →|=|ND →|,∴|ND →|max =|NC →|+1=7+1,|ND →|min =7-1. 【答案】 D题组训练四 数与形相辅相成求解向量问题已知|b |=1,非零向量a 满足〈a ,b -a 〉=120°,则|a |的取值范围是________. 【解析】如图,设CA →=b ,CB →=a ,则b -a =BA →,在△ABC 中,AC =1,∠ABC =60°. 根据圆的性质:同弧所对的圆周角相等.作△ABC 的外接圆,当BC 为圆的直径时,|a |最大,此时|a |=BC =1sin 60°=233; 当B ,C 无限接近时,|a |=BC →0.故|a |的取值范围是⎥⎦⎤⎝⎛332,0 【答案】 ⎥⎦⎤⎝⎛332,0 【专题训练】 一、选择题1.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( ) A .9 B .3 C.109D .310【解析】 向量a =(2,-4),b =(-3,x ),c =(1,-1),∴2a +b =(1,x -8), 由(2a +b )⊥c ,可得1+8-x =0,解得x =9.则|b |=(-3)2+92=310.故选D. 【答案】 D2.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3D .4【解析】 ∵向量a =(1,k ),b =(2,2), ∴a +b =(3,k +2),又a +b 与a 共线. ∴(k +2)-3k =0,解得k =1,∴a ·b =(1,1)·(2,2)=1×2+1×2=4,故选D. 【答案】 D3.设向量a ,b 满足|a |=1,|b |=2,且a ⊥(a +b ),则向量a 在向量a +2b 方向上的投影为( )A .-1313B.1313C .-113D.113【解析】∵a ⊥(a +b ),∴a ·(a +b )=1+a ·b =0,∴a ·b =-1,∴|a +2b |2=1+4a ·b +16=13,则|a +2b |=13,又a ·(a +2b )=a ·(a +b )+a ·b =-1,故向量a 在向量a +2b 方向上的投影为-113=-1313.选A.【答案】 A4.已知A ,B ,C 是圆O 上的不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)【解析】 由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),故选B.【答案】 B5.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则mn=( ) A .-3 B .-13C.13D .3【解析】 过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →=-26BC →+BA →=-13BC →+BA →,所以m n =1-13=-3.【答案】 A6.如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).∵AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫⎝⎛+-μλμλ2,2,∴⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,∵M ,N 分别为BC ,CD 的中点,∴AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【答案】 D7.如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b ∈R ),则ab 的值为( )A.14 B .1 C.12D.18【解析】由题意易知E 1(2,1),E 2(2,-1),∴e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,∴(2a +2b )24-(a -b )2=1,整理可得4ab =1,∴ab=14. 【答案】 A8.在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a 满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3D.6+2+1【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3),∴|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点,求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【答案】 B9.已知锐角△ABC 的外接圆的半径为1,∠B =π6,则BA →·BC →的取值范围为__________.【解析】 如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,∠B =π6.由正弦定理得a sin A =c sin C =2,∴a =2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,∴BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A =32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. ∵π3<A <π2,∴π3<2A -π3<2π3,∴32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,∴3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32.∴BA →·BC →的取值范围为⎥⎦⎤⎝⎛+233,3. 【答案】 ⎥⎦⎤ ⎝⎛+233,310.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【解析】 因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心.【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( )A .4B .2C .2 2D .2 3【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎪⎭⎫ ⎝⎛4,21⊗(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π⇒(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π⇒⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π⇒y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x ∈⎥⎦⎤⎢⎣⎡3,6ππ时, 由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1⇒2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 【答案】 A 二、填空题12.如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n ∈R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB→+13AD →,又AC →=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12⇒m +n =32.故应填答案32.【答案】 3213.若函数f (x )=2sin ⎪⎭⎫⎝⎛+48ππx (-2<x <14)的图象与x 轴交于点A ,过点A 的直线l与函数f (x )的图象交于B 、C 两点,O 为坐标原点,则(OB →+OC →)·OA →=________.【解析】 ∵-2<x <14,∴f (x )=0的解为x =6,即A (6,0),而A (6,0)恰为函数f (x )图象的一个对称中心,∴B 、C 关于A 对称,∴(OB →+OC →)·OA →=2OA →·OA →=2|OA |2=2×36=72. 【答案】 7214.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则|P A →|2+|PB →|2|PC →|2=________.【解析】 建立如图所示的平面直角坐标系, 设|CA →|=a ,|CB →|=b ,则A (a,0),B (0,b ) ∵点D 是斜边AB 的中点,∴D ⎪⎭⎫⎝⎛2,2b a , ∵点P 为线段CD 的中点,∴P ⎪⎭⎫⎝⎛4,4b a ∴|PC →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛b =a 216+b 216|PB →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛-b b =a 216+9b 216|P A →|2=24⎪⎭⎫ ⎝⎛-a a +24⎪⎭⎫ ⎝⎛b =9a 216+b 216∴|P A →|2+|PB →|2=9a 216+b 216+a 216+9b 216=10⎪⎪⎭⎫ ⎝⎛+161622b a =10|PC →|2,∴|P A →|2+|PB →|2|PC →|2=10.【答案】 1015.在△ABC 中,AB ⊥AC ,AB =1t ,AC =t ,P 是△ABC 所在平面内一点,若AP →=4AB →|AB →|+AC →|AC →|,则△PBC 面积的最小值为________.【解析】 由题意建立如图所示的坐标系,可得A (0,0),B ⎪⎭⎫ ⎝⎛0,1t ,C (0,t ),∵AP →=4AB →|AB →|+AC →|AC →|=(4,0)+(0,1)=(4,1),∴P (4,1);又|BC |=221⎪⎭⎫⎝⎛+t t ,BC 的方程为tx +y t =1,∴点P 到直线BC 的距离为d =221114⎪⎭⎫ ⎝⎛+-+t t t t ,∴△PBC 的面积为S =12·|BC |·d=12·221⎪⎭⎫ ⎝⎛+t t ·221114⎪⎭⎫ ⎝⎛+-+t t t t=12|4t +1t -1|≥12·|24t ·1t -1|=32, 当且仅当4t =1t ,即t =12时取等号,∴△PBC 面积的最小值为32.【答案】 32。
第4讲 平面向量万能建系法5种常见题型(原卷版)
第4讲 平面向量万能建系法5种常见题型【考点分析】考点一:常见建立坐标系方法边长为a 的等边三角形 正方形 已知夹角的任意三角形 矩形直角梯形 平行四边形 等腰梯形 圆 【题型目录】题型一: 建坐标系求向量值题型二: 三角形建坐标系求向量最值问题 题型三: 四边形建坐标系求向量最值问题 题型四: 多边形建坐标系求向量最值问题 题型五: 建坐标系设三角函数求向量最值问题 【典型例题】题型一: 建坐标系求向量值【例1】如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .-15B .-13C .13D .14【例2】已知正方形ABCD 的边长为2,以CD 为边作正三角形CDE ,使得,A E 位于直线CD 的两侧,则AC AE→→⋅的值为( )A .6-B .6-C .6+D .6+【例3】如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼.其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则以下结论错误的是( )A20OB OE OG ++= B .OA OD ⋅=-C .4AG EH +=D .AO 在OH 方向上的投影向量为【例4】《九章算术》中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”其大意为现有水池1丈见方(即1CE =丈10=尺),芦苇生长在水池的中央,长出水面部分的长度为1尺.将芦苇向池岸牵引,牵引至恰巧与水岸齐接的位置(如图所示).试问水深、芦苇的长度各是多少?若将芦苇,AB AC 均视为线段,在芦苇移动的过程中,设其长度不变,则AC DE ⋅=( ).A .90平方尺B .92平方尺C .94平方尺D .98平方尺【例5】已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【题型专练】1.已知矩形ABCD 中,4AB ,2AD =,3DM MC =,BP PC =,则AM AP ⋅=( )A .6B .10C .14D .382.(多选题)已知ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的点,且AE EB =,2AD DC =,BD 与CE 交于点O ,下列结论正确的是( )A .0OC EO +=B .0AB CE ⋅=C .3OA OB OC OD +++=D .ED 在BC 方向上的投影为763.已知矩形ABCD ,3AB =,4=AD .P 为矩形ABCD 所在平面内一点,1PA =, PC =则PB PD ⋅=______.4.如图,四边形ABCD 是边长为8的正方形,若14DE DC =,且F 为BC 的中点,则EA EF ⋅=___________.5.已知向量,a b 在正方形网格中的位置如图所示,若网格中每个小正方形边长为1,则a b ⋅=___________.题型二: 三角形建坐标系求向量最值问题【例1】已知在边长为2的正三角形ABC 中,M 、N 分别为边BC 、AC 上的动点,且CN BM =,则AM MN ⋅的最大值为( ) A .73-B .43-C .13D .34【例2】已知OAB △是边长为1的正三角形,若点P 满足()()2OP t OA tOB t =-+∈R ,则AP 的最小值为A B .1 C D【例3】在Rt △ABC 中,△C =90°,CB =2,CA =4,P 在边AC 的中线BD 上,则CP ·BP 的最小值为( ) A .-12B .0C .4D .-1【例4】已知ABC 是边长为()20a a >的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是 A .22a - B .232a -C .243a -D .2a -【例5】在直角△ABC 中,90,1BCA CA CB ∠=︒==,P 为AB 边上的点且AP AB λ=,若CP AB PA PB ⋅≥⋅,则λ的取值范围是A .1[,1]2B .1[2C .D .【例6】已知AB AC ⊥, 1AB t=, AC t =,若点P 是ABC ∆所在平面内一点,且4AB AC AP ABAC=+,则PB PC ⋅ 的最大值等于( )A .13B .15C .19D .21【题型专练】1.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是( )A .2-B .32-C .43-D .1-2.在ABC 中,满足AB AC ⊥,M 是BC 的中点,若O 是线段AM 上任意一点,且2AB AC ==,则()OA OB OC ⋅+的最小值为( )A .0B .C .12-D .23.在Rt ABC 中90,2,4C CB CA ∠=︒==,P 在边AC 的中线BD 上,则CP BP ⋅的值可以为( ) A .12-B .0C .5D .1-4.在ABC 中,2AB =,AC =135BAC ∠=︒,M 是ABC 所在平面上的动点,则w MA MB MB MC MC MA =⋅+⋅+⋅的最小值为________.5.如图,在△ABC 中,已知AB =2,AC =4,A =60°.若D 为BC 边上的任意一点,M 为线段AD 的中点,则()MB MC AD +⋅的最大值是_____.6.已知0AB AC ⋅=,M 是BC 的中点(1)若2AB AC =,求向量AB AC -与向量AB AC +的夹角的余弦值;(2)若O 是线段AM 上的任意一点,且22AB AC ==,求⋅+⋅OA OB OC OA 的最小值.题型三: 四边形建坐标系求向量最值问题【例1】如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【例2】如图,四边形ABCD 满足:1,2,3AB AD BD BC C π====∠=.若点M 为线段BD 上的动点,则AM CM ⋅的最小值为( )A .54-B .2516-C .58-D .158-【例3】已知点P 是边长为2的菱形ABCD 内的一点(包含边界),且120BAD ∠=︒,AP AB ⋅的取值范围是( ) A .[2,4]- B .(2,4)-C .[2,2]-D .(2,2)-【例4】如图所示,已知正方形ABCD 的边长为1,点E 从D 点出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到C 点,在此过程中CD DE ⋅的最大值是( )A .0B .12C .1D .﹣1【例5】如下图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,3BCD π∠=,CB CD ==M为边BC 上的动点,则AM DM ⋅的最小值为( )A .83B .214C .114-D .133-【题型专练】1.正方形ABCD 边长为1,点P 在线段AC 上运动,则()AP PB PD ⋅+的取值范围为__________.2.已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB +的最小值为______.3.如图,已知正方形ABCD 的边长为1,点E 是AB 边上的动点,求:(1)DE CB ⋅的值; (2)DE DC ⋅的最大值.4.如图,,E F 分别是矩形ABCD 的边CD 和BC 上的动点,且2,1AB AD ==.(1)若,E F 都是中点,求EF AC ⋅.(2)若,E F 都是中点,N 是线段EF 上的任意一点,求AN NB ⋅的最大值. (3)若45EAF ∠=︒,求AE AF ⋅的最小值.5.如图,在梯形ABCD 中,//AB CD ,5AB =,4=AD ,2CD =,60DAB ∠=︒,(1)AD DC ⋅=________.(2)P 是AB 上的动点,则PC PD ⋅的最小值为___________.题型四: 多边形建坐标系求向量最值问题【例1】如图,正八边形ABCDEFGH 中,若AE AC AF λμ=+()R λμ∈,,则λμ+的值为________.【例2】设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++的取值范围是_______.【题型专练】1.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A. ()2,6- B. (6,2)- C. (2,4)- D. (4,6)-题型五: 建坐标系设三角函数求向量最值问题【例1】(多选题)如图,直角ABC 的斜边BC 长为2,30C ∠=︒,且点B ,C 分别在x 轴正半轴和y 轴正半轴上滑动,点A 在线段BC 的右上方则( )A .||OA OC +有最大值也有最小值B .OA OC ⋅有最大值无最小值 C .||OA BC +有最小值无最大值D .OA BC ⋅无最大值也无最小值【例2】骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆A (前轮),圆D (后轮)的直径均为1,△ABE ,△BEC ,△ECD 均是边长为1的等边三角形.设点P 为后轮上的一点,则在骑动该自行车的过程中,AP BD ⋅的最大值为( )A .3B .3+C .3D .【例3】如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角ABC 的斜边AB ,直角边BC ,AC .若BC =2AC =,E 为半圆1O 弧的中点,F 为半圆2O 弧上的任一点,则⋅BE AF 的最大值为( )A .BC .D .4【题型专练】1.如图放置的边长为1的正方形ABCD 的顶点A 、D 分别在x 轴、y 轴正半轴上(含原点)上滑动,则OB OC ⋅的最大值是( )A.1 BC .2D .2.如图,在半径为4的扇形AOB 中,=120AOB ∠,点P 是AB 上的一点,则·AP BP 的最小值为( )A .8-B .3-C .2-D .4-3.(多选题)已知扇形AOB 的半径为1,120AOB ∠=︒,点C 在弧AB 上运动,12OC xOA yOB =+,下列说法正确的有( )A .当C 位于A 点时,x y +的值最小B .当C 位于B 点时,x y +的值最大 C .CA CB ⋅的取值范围为1,02⎡⎤-⎢⎥⎣⎦D .OC BA ⋅的取值范围33,22⎡⎤-⎢⎥⎣⎦4.如图,点C是半径为1,圆心角为3π2的圆弧AB上的点.(1)若C为圆弧AB的中点,点D在线段OA上运动,求OC OD+的最小值:(2)若D,E分别为线段OA,OB的中点,当C在圆弧AB上运动时,求CE CD⋅的取值范围.。
高三数学平面向量基本定理及坐标表示试题答案及解析
高三数学平面向量基本定理及坐标表示试题答案及解析1.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.【答案】(1)(2)【解析】(1)设所求的椭圆方程为:由题意:所求椭圆方程为:.(2)若过点的斜率不存在,则.若过点的直线斜率为,即:时,直线的方程为由因为和椭圆交于不同两点所以,所以①设由已知,则②③将③代入②得:整理得:所以代入①式得,解得.所以或.综上可得,实数的取值范围为:.2.(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【答案】A【解析】,,则向量方向上的投影为:•cos<>=•===,故选A.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,, 所以, 故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.5. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若=x ,=y ,求的值.【答案】4 【解析】设=a ,=b ,则=x a ,=y b ,== (+)= (a +b ).∴=-= (a +b )-x a =a +b ,=-=y b -x a =-x a +y b . ∵与共线,∴存在实数λ,使=λ.∴a +b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴消去λ,得=4.6. 已知点O (0,0),A 0(0,1),A n (6,7),点A 1,A 2,…,A n -1(n ∈N ,n ≥2)是线段A 0A n 的n 等分点,则| ++…+OA n -1+|等于( ) A .5n B .10n C .5(n +1) D .10(n +1)【答案】C【解析】取n =2,,则++=(0,1)+(3,4)+(6,7)=(9,12),所以| ++|==15,把n =2代入选项中,只有5(n +1)=15,故排除A 、B 、D ,选C.7. 已知向量a=(cosθ,sinθ),b=(,-1),则|2a-b|的最大值为( ) A .4 B .4 C .16D .8【答案】B【解析】∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|===故最大值为4.8. 已知向量a=(1,-2),b=(m,4),且a ∥b,那么2a-b=( )A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).9.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.10.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.11.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.12.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.13.已知向量,若,则的最小值为.【答案】4【解析】,所以.【考点】1、向量的平行关系;2、向量的模;3、重要不等式14.已知向量,向量,且,则的值是()A.B.C.D.【答案】C.【解析】,,即得.【考点】向量的坐标运算.15.已知点,,则与共线的单位向量为()A.或B.C.或D.【答案】C【解析】因为点,,所以,,与共线的单位向量为.【考点】向量共线.16.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算17.在中,已知,且,则( )A.B.C.D.【答案】A【解析】因为,,所以,,,故选A。
《平面向量》热点题型探究
《平面向量》热点题型探究题型一 向量的概念及线性运算 1.向量的有关概念(1)向量:既有大小又有方向的量.两个向量不能比较大小,但它的模可以比较大小. (2)零向量:模为0的向量,记作0,其方向为任意的,所以0与任意向量平行,其性质有0·a =0,0+a =a .(3)单位向量:模为1个长度单位的向量,与a 方向相同的单位向量为a|a |.2.共线向量(1)概念:若两个非零向量a ,b 的方向相同或相反,则称a 与b 共线,也叫a 与b 平行,规定零向量与任意向量共线.两个向量共线,其所在的直线可能重合也可能平行.(2)共线向量定理:a ∥b (b ≠0)⇔存在唯一实数λ,使得a =λb . (3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. (4)若A ,B ,C 三点共线且OA →=λOB →+μOC →,则λ+μ=1. 3.平面向量线性运算的两种技巧(1)对于平面向量的线性运算问题,要尽可能转化到三角形或平行四边形中,灵活运用三角形法则、平行四边形法则,紧密结合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理来判断.1.有下列命题: ①若|a|=|b|,则a =b ;②若|AB →|=|DC →|,则四边形ABCD 是平行四边形; ③若m =n ,n =k ,则m =k ; ④若a ∥b ,b ∥c ,则a ∥c . 其中假命题的个数是( ) A .1 B .2 C .3D .4C 解析 对于①,|a|=|b|,a ,b 的方向不确定,则a ,b 不一定相等,所以①错误;对于②,若|AB →|=|DC →|,则AB →,DC →的方向不一定相同,所以四边形ABCD 不一定是平行四边形,所以②错误;对于③,若m =n ,n =k ,则m =k ,③正确;对于④,若a ∥b ,b ∥c ,则b =0时,a ∥c 不一定成立,所以④错误.综上,假命题是①②④,共3个.故选C 项.2.如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF →=( )A .34AB →+14AD →B .14AB →+34AD →C .12AB →+AD →D .34AB →+12AD →D 解析 根据题意得AF →=12(AC →+AE →),又AC →=AB →+AD →,AE →=12AB →,所以AF →=12⎝⎛⎭⎫AB→+AD →+12AB →=34AB →+12AD →.故选D 项.3.设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为________.解析 由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →.又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2)=(3-k )e 1-(2k+1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2,又e 1与e 2不共线,所以⎩⎪⎨⎪⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.答案 -944.已知点P 在△ABC 所在的平面内,若2P A →+3PB →+4PC →=3AB →,则△P AB 与△PBC 的面积的比值为________.解析 由2P A →+3PB →+4PC →=3AB →,得2P A →+4PC →=3AB →+3BP →,所以2P A →+4PC →=3AP →,即4PC →=5AP →.所以A ,C ,P 三点共线,且|AP →||PC →|=45,所以S △P AB S △PBC =|AP →||PC →|=45.答案 45题型二 平面向量基本定理平面向量基本定理:若a ,b 是平面内不共线的向量,向量c 是平面内任意一个向量,则存在唯一实数对x ,y ,使c =x a +y b .平面向量基本定理是定义向量坐标的基础,是将平面内任意向量用不共线的平面向量即基底表示出来的基础.5.已知平面直角坐标系内的两个向量a =(m,3m -4),b =(1,2),且平面内的任意向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)C 解析 平面内的任意向量c 都可以唯一地表示成c =λa +μb ,由平面向量基本定理可知,向量a ,b 可作为该平面所有向量的一组基底,即向量a ,b 是不共线向量.又因为a =(m,3m -4),b =(1,2),则m ×2-(3m -4)×1≠0,即m ≠4,所以m 的取值范围为(-∞,4)∪(4,+∞).故选C 项.6.如图所示,|OA →|=|OB →|=1,|OC →|=3,∠AOB =60°,OB ⊥OC ,设OC →=xOA →+yOB →,则( )A .x =-2,y =-1B .x =-2,y =1C .x =2,y =-1D .x =2,y =1B 解析 过点C 作CD ∥OB 交AO 的延长线于点D ,连接BC ,如图所示.由|OB →|=1,|OC →|=3,∠AOB =60°,OB ⊥OC ,知∠COD =30°.在Rt △OCD 中,可得OD =2CD =2,则OC →=OD →+DC →=OD →+OB →=-2OA →+OB →.故x =-2,y =1.故选B 项.7.在△ABC 中,点P 是AB 上一点,且CP →=23CA →+13CB →,点Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则实数t 的值为________.解析 因为CP →=23CA →+13CB →,所以3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →,所以2AP→=PB →,即点P 为AB 的一个三等分点(靠近点A ).又由题意可知A ,M ,Q 三点共线,则可设AM →=λAQ →,所以CM →=AM →-AC →=λAQ →-AC →=λ⎝⎛⎭⎫12AB →+12AC →-AC →=λ2AB →+λ-22AC →,又CM →=tCP →=t (AP →-AC →)=t ⎝⎛⎭⎫13AB →-AC →=t 3AB →-tAC →,故⎩⎪⎨⎪⎧ λ2=t 3,λ-22=-t ,解得⎩⎨⎧t =34,λ=12.故t 的值是34.答案 34【变式】如图,平行四边形ABCD 的两条对角线相交于点O ,7AE →=5AB →,AD →=4AF →,EF 交AC 于点K ,AK →=λOA →,则实数λ的值为____________.解析 因为AK →=λOA →=-λAO →=-λ2(AB →+AD →),所以AK →=-λ2⎝⎛⎭⎫75AE →+4AF →.又E ,F ,K 三点共线,所以-λ2×⎝⎛⎭⎫75+4=1,解得λ=-1027. 答案 -1027题型三 向量的数量积及应用)1.向量的数量积是一个实数,求向量数量积的三种方法:一是利用向量数量积的定义,a·b =|a||b|cos θ;二是根据向量数量积的几何意义,a·b 等于a 的模与b 在向量a 方向上的投影的乘积;三是建立坐标系,写出向量坐标a =(x 1,y 1),b =(x 2,y 2),a·b =x 1x 2+y 1y 2.在解决与平面几何有关的数量积问题时,充分利用向量的线性运算,将所求向量用共同的基底表示出来,再利用平面向量的数量积运算法则求解.2.向量的投影:|b |cos θ叫向量b 在向量a 方向上的投影,|b |cos θ=a·b|a|.3.若向量a 与b 的夹角为θ,则θ的范围为[0,π],cos θ=a·b|a||b|;若已知向量a =(x 1,y 1),b =(x 2,y 2),向量a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.已知非零向量a ,b ,则a ⊥b ⇔a·b =0;已知非零向量a ,b ,若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.5.向量的模是非负数,|a|2=a 2=a·a ;若向量a =(x 1,y 1),则|a |=x 21+y 21.8.已知非零向量a ,b 满足|a|=2|b|,且(a -b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6B 解析 因为(a -b )⊥b ,所以(a -b )·b =a·b -b 2=0,所以a·b =b 2,所以cos θ=a·b|a|·|b|=|b|22|b|2=12,所以a 与b 的夹角为π3.故选B 项. 9.已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →=( ) A .-3 B .-2 C .2D .3C 解析 因为BC →=AC →-AB →=(1,t -3),所以|BC →|=12+(t -3)2=1,所以t =3,所以AB →·BC →=(2,3)·(1,0)=2.故选C 项.10.已知向量a =(-4,3),b =(6,m ),且a ⊥b ,则m =________.解析 依题意向量a =(-4,3),b =(6,m ),a ⊥b ,则a·b =0,即-4×6+3m =0,即m =8.答案 811.在四边形ABCD 中,AD ∥BC ,AB =23,AD =5,∠A =30°,点E 在线段CB 的延长线上,且AE =BE ,则BD →·AE →=________.解析 如图,因为E 在线段CB 的延长线上,所以EB ∥AD .因为∠DAB =30°,所以∠ABE =30°.因为AE =BE ,所以∠EAB =30°.又因为AB =23,所以BE =2.因为AD =5,所以EB →=25AD →.所以AE →=AB →+BE →=AB →-25AD →.又因为BD →=AD →-AB →,所以BD →·AE →=(AD →-AB →)·⎝⎛⎭⎫AB →-25AD →=AD →·AB →-25AD →2-AB →2+25AD →·AB →=75|AD →|·|AB →|·cos 30°-25×52-(23)2=75×5×23×32-10-12=21-22=-1.答案 -1 【规范演练】1.下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 B 解析 A 项中,零向量与任意向量都共线,故其不可以作为基底;B 项中,不存在实数λ,使得e 1=λe 2,故两向量不共线,故其可以作为基底;C 项中,e 2=2e 1,两向量共线,故其不可以作为基底;D 项中,e 1=4e 2,两向量共线,故其不可以作为基底.故选B 项.2.设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“|a +b |=3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件D 解析 因为a ,b 均为单位向量,若a 与b 夹角为2π3,则|a +b |=|a |2+|b |2+2a·b =1+1+2×1×1×cos 2π3=1,所以由“a 与b 夹角为2π3”不能推出“|a +b |=3”;若|a +b |=3,则|a +b |=|a|2+|b|2+2a·b =1+1+2×1×1×cos 〈a ,b 〉=3,解得cos 〈a ,b 〉=12,即a 与b 夹角为π3,所以由“|a +b |=3”不能推出“a 与b 夹角为2π3”.因此“a 与b 夹角为2π3”是“|a +b |=3”的既不充分也不必要条件.故选D 项.3.已知向量a =(1,2),b =(-2,3),c =(4,5),若(a +λb )⊥c ,则实数λ=( ) A .-12B .12C .-2D .2C 解析 因为a =(1,2),b =(-2,3),所以a +λb =(1-2λ,2+3λ),又(a +λb )⊥c ,所以(a +λb )·c =0,即4(1-2λ)+5(2+3λ)=0,解得λ=-2.故选C 项.4.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A .⎝⎛⎭⎫0,13 B .⎝⎛⎭⎫0,12C .⎝⎛⎭⎫-13,0 D .⎝⎛⎭⎫-12,0 C 解析 由题意得AO →=AC →+CO →,O 在线段CD 上且不与端点重合,所以存在k (0<k <1),使CO →=kCD →,又BC →=3CD →,所以CD →=13BC →=13(AC →-AB →),所以AO →=AC →+k 3(AC →-AB →)=-k 3AB→+⎝⎛⎭⎫1+k 3AC →,又AO →=xAB →+(1-x )AC →,所以x =-k 3,所以-13<x <0.故选C 项. 5.在矩形ABCD 中,|AB →|=4,|AD →|=2.若点M ,N 分别是CD ,BC 的中点,则AM →·MN →=( )A .4B .3C .2D .1C 解析 由题意作出图形,如图所示.由图及题意,可得AM →=AD →+DM →=AD →+12AB →,MN →=CN →-CM →=12CB →-12CD →=-12BC →+12DC →=-12AD →+12AB →.所以AM →·MN →=⎝⎛⎭⎫AD →+12AB →·⎝⎛⎭⎫-12AD →+12AB →=-12·|AD →|2+14·|AB →|2=-12×4+14×16=2.故选C 项. 【跟踪检测】 基础热身1.已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°A 解析 |BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32.因为0°≤∠ABC ≤180°,所以∠ABC=30°.故选A 项.2.向量a ,b ,c 在正方形网格中的位置如图所示.若向量c =λa +b ,则实数λ=( )A .-2B .-1C .1D .2D 解析 由题中所给图象可得2a +b =c ,又c =λa +b ,所以λ=2.故选D 项. 3.已知平面向量a =(-1,2),b =(2,y ),且a ∥b ,则3a +2b =( ) A .(-1,7) B .(-1,2) C .(1,2)D .(1,-2)D 解析 因为a =(-1,2),b =(2,y ),且a ∥b ,所以-1×y -2×2=0,解得y =-4,故可得3a +2b =3(-1,2)+2(2,-4)=(1,-2).故选D 项.4.设向量a ,b 满足|a +b|=10,|a -b|=6,则a·b =( ) A .1 B .2 C .3D .5A 解析 由|a +b |=10得|a +b |2=10, 即a 2+2a·b +b 2=10,①又|a -b |=6,所以a 2-2a·b +b 2=6,② 由①-②得4a·b =4,则a·b =1.故选A 项.5.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b|=( ) A .9 B .3 C .109D .310 D 解析 向量a =(2,-4),b =(-3,x ),c =(1,-1),所以2a +b =(1,x -8),由(2a +b )⊥c ,可得1+8-x =0,解得x =9,则|b |=(-3)2+92=310.故选D 项.6.(2019·广东东莞统考)如图所示,△ABC 中,BD →=2DC →,点E 是线段AD 的中点,则AC →=( )A .34AD →+12BE →B .34AB →+BE →C .54AD →+12BE →D .54AD →+BE →C 解析 由题意和图可知,AC →=AD →+DC →,DC →=12BD →,BD →=BE →+ED →,ED →=12AD →,所以AC →=54AD →+12BE →.故选C 项.7.如图,已知|OA →|=|OB →|=1,|OC →|=2,tan ∠AOB =-43,∠BOC =45°,OC →=mOA →+nOB →,则m n=( )A .57B .75C .37D .73A 解析 以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立平面直角坐标系如图所示.因为|OA →|=|OB →|=1,且tan ∠AOB =-43,所以cos ∠AOB =-35,sin ∠AOB =45,所以A (1,0),B ⎝⎛⎭⎫-35,45,又令∠AOC =θ,则θ=∠AOB -∠BOC ,所以tan θ=tan(∠AOB -∠BOC )=-43-11-43=7,又因为点C 在∠AOB 内,所以cos θ=210,sin θ=7210,又|OC →|=2,所以C ⎝⎛⎭⎫15,75,因为OC →=mOA →+nOB →(m ,n ∈R ),所以⎝⎛⎭⎫15,75=(m,0)+⎝⎛⎭⎫-35n ,45n =⎝⎛⎭⎫m -35n ,45n ,即⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧n =74,m =54,所以m n =57.故选A 项.8.已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析 cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3-λ3+11+λ2=12,解得λ=33. 答案339.已知向量a ,b 的夹角为120°,且|a|=2,|b|=4,则b 在a 方向上的投影等于________.解析 因为a·b =2×4cos 120°=-4,所以b 在a 方向上的投影为a·b |a|=-42=-2.答案 -210.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 由条件知M 是△ABC 的重心,设D 是BC 边的中点,则AB →+AC →=2AD →,而AM →=23AD →,所以2AD →=m ·23AD →,所以m =3.答案 311.在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →,且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析 如图,△ABC 中,∠ACB 为钝角,AC =BC =1,记NA →=CA →-mCB →,则当N 在D 处,即AD ⊥BC 时,f (m )取得最小值32,因此|AD →|=32,容易得到∠ACB =120°.因为CO →=xCA →+yCB →,且x +y =1,所以O 在边AB 上,所以当CO ⊥AB 时,|CO →|最小,|CO →|min =12.答案 1212.平行四边形ABCD 中,AB =4,AD =2,AB →·AD →=4,点P 在边CD 上,则P A →·PC →的取值范围是________.解析 设|PD →|=x ,x ∈[0,4],则P A →·PC →=(PD →+DA →)·PC →=⎝⎛⎭⎫-x 4AB →-AD →·4-x 4AB →=-x 4×4-x 4AB →2-4-x 4AD →·AB →=-x 4×4-x 4×16-4-x 4×4=x 2-3x -4=⎝⎛⎭⎫x -322-254,所以当x =32时,取最小值-254,当x =4时,取最大值0,即P A →·PC →的取值范围是⎣⎡⎦⎤-254,0. 答案 ⎣⎡⎦⎤-254,0 能力提升13.设平面向量a =(-2,1),b =(1,λ),若a 与b 的夹角为钝角,则λ的取值范围是____________.解析 因为a 与b 的夹角为钝角,所以a ·b <0,且a 与b 不平行,所以有⎩⎪⎨⎪⎧-2+λ<0,-2λ≠1,即λ<2且λ≠-12,所以λ的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2. 答案 ⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2 14.已知A B →与A C →的夹角为90°,|A B →|=2,|A C →|=1,AM →=λA B →+μA C →(λ,μ∈R ),且AM →·B C →=0,则λμ的值为________.解析 根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB→=(0,2),AC →=(1,0),BC →=(1,-2).设M (x ,y ),则AM →=(x ,y ),所以AM →·BC →=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM →=λAB →+μAC →,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y x =14. 答案 1415.如图,△ABC 是边长为23的正三角形,P 是以C 为圆心,1为半径的圆上任意一点,则AP →·BP →的取值范围是________.解析 取AB 的中点D ,连接CD ,CP ,则CA →+CB →=2CD →,所以AP →·BP →=(CP →-CA →)·(CP →-CB →)=CP →2-CP →·(CA →+CB →)+CA →·CB →=CP →2-2CD →·CP →+CA →·CB →=1-2×3×1×cos CD →,CP→+(23)2cos π3=7-6cos CD →,CP →,所以当cos CD →,CP →=1时,AP →·BP →取得最小值为1;当cos CD →,CP →=-1时,AP →·BP →取得最大值为13.因此AP →·BP →的取值范围是[1,13].答案 [1,13]16.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求向量a 在b 上的投影;(2)设c =(0,1),若a +b =c ,求α,β的值.解析 (1)a -b =(cos α-cos β,sin α-sin β),则|a -b |=2-2cos (α-β)=2,所以cos(α-β)=0,而0<β<α<π,所以0<α-β<π,所以α-β=π2.所以向量a 在b 上的投影为|a |cos a ,b =a ·b |b |=cos(α-β)=0. (2)由a +b =c 得⎩⎪⎨⎪⎧ cos α+cos β=0, ①sin α+sin β=1, ②①2+②2得cos(α-β)=-12,而0<α-β<π,故α-β=2π3,而由①得α+β=π,解得α=5π6,β=π6.。
高中数学第二章平面向量向量应用举例例题与探究(含解析)
2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。
思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。
证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。
图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。
∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。
∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。
又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。
绿色通道:1。
向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。
这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。
【巧解妙解】高考数学向量与其他问题结合的经典题型
平面向量综合应用与解题技巧【命题趋向】由2019年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.例1(北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+. 例3.(广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=( ) (A )BA BC 21+- (B ) 21--(C ) 21- (D )21+命题意图: 本题主要考查向量的加法和减法运算能力. 解:21+-=+=,故选A.例4. (重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时 当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-==- ⎪⋅⎝⎭⎛⎫时 故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由 ()2311,1,2.231 2.x xb y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 2cos ,33a b a b a b⋅===⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ()(A ) ⎪⎪⎭⎫⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +=1,2x y ⎧=⎪⎪⎨⎪⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大. 例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1,由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z , 例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1例9.(湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 例10.(广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>=sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=. (2)52CB CA =, 5cos 2ab C ∴=,20ab ∴=. 又9a b += 22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. 命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。
平面向量常用方法归纳
平面向量常用方法归纳1、基底法 在处理平面向量问题时,有一类是所求的向量模长和夹角是在变化的,我们利用平面向量的基本定理,选取一组不共线的且模长和夹角知道的非零向量作为基底,把所求向量都用所选基底表示来处理问题.【例1.1】在ABC ∆中,M 是BC 的中点,3,10AM BC ==,则__________. 【答案】16- 【解析】方法一:基底法 ()()()1625092-=-+=⋅++⋅+=+⋅+=⋅MC MB MC MB AM AM MC AM MB AM AC AB 方法二:极化恒等式法161004194122-=⋅-=-=⋅BC AM AC AB 【例1.2】已知菱形的边长为2,,点分别在边上,,.若,,则( )A. B. C. D. 【答案】C【解析】方法一:基底法AB AC ⋅=ABCD 120BAD ,E F ,BC DC BE BC DF DC 1AE AF 23CE CF 122356712()()()()⎪⎩⎪⎨⎧-=-⋅-=+⋅+⇒⎪⎩⎪⎨⎧-=⋅=⋅32111321DC BC DC AD BC AB CF CE AF AE μλμλ,()()⎪⎩⎪⎨⎧=++-=-++-∴3111242μλλμλμμλ令μλ+=x ,λμ=y ,则原式可化为:⎪⎩⎪⎨⎧=+-=-+-3111242x y y x ,解得⎪⎪⎩⎪⎪⎨⎧==6165y x ,65=+∴μλ.方法二:解析法建立如图所示直角坐标系,则:()0,2B ,()3,1C ,()3,1-D ,又 BC BE λ=,DC DF μ=,易得()λλ3,2-E ,()3,12-μF()1224=--+=⋅∴λμμλAF AE ,()32222-=--+=⋅λμμλCF CE ,下同方法一. 65=+∴μλ【练习1.1】已知直角梯形中,//,,,是腰上的动点,则的最小值为____________.【答案】5 【提示】本题仍然推荐基底法和坐标法,可令DC DP λ=,当43=λ时取得最小值5.【练习1.2】如图,△ABC 是边长为32的等边三角形,P 是以C 为圆心,半径为1的圆上的任意一点,则BP AP ⋅的取值范围是 .【答案】[]13,1 【提示】本题可以使用基底法和极化恒等式两种方法处理,当然也可以使用解析法处理..2、平方法在向量中,遇到和模长有关的问题,很多时候都可以考虑把相关式子两边同时平方来处理,并且要灵活运用:向量的平方等于它模长的平方这个规律,即22||a a =.【例2.1】设,a b 是两个非零向量,( )A .若||||||a b a b +=-,则a b ⊥B .若a b ⊥,则||||||a b a b +=-C .若||||||a b a b +=-,则存在实数λ,使得b a λ=D .若存在实数λ,使得b a λ=,则||||||a b a b +=-【答案】CABCD AD BC 090ADC ∠=2,1AD BC ==P DC 3PA PB +C AB P【解析】方法一:平方法 对式子||||||b a b a -=+进行两边平方处理, 易得:1,cos -=b a ,即向量a 与b 反向,而“存在实数λ,使得b a λ=”表示向量a 与b 共线,故选项C 正确.方法二:三角不等式由三角不等式||||||||b a b a +≤-等号成立的条件是向量a 与b 反向,下同方法一.【例2.2】11. 如图,在△ABC 中,3BAC π∠=,D 为AB 的中点,P 为CD 上一点,且满足AP t AC =13AB +,若△ABC 的面积为332,则||AP 的最小值为 【答案】2【解析】由AP t AC =13AB +,点D 为AB 的中点,易得: AD AC t AP 32+=,又P D C 、、 三点共线,31=∴t , AB AC AP 3131+=∴, 则A AC AB AB AC AB AC AP cos ||||2313131||222++=⎪⎭⎫ ⎝⎛+=,又233sin ||||21==∆A AC AB S ABC ,∴6||||=AC AB ,2||=≥=∴AP , 当且仅当6||||==AC AB 时取等号.【练习2.1】设12,e e 为单位向量,非零向量12,,b xe ye x y R =+∈.若12,e e 的夹角为6π,则||||x b 的最大值等于__________.【答案】2【提示】平方法转化成二次函数最值问题,数形结合也可处理.【练习2.2】设为两个非零向量,a b 的夹角,已知对任意实数,||b ta +的最小值为1( )A.若确定,则||a |唯一确定B.若确定,则||b 唯一确定C.若||a 确定,则唯一确定D.若||b 确定,则唯一确定【答案】B【提示】平方法转化成一次二此不等式恒成立问题,或使用数形结合方法处理.3、投影法 平面向量数量积(点乘):||||cos ,a b a b a b ⋅=<>θt θθθθ③b 在a 上的投影是||cos ,.b a b <>④投影有正有负,正负代表投影的位置.【例3.1】如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,是小正方形的其余各个顶点,则的不同值的个数为( )A. 7B. 5C. 3D. 1【答案】C【解析】i AP 在向量AB 上的投影有三种情况,分别是52 AP AP 、的投影是0,1AP ,3AP ,6AP 的投影是1,4AP ,7AP的投影是2, 所以共有三个不同的结果,故选C.【例3.2】如图,在等腰直角ABO ∆中,1,OA OB C ==为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设,,OA a OB b OP p ===,则()p b a -等于( ) A .12- B. 12 C .32- D. 32【答案】A【提示】投影法(1,2,,7)i P i =(1,2,,7)i AB AP i ⋅=()2||41||||41AB AB AB AB OP a b p -=⋅-=⋅=-⋅, 又ABO ∆ 是等腰直角三角形,且1==OB OA ,2||=∴AB ,∴()21||412-=-=-⋅AB a b p .【练习3.1】已知,是平面单位向量,且.若平面向量满足,则 . 【答案】332 【提示】方法一:投影法由题意知1||||21==e e ,又121=⋅=⋅e b e b ,由向量数量积的几何意义,可知b 在1e 与2e 上的投影均为1,又2121=⋅e e ,3,21π=e e , 则向量b 如图所示,由几何关系易得332||=b 方法二:坐标法1e 2e 1212e e ⋅=b 121b e b e ⋅=⋅=b =建立如图所示的直角坐标系,设()y x b ,= 易得:()0,11=e ,⎪⎪⎭⎫ ⎝⎛=23,212e ,121=⋅=⋅b e b e ,可得:⎪⎩⎪⎨⎧=+=12321y x x ,解得:⎪⎩⎪⎨⎧==331y x , 332||=∴b 方法三:数形结合121=⋅=⋅b e b e ,01cos ||||cos ||||2211>==∴θθe b e b ,21θθ=∴,又2121=⋅e e ,3,21π=e e , 621πθθ==∴或65π(舍) 代回已知11=⋅e b ,易得332||=b 【练习3.2】在ABC 中,5BC =,G ,O 分别为ABC 的重心和外心,且5OG BC ⋅=,则ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .上述三种情况都有可能【答案】B【提示】方法一利用重心和外心的性质,利用投影的思想来处理5=⋅BC OG 这个条件,方法二利用基底代换,把条件5=⋅BC OG 转化为余弦定理形式来判断C ∠为钝角.4、坐标法 几何问题代数化是数学中比较重要的一个思想方法,在平面向量中,这个思想在处理很多问题时比较“直接无脑”。
高考平面向量题型归纳总结
高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
平面向量与三角形的“四心”问题
平面向量与三角形的“四心”综合问题【例题精讲】例题1 已知O ,N ,P 在△ABC 所在平面内,且|OA ―→|=|OB ―→|=|OC ―→|,NA ―→+NB ―→+NC ―→=0,且P A ―→·PB ―→=PB ―→·PC ―→=PC ―→·P A ―→,则点O ,N ,P 依次是△ABC 的( )A .重心 外心 垂心B .重心 外心 内心C .外心 重心 垂心D .外心 重心 内心【解析】由|OA ―→|=|OB ―→|=|OC ―→|知,O 为△ABC 的外心; 由NA ―→+NB ―→+NC ―→=0知,N 为△ABC 的重心;因为P A ―→·PB ―→=PB ―→·PC ―→,所以(P A ―→-PC ―→)·PB ―→=0, 所以CA ―→·PB ―→=0,所以CA ―→△PB ―→,即CA △PB ,同理AP △BC ,CP △AB ,所以P 为△ABC 的垂心,故选C.例题2 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP ―→=x OB ―→+y OC ―→,其中x ,y △[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463C .4 3D .62【解析】根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部, 其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463,故选B.【知识小结】三角形“四心”的向量表示(1)在△ABC 中,若|OA ―→|=|OB ―→|=|OC ―→|或OA ―→2=OB ―→2=OC ―→2,则点O 是△ABC 的外心.(2)在△ABC 中,若GA ―→+GB ―→+GC ―→=0,则点G 是△ABC 的重心.(3)对于△ABC ,O ,P 为平面内的任意两点,若OP ―→-OA ―→=λ⎝ ⎛⎭⎪⎫AB ―→+12BC ―→,λ△(0,+∞),则直线AP 过△ABC 的重心. (4)OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→或者|OA ―→|2+|OB ―→|2=|OB ―→|2+|OC ―→|2=|OC ―→|2+|OA ―→|2,则点O 为三角形的垂心.(5)|BC ―→|·OA ―→+|AC ―→|·OB ―→+|AB ―→|·OC ―→=0,则点O 为三角形的内心.(6)对于△ABC ,O ,P 为平面内的任意两点,若OP ―→=OA ―→+λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|+AC ―→|AC ―→|(λ>0),则直线AP 过△ABC 的内心.【变式练习】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP ―→=OA ―→+λ(AB ―→+AC ―→),λ△(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心【解析】选C 由原等式,得OP ―→-OA ―→=λ(AB ―→+AC ―→),即AP ―→=λ(AB ―→+AC ―→),根据平行四边形法则,知AB ―→+AC ―→=2AD ―→(D 为BC 的中点),所以点P 的轨迹必过△ABC 的重心.故选C.2.在△ABC 中,|AB ―→|=3,|AC ―→|=2,AD ―→=12AB ―→+34AC ―→,则直线AD 通过△ABC 的( )A .重心B .外心C .垂心D .内心解析:选D △|AB ―→|=3,|AC ―→|=2,△12|AB ―→|=34|AC ―→|=32.设AE ―→=12AB ―→,AF ―→=34AC ―→,则|AE ―→|=|AF ―→|.△AD ―→=12AB ―→+34AC ―→=AE ―→+AF ―→,△AD 平分△EAF ,△AD 平分△BAC ,△直线AD 通过△ABC 的内心。
高考数学(理)之平面向量 专题04 平面向量在平面几何、三角函数、解析几何中的应用(解析版)
平面向量04 平面向量在平面几何、三角函数、解析几何中的应用一、具本目标: 一)向量的应用1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题. 二)考点解读与备考:1.近几年常以考查向量的共线、数量积、夹角、模为主,基本稳定为选择题或填空题,难度较低;2.常与平面几何、三角函数、解析几何等相结合,以工具的形式进行考查,常用向量的知识入手.力学方面应用的考查较少.3.备考重点:(1) 理解有关概念是基础,掌握线性运算、坐标运算的方法是关键;(2)解答与平面几何、三角函数、解析几何等交汇问题时,应注意运用数形结合的数学思想,将共线、垂直等问题,通过建立平面直角坐标系,利用坐标运算解题.4.难点:向量与函数、三角函数、解析几何的综合问题.以向量形式为条件,综合考查了函数、三角、数列、曲线等问题.要充分应用向量的公式及相关性质,会用向量的几何意义解决问题,有时运用向量的坐标运算更能方便运算. 二、知识概述:常见的向量法解决简单的平面几何问题: 1.垂直问题:(1)对非零向量a r 与b r ,a b ⊥⇔r r.(2)若非零向量1122(,),(,),a x y b x y a b ==⊥⇔r r r r.2.平行问题:(1)向量a r 与非零向量b r共线,当且仅当存在唯一一个实数λ,使得 .(2)设1122(,),(,)a x y b x y ==r r是平面向量,则向量a r 与非零向量b r 共线⇔ .【考点讲解】3.求角问题:(1)设,a b r r是两个非零向量,夹角记为α,则cos α= .(2)若1122(,),(,)a x y b x y ==r r是平面向量,则cos α= .4.距离(长度)问题:(1)设(,)a x y =r,则22a a ==r r ,即a =r .(2)若1122(,),(,)A x y B x y ,且a AB =r u u u r ,则AB AB ==u u u r.【答案】1.1212(1)0,(2)0.a b x x y y ⋅=+=r r2.(1)a b λ=r r,(2)12210x y x y -=3.(1)a b a b ⋅⋅r r r r.4.(1)22x y +【优秀题型展示】 1. 在平面几何中的应用:已知ABC D 中,(2,1),(3,2),(3,1)A B C ---,BC 边上的高为AD ,求点D 和向量AD u u u r的坐标.【解析】设点D 坐标(x ,y ),由AD 是BC 边上的高可得⊥,且B 、D 、C 共线,∴⎪⎩⎪⎨⎧=⋅//0∴⎩⎨⎧=+---+=--⋅+-0)1)(3()2)(3(0)3,6()1,2(y x y x y x ∴⎩⎨⎧=+---+=+---0)1)(3()2)(3(0)1(3)2(6y x y x y x ∴⎩⎨⎧=+-=-+012032y x y x解得⎩⎨⎧==11y x ∴点D 坐标为(1,1),AD =(-1,2). 【答案】AD =(-1,2)【变式】已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r,则顶点D 的坐标为 ( ) A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),【解析】设22(,),(3,1)(1,2)(4,3),(,2),,37222x x D x y BC AD x y y y 祆==镲镲镲=---==-\\眄镲-==镲镲铑u u u r u u u rQ , 【答案】A【变式】已知正方形OABC 的边长为1,点D E 、分别为AB BC 、的中点,求cos DOE ∠的值.【解析】以OA OC 、为坐标轴建立直角坐标系,如图所示.由已知条件,可得114.225⋅==∴∠=⋅u u u r u u u ru u u r u u u r u u u r u u u r (1,),(,1),cos =OD OE OD OE DOE OD OE2.在三角函数中的应用:已知向量3(sin ,)4a x =r ,(cos ,1)b x =-r .设函数()2()f x a b b =+⋅r r r ,已知在ABC ∆中,内角A B C 、、的对边分别为a bc 、、,若a =2b =,sin B =()4cos(2)6f x A π++([0,]3x π∈)的取值范围.【解析】 由正弦定理得或 . 因为,所以4A π=.因为+.所以, ,, 所以. 【答案】()⎥⎦⎤⎢⎣⎡--∈⎪⎭⎫ ⎝⎛++212,12362cos 4πA x f sin ,sin sin 24a b A A A B π===可得所以43π=A a b >()2())4f x a b b x π=+⋅=+r r r 32()⎪⎭⎫⎝⎛++62cos 4πA x f =)4x π+12-0,3x π⎡⎤∈⎢⎥⎣⎦Q 112,4412x πππ⎡⎤∴+∈⎢⎥⎣⎦()21262cos 4123-≤⎪⎭⎫ ⎝⎛++≤-πA x f3.在解析几何中的应用:(1)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.【解析】如图所示,以OA 、OB 为边作平行四边形OACB , 则由|OA →+OB →|=|OA →-OB →|得, 平行四边形OACB 是矩形,OA →⊥OB →.由图象得,直线y =-x +a 在y 轴上的截距为±2.【答案】±2(2)椭圆的焦点为F F ,点P 为其上的动点,当∠F P F 为钝角时,点P 横坐标的取值范围是 .【解析】法一:F 1(-,0)F 2(,0),设P (3cos ,2sin ).为钝角,.∴=9cos 2-5+4sin 2=5 cos 2-1<0.解得: ∴点P 横坐标的取值范围是(). 14922=+y x ,121255θθ21PF F ∠Θ123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-u u u r u u u u r(θθθ55cos 55<<-θ553,553-ODC BA【答案】() 法二:F 1(-,0)F 2(,0),设P (x,y ).为钝角,∴ ()()125,5,PF PF x y x y •=--⋅-u u u r u u u u r225x y =+-=25109x -<. 解得:353555x -<<.∴点P 横坐标的取值范围是(). 【答案】() 2. 在物理学中的应用:如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N ,则每根绳子的拉力是 .]【解析】 ∵绳子的拉力是一样的(对称) ,∴OA =OB ,∴四边形OADB 为菱形 .∵∠AOB =120º ,∴∠AOD =60º .又OA =OB =AD , ∴三角形OAD 为等边三角形 ,∴OD =OA . 又根据力的平衡得OD =OC =10 , ∴OA =10 ,∴OA =OB =10 . ∴每根绳子的拉力大小是10N. 【答案】10N553,553-5521PF F ∠Θ553,553-553,553-【真题分析】1.【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .2-B .32-C .43- D .1-【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-u u u r ,(1,)PB x y =---u u u r,(1,)PC x y =--u u u r ,所以(2,2)PB PC x y +=--u u u r u u u r ,22()22)22(PA PB PC x y y x y ⋅+=-=+-u u u r u u u r u u u r233)222-≥-,当(0,2P 时,所求的最小值为32-,故选B . 【答案】B2.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,;∴2AE BF ab ⋅=-+u u u r u u u r; 当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【答案】-33.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【答案】34.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【答案】5.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC uuu r 的模分别为1,1,2,OA u u u r 与OCuuu r的夹角为α,且tan α=7,OB uuu r 与OC uuu r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0210n m +=-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【答案】36.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【解析】设向量,a b 的夹角为θ,则-==a b+==a b ++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是【答案】4,7. 【2016·江苏卷】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4, BF →·CF →=-1,则BE →·CE →的值是________.【解析】 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b ,AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝⎛⎭⎫-23a +13b ·⎝⎛⎭⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝⎛⎭⎫-56a +16b ·⎝⎛⎭⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.【答案】 788.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a,(3,=b ,a ∥b,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-.又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x取到最小值-【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x取到最小值-.1.已知数列{}n a 为等差数列,且满足32015BA a OB a OC =+u u u r u u u r u u u r ,若()AB AC R λλ=∈u u u r u u u r,点O 为直线BC 外一点,则12017a a +=( )A. 0B. 1C. 2D. 4【解析】∵32015BA a OB a OC =+u u u r u u u r u u u r , ∴32015OA OB a OB a OC -=+u u u r u u u r u u u r u u u r, 即()320151OA a OB a OC =++u u u r u u u r u u u r , 又∵()AB AC R λλ=∈u u u r u u u r,∴3201511a a ++=, ∴12017320150a a a a +=+=. 【答案】A2.直角ABC V 中, AD 为斜边BC 边的高,若1AC =u u u r , 3AB =u u u r,则CD AB ⋅=u u u r u u u r ( )【模拟考场】A .910 B . 310 C . 310- D . 910-【解析】依题意BC =22,AC AC CD CB CD CB =⋅==103cos ==BC AB B,所以有9cos 310CD AB CD AB B ⋅=⋅⋅==u u u r u u u r u u u r u u u r . 【答案】A3.已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r 的最大值是( ) A.B. C. D.【解析】本题考点是向量与平面图形的综合应用.由题意可设D 为三角形的内心,以D 为原点,直线DA 为x 轴建立平面直角坐标系,由已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒u u u r u u u r u u u r. 则()((2,0,1,,1,.A B C --设(),,P x y 由已知1AP =u u u r ,得()2221x y -+=,又11,,,,,22x x PM MC M BM ⎛⎛-+=∴∴= ⎝⎭⎝⎭u u u u r u u u u r u u u u r()(22214x y BM -++∴=u u u u r ,它表示圆()2221x y -+=上点().x y 与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭u u u u r ,故选B.【答案】B4.已知曲线C :x =直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r,则m 的取值范围为 .【解析】本题考点是向量线性运算与解析几何中点与直线的位置关系的应用.由0AP AQ +=u u u r u u u r r知A 是PQ的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.3244344943637+433237+【答案】[2,3]5.在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD u u u r=1,则OA OB OD ++u u u r u u u r u u u r 的最大值是_________.【解析】本题的考点是参数方程中的坐标表示, 圆的定义与 三角函数的值域.由题意可知C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos sin D D x y θθ=+⎧⎨=⎩(θ为参数且[)0,2θπ∈),所以设D 的坐标为()[)()3cos ,sin 0,2θθθπ+∈, 则OA OB OD ++=u u u r u u u r u uu r=因为2cos θθ+=所以OA OB OD ++的最大值为1==+故填1【答案】1+6.在△ABC 中,∠ABC =120°,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD →·BE →的值为________. 【解析】 由题意得BD →·BE →=(BA →+AD →)·(BC →+CE →)=⎝⎛⎭⎫BA →+13AC →·⎝⎛⎭⎫BC →+13CA → =⎣⎡⎦⎤BA →+13(BC →-BA →)·⎣⎡⎦⎤BC →+13(BA →-BC →)=⎝⎛⎭⎫13BC →+23BA →·⎝⎛⎭⎫23BC →+13BA → =29BC →2+59BC →·BA →+29BA →2=29×9+59×2×3×cos 120°+29×4=119. 【答案】1197.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF . 若AE →·AF →=1,则λ的值为________. 【解析】法一、 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫BC →+1λAB →=⎝⎛⎭⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝⎛⎭⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二、 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0),D (3,0).由BC =3BE ,DC =λDF .可求点E ,F 的坐标分别为E ⎝⎛⎭⎫-233,-13,F ⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ, ∴AE →·AF →=⎝⎛⎭⎫-233,-43·⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ-1=-2⎝⎛⎭⎫1-1λ+43⎝⎛⎭⎫1+1λ=1,解得λ=2. 【答案】28.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.【解析】AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.【答案】3119.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________.【解析】MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.【答案】 12 -1610.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.【解析】法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝⎛⎭⎫32,32,D ⎝⎛⎭⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝⎛⎭⎫2-12λ,32λ,F ⎝⎛⎭⎫12+19λ,32,λ>0,所以AE →·AF →=⎝⎛⎭⎫2-12λ⎝⎛⎭⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0, 当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.【答案】291811.已知矩形ABCD 的边AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠P AQ =π4,则AP →·AQ →的最小值为________.【解析】法一(坐标法) 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则A (0,0),B (2,0),D (0,1).设∠P AB =θ,则AP →=(2,2tan θ),AQ →=⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1,0≤tan θ≤12. 因为AP →·AQ →=(2,2tan θ)·⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1=2tan ⎝⎛⎭⎫π4-θ+2tan θ=2(1-tan θ)1+tan θ+2tan θ=41+tan θ+2tan θ-2=41+tan θ+2(tan θ+1)-4≥42-4,当且仅当tan θ=2-1时,“=”成立,所以AP →·AQ →的最小值为42-4.法二(基底法) 设BP =x ,DQ =y ,由已知得,tan ∠P AB =x2,tan ∠QAD =y ,由已知得∠P AB +∠QAD =π4,所以tan ∠P AB +tan ∠QAD 1-tan ∠P AB tan ∠QAD =1,所以x +2y 2=1-xy2,x +2y =2-xy ≥2x ·2y ,解得0<xy ≤6-42,当且仅当x =2y 时,“=”成立.AP →·AQ →=22·(4+x 2)(1+y 2)=22·(xy )2+(x +2y )2-4xy +4=22·(xy )2+(2-xy )2-4xy +4=(xy )2-4xy +4=2-xy ≥42-4. 【答案】 42-412.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =________.【解析】 ∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.【答案】 ±313.在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.【解析】 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =90°.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1.【答案】 -14或114.证明:同一平面内,互成120°的三个大小相等的共点力的合力为零.【证明】如图,用r a ,r b ,r c 表示这3个共点力,且r a ,r b ,rc 互成120°,模相等,按照向量的加法运算法则,有:r a +r b +r c = r a +(r b +r c )=r a +u u u rOD .又由三角形的知识知:三角形OBD 为等边三角形, 故r a 与u u u r OD 共线且模相等,所以:u u u r OD = -r a ,即有:r a +r b +r c =0r .15.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈u u u r u u u r u u u r.(1)若23m n ==,求||OP u u u r ;(2)用,x y 表示m n -,并求m n -的最大值.【解析】(1)(1,1),(2,3),(3,2)A B C Q (1,2)AB ∴=u u u r ,(2,1)AC =u u u r.Q OP mAB nAC =+u u u r u u u r u u u r ,又23m n ==.22(2,2)33OP AB AC ∴=+=u u u r u u u r u u u r,|OP ∴u u u r(2)OP mAB nAC =+u u u r u u u r u u u rQ (,)(2,2)x y m n m n ∴=++即22x m ny m n=+⎧⎨=+⎩,两式相减得:m n y x -=-.令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.【答案】(1)(2)m n y x -=-,1.16.如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),求1m +1n的最小值.【解析】 如图,建立平面直角坐标系,得A (0,0),B (4,0),D (0,4),C (1,4),则AB →=(4,0),AD →=(0,4).设AP →=(x ,y ),则BC 所在直线为4x +3y =16. 由AP →=mAB →+nAD →,即(x ,y )=m (4,0)+n (0,4),得x =4m ,y =4n (m ,n >0), 所以16m +12n =16,即m +34n =1,那么1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +34n =74+3n 4m +m n ≥74+23n 4m ·m n =74+3=7+434(当且仅当3n 2=4m 2时取等号). 17.已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎫0,π2,且m ⊥n . (1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎫0,π2,求角β的值. 【解析】 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1, 又α∈⎝⎛⎭⎫0,π2,则cos α=55,cos 2α=2cos 2α-1=-35. (2)由α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,得α-β∈⎝⎛⎭⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010,而sin α=1-cos 2α=255, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22.因为β∈⎝⎛⎭⎫0,π2,所以β=π4.。
平面向量方法总结(带例题)【大全】
平面向量应试技巧总结一。
向量有关概念:1。
向量得概念:既有大小又有方向得量,注意向量与数量得区别。
向量常用有向线段来表示,注意不能说向量就就是有向线段,为什么?(向量可以平移)。
如:已知A(1,2),B(4,2),则把向量按向量=(-1,3)平移后得到得向量就是_____(答:(3,0))2.零向量:长度为0得向量叫零向量,记作:,注意零向量得方向就是任意得;3。
单位向量:长度为一个单位长度得向量叫做单位向量(与共线得单位向量就是);4.相等向量:长度相等且方向相同得两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反得非零向量、叫做平行向量,记作:∥,规定零向量与任何向量平行.提醒:①相等向量一定就是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行就是不同得两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有);④三点共线共线;6。
相反向量:长度相等方向相反得向量叫做相反向量。
得相反向量就是-.如下列命题:(1)若,则.(2)两个向量相等得充要条件就是它们得起点相同,终点相同。
(3)若,则就是平行四边形。
(4)若就是平行四边形,则。
(5)若,则。
(6)若,则。
其中正确得就是_______(答:(4)(5)) 二。
向量得表示方法:1.几何表示法:用带箭头得有向线段表示,如,注意起点在前,终点在后;2。
符号表示法:用一个小写得英文字母来表示,如,,等;3。
坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同得两个单位向量,为基底,则平面内得任一向量可表示为,称为向量得坐标,=叫做向量得坐标表示.如果向量得起点在原点,那么向量得坐标与向量得终点坐标相同。
三.平面向量得基本定理:如果e1与e2就是同一平面内得两个不共线向量,那么对该平面内得任一向量a,有且只有一对实数、,使a=e1+e2。
如(1)若,则______(答:);(2)下列向量组中,能作为平面内所有向量基底得就是A、B、C、D、(答:B);(3)已知分别就是得边上得中线,且,则可用向量表示为_____(答:);(4)已知中,点在边上,且,,则得值就是___(答:0)四.实数与向量得积:实数与向量得积就是一个向量,记作,它得长度与方向规定如下:当〉0时,得方向与得方向相同,当<0时,得方向与得方向相反,当=0时,,注意:≠0。
平面向量及其应用练习题(有答案) 百度文库
一、多选题1.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形2.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是43.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 4.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=- 5.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S =36.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD7.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+-8.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 9.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 10.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±11.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅- 12.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-13.已知ABC ∆的面积为32,且2,3b c ==,则A =( ) A .30°B .60°C .150°D .120°14.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量15.题目文件丢失!二、平面向量及其应用选择题16.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等腰或直角三角形17.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥18.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:5 19.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形20.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +21.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米22.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .3323B .5323C .7323D .832323.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A .3B .1C .12D .3224.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若3a =,则边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π 25.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(23)a b c a c b ac +++-=+,则cos sin A C +的取值范围为A .33(,)2B .3(,3)2 C .3(,3]2D .3(,3)226.题目文件丢失!27.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 28.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-429.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A .3B .3C .3D .30.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF的中点,若1AM =,则λμ+的最大值为( )A B .3C .2D 31.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()ab a b +>C .612abc ≤≤D .1224abc ≤≤32.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .433.在ABC 中,角A ,B ,C所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )A .4B .14C .4D .234.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形35.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( )A .(-8,1)B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)【参考答案】***试卷处理标记,请不要删除一、多选题 1.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查 解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.2.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确;若ABC的面积是1sin 2ab C =2a =, 由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.3.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】 由正弦定理可得sin sin a c A C =,所以sin sin c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=, ∴sin sin c C A a ==而a c <,∴ A C <, ∴566C ππ<<,故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.4.ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.5.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错; ABC 中,若3b =,60A =︒,三角形面积33S =11sin 3sin 603322S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,13a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB .【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.6.AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A ,,故A 正确;对于B ,,故B 错误;对于C ,,故C 错误;对于D ,,,故D 正确.故选:AD.【点睛】本题考查三角形解析:AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A ,2cos AB AB ACAB AC A AB AC AB AC ,故A 正确; 对于B ,2cos cos CB CB AC CB AC C CB AC C CB AC CB AC ,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BD BD AB ,故C 错误; 对于D ,2cos BDBA BD BA BD ABD BA BD BD BA ,2cos BD BC BDBC BD CBD BC BD BD BC ,故D 正确. 故选:AD.【点睛】 本题考查三角形中的向量的数量积问题,属于基础题.7.BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】 对于选项:,选项不正确;对于选项: ,选项正确;对于选项:,选项不正确;对于选项:选项正确.故选:解析:BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确;对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确;对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.故选:BD【点睛】本题主要考查了向量的线性运算,属于基础题. 8.BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确;对于C ,,则或与共线,故C 错误;对于D ,在四边形中,若解析:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,00a ⨯=,故A 错误;对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.9.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.10.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当时,,故选项B 错误;因为,故选项C 正确;当共线同向时,,当共线反解析:ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.11.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误;对于C 选项,解析:AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.故选:AB.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题. 12.BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为,,且, 所以,即C 结论正确;因为,解析:BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.13.BD【分析】由三角形的面积公式求出即得解.【详解】 因为,所以,所以,因为,所以或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD【分析】由三角形的面积公式求出sin A =即得解. 【详解】因为13sin 22S bc A ==,所以13222A ⨯=,所以sin A =,因为0180A ︒︒<<, 所以60A =或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.14.AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确;若,a b b c ==,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选:AD【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.15.无二、平面向量及其应用选择题16.A【分析】利用正弦定理边角互化思想化简可得cos 0B =,求得角B 的值,进而可判断出ABC 的形状.【详解】cos a b C =,由正弦定理得sin sin cos A B C =,即()sin cos sin sin cos cos sin B C B C B C B C =+=+,cos sin 0B C ∴=, 0C π<<,sin 0C ∴>,则cos 0B =,0B π<<,所以,2B π=,因此,ABC 是直角三角形. 故选:A.【点睛】本题考查利用正弦定理边角互化判断三角形的形状,同时也考查了两角和的正弦公式的应用,考查计算能力,属于中等题.17.A【分析】直接利用向量的基础知识的应用求出结果.对于①:零向量与任一向量平行,故①正确;对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅,a 与c 不共线,故③错误; 对于④:a b a b +≥+,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确.故选:A.【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.18.A【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.19.D【分析】由数量积的定义判断B 角的大小,得三角形形状.【详解】由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 20.D根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】 该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 21.D【分析】作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.22.B【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,10353v ==/秒). 故选B .【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.23.B【分析】先根据正弦定理化边得C 为直角,再根据余弦定理得角B ,最后根据直角三角形解得a.【详解】因为222sin sin sin 0A B C +-=,所以222b c 0a +-=, C 为直角,因为2220a c b ac +--=,所以2221cosB ,223a c b B ac π+-===, 因此13a ccosπ==选B.【点睛】 解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.24.A【分析】根据题意得出tan tan tan A B C a b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】 0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B c C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B Ca b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin aR A===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A. 【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 25.A 【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C+)3A π+,利用三角函数的图像和性质求其范围.【详解】由()()(2a b c a c b ac +++-=+可得22()(2a c b ac +-=+,即222a cb +-=,所以222cos 2a c b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos sin )66223A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)62A π<+<,故cos sin A C +的取值范围为3)2.故选A .【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.26.无27.D 【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案. 【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力. 向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差); (2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单). 28.D 【分析】将已知向量关系变为:12333m OA OB OC +=,可得到3mOC OD =且,,A B D 共线;由AOB ABC O S S DCD∆∆=和,OC OD 反向共线,可构造关于m 的方程,求解得到结果. 【详解】由2OA OB mOC +=得:12333mOA OB OC +=设3m OC OD =,则1233OA OB OD += ,,A B D ∴三点共线 如下图所示:OC 与OD 反向共线 3OD mm CD∴=- 734AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D 【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系. 29.A 【分析】根据面积公式得到4c =,再利用余弦定理得到13a =,再利用正弦定理得到答案. 【详解】13sin 342ABC S bc A c ∆==== 利用余弦定理得到:2222cos 11641313a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b cA B C== 故213239sin 2sin sin sin 33a b c a A B C A ++===++ 故选A 【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 30.C 【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值. 【详解】()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立. 故选:C . 【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力. 31.A 【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,即()()1sin 2sin sin 2A A B C A B C +-+++-=,即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=,即()()12sin cos 2sin cos 2A B C A B C -++-=,即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=,设ABC ∆的外接圆半径为R ,则2sin sin sin a b cR A B C===, []2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立. 故选:A. 【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 32.C 【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可. 【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值, 由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=,即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥,令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=,当2m =2(2)171788m --+==,所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C. 【点睛】思路点睛:该题考查了平面向量的数量积的问题,解题思路如下: (1)先根据题意,设出向量的坐标; (2)根据向量数量积的运算律,将其展开; (3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题. 33.B 【分析】利用正弦定理可得sin 2sin B C =,结合a b =和余弦定理,即可得答案; 【详解】cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,∴sin()2sin sin 2sin A C C B C +=⇒=, ∴2b c =,又a b =,∴22222114cos 12422ba cb B ac b ⋅+-===⋅⋅,故选:B. 【点睛】本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值. 34.A 【分析】利用余弦定理化角为边,得出c b ABC =, 是等腰三角形. 【详解】ABC ∆中,c cos 2a B c =,由余弦定理得,2222a c b cosB ac+-=, ∴22222a a c b c ac +-= 220c b ∴-= ,∴c b ABC =,是等腰三角形. 【点睛】本题考查余弦定理的应用问题,是基础题. 35.B 【分析】由向量相等的坐标表示,列方程组求解即可. 【详解】解:设P(x ,y ),则MP = (x -3,y +2),而12MN =12(-8,1)=14,2⎛⎫- ⎪⎝⎭, 所以34122x y -=-⎧⎪⎨+=⎪⎩,解得132x y =-⎧⎪⎨=-⎪⎩,即31,2P ⎛⎫-- ⎪⎝⎭,故选B. 【点睛】本题考查了平面向量的坐标运算,属基础题.。
【高中数学】平面向量的应用 典型例题课件 高一下学期数学人教A版(2019)必修第二册
+
.
×
+ ×
=
题型8 三角形的面积公式
.
典例8、[分析计算能力]在△ 中, = ∘ , = ,其面积为 ,则
++
等于(
+ +
A.
思路
B.
)
C.
D.
根据三角形面积公式分析计算,再利用正弦定理和余弦定理解三角形进行
由余弦定理得
即 =
=
+
− = + − × = ,
++
,由于
+ +
=
=
=
.
的值;
(2)若 = , =
思路
,求△
的面积.
本题通过直观图形,利用正、余弦定理进行分析计算.(1)在△ 和△ 中,利用
正弦定理表示出和,从而运算求解比值.(2)直接利用正弦定理解三角形.
题型6 正、余弦定理在几何中的运用
.
典例6、[分析计算能力、观察记忆能力]如图,在△ 中,平分∠,且
− ,从而得
出角的值;(2)先利用余弦定理找出, 的关系,再利用基本不等式放缩,求出 +
的取值范围.
题型4 平面向量基本定理的应用
典例4、[分析计算能力]在△ 中,角, , 的对边分别为, , ,且 +
( + ) − = .
平面向量常见题型汇编(含答案)
解析:外心 在 上的投影恰好为它们的中点,分别设为 ,
所以 在 上的投影为 ,而 恰好为 中点,
故考虑 ,
所以
2.范围问题
例题8: 若过点 的直线 与 相交于 两点,则 的取值范围是_______
解析:本题中因为 位置不断变化,所以不易用数量积定义求解,可考虑利用投影,即过 作直线 的垂线,
,则 , ,
由 , 为中点可得: 为 中点,从而 在 方向上的投影分别为 ,由 即可求得 的范围为
3.综合问题
例题10:已知 为直角三角形 的外接圆, 是斜边 上的高,且 , ,点 为线段 的中点,若 是 中绕圆心 运动的一条直径,则 _________
解析:本题的难点在于 是一条运动的直径,所以很难直接用定义求解。
解析:由 可将三角形放入平面直角坐标系中,建立如图坐标系,
其中 , ,
∵ ∴
∵ ,即 当且仅当 时取等号
∴
变式2:已知点A在线段BC上(不含端点),O是直线BC外一点,且 ,则 的最小值是___________
分析:本题主要考查了不等式,不等式求最值问题,属于中档题。解决此类问题,重要的思路是如何应用均值不等式或其他重要不等式,很多情况下,要根据一正、二定、三取等的思路去思考,本题根据条件构造 ,研究的式子分别加1后变形,即可形成所需条件,应用均值不等式.
解析: ,
变式9:在平面上, , ,若 ,则 的取值范围是
分析:以 为入手点,考虑利用坐标系求解,题目中用字母表示:设 ,则 ,所求 范围即为求 的范围。下一步将题目的模长翻译成 关系,再寻找关于 的不等关系即可
解析:如图以 为轴建立坐标系:设 ,
高中数学2.5平面向量应用举例(教、学案)
2. 5平面向量应用举例一、教材分析向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。
二、教学目标1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神。
三、教学重点难点重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。
五、教学方法1.例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。
2.学案导学:见后面的学案3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的 应用2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时 八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标教师首先提问:(1)若O 为ABC ∆重心,则OA +OB +OC =0(2)水渠横断面是四边形ABCD ,DC =12AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系?(3) 两个人提一个旅行包,夹角越大越费力.为什么?教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。
高三数学平面向量基本定理试题答案及解析
高三数学平面向量基本定理试题答案及解析1.已知为圆上的三点,若,则与的夹角为_______.【答案】.【解析】由,故三点共线,且是线段中点,故是圆的直径,从而,因此与的夹角为【考点】1、平面向量基本定理;2、圆的性质.2.如图,四边形是边长为1的正方形,,点为内(含边界)的动点,设,则的最大值等于【答案】【解析】如图建立直角坐标系.三角形CDB中的点x,y满足不等式组.又因为.所以.将代入可得.由图可知,目标函数过点时在轴上的截距最大,即的最大值为.【考点】1.平面向量的基本定理.2.线性规划问题.3.构建坐标系解决向量问题.4.换元的思想.3.若非零向量满足//,且,则()A.4B.3C.2D.0【答案】D【解析】非零向量//,若所以存在实数使得.又,所以.【考点】共线向量基本定理、向量的数量积4.设是已知的平面向量且,关于向量的分解,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数和,使;③给定单位向量和正数,总存在单位向量和实数,使;④给定正数和,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是()A.1B.2C.3D.4【答案】B.【解析】利用向量加法的三角形法则,易知①正确;利用平面向量的基本定理,易知正确;以的终点作长度为的圆,这个圆必须和向量有交点,这个不一定能满足,故③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须,所以④是假命题。
综上,本题选B.【考点】1.平面向量的基本定理;2.向量加法的平行四边形法则和三角形法则.5.已知是的重心,点是内一点,若,则的取值范围是()A.B.C.D.【答案】C【解析】∵点是内一点,则,当且仅当点在线段BC上时,最大等于1,当和重合时,最小,此时,,,故故选C.【考点】向量的几何意义.6.在中,是边的中点,角的对边分别是,若,则的形状为( )A.直角三角形B.钝角三角形C.等边三角形D.等腰三角形但不是等边三角形【答案】C【解析】由题意知,∴,∴,又、不共线,∴∴.【考点】1.向量共线;2.判断三角形形状.7.如图,矩形内放置个大小相同的正方形,其中、、、都在矩形的边上,若向量,则 .【解析】如下图所示,以、为邻边作平行四边形,则,所以,,故.【考点】平面向量的基底表示8.如图,平面内有三个向量,其中与的夹角为,与的夹角为,且,若,则()A.B.C.D.【答案】C【解析】设与同方向的单位向量分别为,依题意有,又,,则,所以.故选C.【考点】平面向量的基本定理9.已知,,点满足(),且,则等于A.B.1C.D.【答案】D【解析】因为,,,所以,,分别是直角三角形的三边。
平面向量5类解题技巧(解析版)
平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB+yAC。
则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD,则()A.AD =-13AB+43ACB.AD =13AB-43AC C.AD =43AB +13ACD.AD =43AB -13AC 【解析】解析:由图可想到“爪字形图得:AC =14AB +34AD ,解得:AD =-13AB+43AC答案:A2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC,则实数m 的值为()A.911B.511C.311D.211【解析】解:观察到B ,P ,N 三点共线,利用“爪”字型图,可得AP =mAB +nAN ,且m +n =1,由AN =13NC 可得AN =14AC ,所以AP =mAB +14nAC ,由已知AP =mAB +211AC 可得:14n =211⇒n =811,所以m =311答案:C1(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n,则CB =()A.3m -2n B.-2m +3nC.3m +2nD.2m +3n【答案】B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,BD =2DA ,所以BD =2DA ,即CD -CB =2CA -CD,所以CB =3CD -2CA =3n -2m =-2m +3n .故选:B .2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD=()A.23b +13c B.53c -23bC.23b -13cD.13b +23c【答案】A【详解】试题分析:AD =AB +BD =c +23AC -AB =c +23b -c =23b +13c,故选A .3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF等于()A.12a +bB.12a -bC.12b -aD.12a +b 【答案】A【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为△ABC 的中位线,∴EF =12AC =12a +12b ,故选:A4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB-14ACB.14AB-34ACC.34AB+14ACD.14AB+34AC【答案】A【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得BE =12BA +12BD ,之后应用向量的加法运算法则-------三角形法则,得到BC =BA +AC ,之后将其合并,得到BE=34BA+14AC ,下一步应用相反向量,求得EB =34AB -14AC ,从而求得结果.【详解】根据向量的运算法则,可得BE =12BA +12BD =12BA +14BC =12BA +14BA +AC =12BA+14BA +14AC =34BA +14AC ,所以EB =34AB -14AC ,故选A .【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC(λ1,λ2为实数),则λ1+λ2的值是【答案】12【详解】依题意,DE =DB +BE =12AB +23BC=12AB +23(AC -AB )=-16AB+23AC ,∴-16AB +23AC =λ1AB +λ2AC ,∴λ1=-16,λ2=23,故λ1+λ2=-16+23=12.【考点定位】平面向量的加法、减法法则.分析、计算能力.中等题.技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k 由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB 所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP=λOC +(1-λ)OD =kλOA +(1-λ)OB所以OP=-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k综合上面的讨论可知:图中OP 用OA ,OB线性表示时,其系数和x +y 只与两三角形的相似比有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中复习-平面向量1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若=,=,则=()A.+B.﹣+C.﹣D.﹣﹣2.(2016•朔州模拟)点O为△ABC内一点,且满足,设△OBC与△ABC的面积分别为S1、S2,则=()A.B.C.D.3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量按向量=(2009,4,27)平移,所得到的向量坐标是()A.(1994,3,4)B.(﹣1994,﹣3,﹣4)C.(15,1,23) D.(4003,7,31)4.(2013秋•和平区期末)已知向量,若存在向量,使得,则向量为()A.(﹣3,2)B.(4,3)C.(3,﹣2)D.(2,﹣5)5.(2016•吉林三模)函数(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A 的直线l与函数的图象交于B,C两点,则(+)•=()A.﹣8 B.﹣4 C.4 D.86.(2016•商洛模拟)在等腰△ABC中,BC=4,AB=AC,则=()A.﹣4 B.4 C.﹣8 D.87.(2015•房山区一模)向量=(2,0),=(x,y),若与﹣的夹角等于,则||的最大值为()A.4 B.2C.2 D.8.(2016•合肥二模)点G为△ABC的重心,设=,=,则=()A.﹣B.C.﹣2D.29.(2016•眉山模拟)如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则=()B.C.D.A.10.(2016春•东营校级期中)点O是△ABC所在平面上一点,且满足++=,则点O为△ABC的()A.外心B.内心C.重心D.垂心11.(2016•河南模拟)如图,在△ABC中,已知,则=()B.C.D.A.12.(2016•衡水模拟)如图,在△ABC中,,P是BN上的一点,若,则实数m的值为()A.B.C.1 D.313.(2016•焦作二模)在平面直角坐标系中,已知向量=(1,2),﹣=(3,1),=(x,3),若(2+)∥,则x=()A.﹣2 B.﹣4 C.﹣3 D.﹣114.(2016•嘉峪关校级模拟)已知向量为非零向量,,则夹角为()A.B.C.D.15.(2016•南昌校级模拟)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则•的取值范围是()A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]16.(2016•潮南区模拟)已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1 B.C.3 D.217.(2016•西宁校级模拟)已知||=1,||=,且⊥(﹣),则向量与向量的夹角为()A.B.C.D.巩固与练习:1.(2011•丰台区一模)已知平面向量,的夹角为60°,||=4,||=3,则|+|等于()A.37 B. C.13 D.2.(2016•河南模拟)如图,在△ABC中,已知,则=()A.B.C.D.3.(2016春•成都校级月考)如图,在△ABC中,线段BE,CF交于点P,设向量,,则向量可以表示为()B.C.D.A.4.(2016•抚顺一模)已知向量||=4,||=3,且(+2)(﹣)=4,则向量与向量的夹角θ的值为()A.B.C.D.5.(2015春•临沂期末)如图,在△ABC中,D为边BC的中点,则下列结论正确的是()A.+=B.﹣=C.+=D.﹣=6.(2015•娄星区模拟)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么=()A.B.C.D.7.(2016•湖南模拟)已知,,,点C在AB上,∠AOC=30°.则向量等于()A.B.C.D.8.(2016•重庆校级模拟)若||=2,||=4且(+)⊥,则与的夹角是()A.B.C.D.﹣9.(2015春•昆明校级期中)如图,点M是△ABC的重心,则为()A.B.4C.4D.4B.10.(2015秋•厦门校级期中)已知平行四边形ABCD的对角线分别为AC,BD,且=2,点F是BD上靠近D的四等分点,则()A.=﹣﹣B.=﹣C.=﹣D.=﹣﹣11.(2015•厦门校级模拟)如图,,,,,若m=,那么n=()B.C.D.A.12.(2016•嘉兴一模)如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t答案:1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若=,=,则=()A.+B.﹣+C.﹣D.﹣﹣【解答】解:=.∵AP=AB,BQ=BC,∴==,==.∴=.故选:A.2.(2016•朔州模拟)点O为△ABC内一点,且满足,设△OBC与△ABC的面积分别为S1、S2,则=()A.B.C.D.【解答】解:延长OC到D,使OD=4OC,延长CO交AB与E,∵O为△ABC内一点,且满足,∴=,∴O为△DABC重心,E为AB中点,∴OD:OE=2:1,∴OC:OE=1:2,∴CE:OE=3:2,∴S△AEC=S△BEC,S△BOE=2S△BOC,∵△OBC与△ABC的面积分别为S1、S2,∴=.故选:B.3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量按向量=(2009,4,27)平移,所得到的向量坐标是()A.(1994,3,4)B.(﹣1994,﹣3,﹣4)C.(15,1,23) D.(4003,7,31)【解答】解:∵A(2008,5,12),B(14,2,8),∴=(﹣1994,﹣3,﹣4),又∵按向量平移后不发生变化∴平移后=(﹣1994,﹣3,﹣4),故选B4.(2013秋•和平区期末)已知向量,若存在向量,使得,则向量为()A.(﹣3,2)B.(4,3)C.(3,﹣2)D.(2,﹣5)【解答】解:设,∵,,∴,解得x=3,y=﹣2,∴=(3,﹣2).故选:C.5.(2016•吉林三模)函数(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A 的直线l与函数的图象交于B,C两点,则(+)•=()A.﹣8 B.﹣4 C.4 D.8【解答】解:由题意可知B、C两点的中点为点A(2,0),设B(x1,y1),C(x2,y2),则x1+x2=4,y1+y2=0 ∴(+)•=((x1,y1)+(x2,y2))•(2,0)=(x1+x2,y1+y2)•(2,0)=(4,0)•(2,0)=8故选D.6.(2016•商洛模拟)在等腰△ABC中,BC=4,AB=AC,则=()A.﹣4 B.4 C.﹣8 D.8【解答】解:在等腰△ABC中,BC=4,AB=AC,则=cosB=|BC|2=8.故选:D.7.(2015•房山区一模)向量=(2,0),=(x,y),若与﹣的夹角等于,则||的最大值为()A.4 B.2C.2 D.【解答】解:由向量加减法的几何意义可得,(如图),=,=∠OBA故点B始终在以OA为弦,∠OBA=为圆周角的圆弧上运动,且等于弦OB的长,由于在圆中弦长的最大值为该圆的直径2R,在三角形AOB中,OA==2,∠OBA=由正弦定理得,解得2R=4,即||的最大值为4故选A8.(2016•合肥二模)点G为△ABC的重心,设=,=,则=()A.﹣B.C.﹣2D.2【解答】解:由题意知,+=,即+=,故=﹣2=﹣2,故选C.9.(2016•眉山模拟)如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则=()A.B.C.D.【解答】解:∵AP:PB=3:2,∴,又=,∴==+=+,故选:B.10.(2016春•东营校级期中)点O是△ABC所在平面上一点,且满足++=,则点O为△ABC的()A.外心B.内心C.重心D.垂心【解答】解:作BD∥OC,CD∥OB,连结OD,OD与BC相交于G,则BG=CG,(平行四边形对角线互相平分),∴+=,又∵++=,可得:+=﹣,∴=﹣,∴A,O,G在一条直线上,可得AG是BC边上的中线,同理:BO,CO的延长线也为△ABC的中线.∴O为三角形ABC的重心.故选:C.11.(2016•河南模拟)如图,在△ABC中,已知,则=()A.B.C.D.【解答】解:∵=,∴由已知,得=3()化简=+故选:C12.(2016•衡水模拟)如图,在△ABC中,,P是BN上的一点,若,则实数m的值为()A.B.C.1 D.3【解答】解:∵,∴设=λ,(λ>0)得=+∴m=且=,解之得λ=8,m=故选:A13.(2016•焦作二模)在平面直角坐标系中,已知向量=(1,2),﹣=(3,1),=(x,3),若(2+)∥,则x=()A.﹣2 B.﹣4 C.﹣3 D.﹣1【解答】解:由=(1,2),﹣=(3,1),得=(1,2)﹣(3,1)=(﹣2,1),则,∴2+=(2,4)+(﹣4,2)=(﹣2,6),,又(2+)∥,∴6x+6=0,得x=﹣1.故选:D.14.(2016•嘉峪关校级模拟)已知向量为非零向量,,则夹角为()A.B.C.D.【解答】解:;∴,;∴;∴;∴;∴=;∴夹角为.故选:B.15.(2016•南昌校级模拟)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则•的取值范围是()A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]【解答】解:∵D是边BC上的一点(包括端点),∴可设=+(0≤λ≤1).∵∠BAC=120°,AB=2,AC=1,∴=2×1×cos120°=﹣1.∴•=[+]•=﹣+=﹣(2λ﹣1)﹣4λ+1﹣λ=﹣7λ+2.∵0≤λ≤1,∴(﹣7λ+2)∈[﹣5,2].∴•的取值范围是[﹣5,2].故选:D.16.(2016•潮南区模拟)已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1 B.C.3 D.2【解答】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D.17.(2016•西宁校级模拟)已知||=1,||=,且⊥(﹣),则向量与向量的夹角为()A.B.C.D.【解答】解:∵;;∴;∴;∴向量与的夹角为.故选B.巩固与练习:1.(2011•丰台区一模)已知平面向量,的夹角为60°,||=4,||=3,则|+|等于()A.37 B. C.13 D.【解答】解:由题意得•=||•||cos60°=4×3×=6,∴||====,故选B.2.(2016•河南模拟)如图,在△ABC中,已知,则=()A.B.C.D.【解答】解:∵=,∴由已知,得=3()化简=+故选:C3.(2016春•成都校级月考)如图,在△ABC中,线段BE,CF交于点P,设向量,,则向量可以表示为()A.B.C.D.【解答】解:因为F,P,C三点共线,∴存在实数λ,使=,由已知,,所以,同理=,∴解得所以;故选C.4.(2016•抚顺一模)已知向量||=4,||=3,且(+2)(﹣)=4,则向量与向量的夹角θ的值为()A.B.C.D.【解答】解:向量||=4,||=3,且(+2)(﹣)=4,∴﹣2+•=4,即16﹣2×9+4×3×cosθ=4,解得cosθ=;又θ∈[0,π],∴θ=;即向量与向量的夹角θ的值为.故选:B.5.(2015春•临沂期末)如图,在△ABC中,D为边BC的中点,则下列结论正确的是()A.+=B.﹣=C.+=D.﹣=【解答】解:由已知及图形得到,故A错误;;故B错误;;故C 正确;故D 错误;故选C.6.(2015•娄星区模拟)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么=()A.B.C.D.【解答】解:∵,∴,∵,∴,∵,∴==,∵=,∵,∴=.故选D.7.(2016•湖南模拟)已知,,,点C在AB上,∠AOC=30°.则向量等于()A.B.C.D.【解答】解:过点c做CE∥OA CF∥OB设OC长度为a有△CEB∽△AFC∴(1)∵∠AOC=30°则CF==OEOF=CE=∴BE=2﹣AF=2﹣代入(1)中化简整理可解:a=OF===OA OE==OB,∴故选B.8.(2016•重庆校级模拟)若||=2,||=4且(+)⊥,则与的夹角是()A.B.C.D.﹣【解答】解:设与的夹角是θ.∵||=2,||=4且(+)⊥,∴(+)•==22+2×4cosθ=0,∴cosθ=.∵θ∈[0,π],∴.故选:A.9.(2015春•昆明校级期中)如图,点M是△ABC的重心,则为()A.B.4C.4D.4【解答】解:设AB的中点为F∵点M是△ABC的重心∴.故为C10.(2015秋•厦门校级期中)已知平行四边形ABCD的对角线分别为AC,BD,且=2,点F是BD上靠近D的四等分点,则()A.=﹣﹣B.=﹣C.=﹣D.=﹣﹣【解答】解:∵=2,点F是BD上靠近D的四等分点,∴=,=,∴==+,∵,,∴=+=﹣.故选:C.11.(2015•厦门校级模拟)如图,,,,,若m=,那么n=()A.B.C.D.【解答】解:∵,故C为线段AB的中点,故==2,∴=,由,,∴,,∴=,∵M,P,N三点共线,故=1,当m=时,n=,故选:C12.(2016•嘉兴一模)如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t【解答】解:连结BC,CD.则AD⊥CD,AB⊥BC.∴=AB×AC×cos∠BAC=AB2=t+1.=AD×AC×cos∠CAD=AD2=t+2.∵,∴•===1.故选:A.。