人教中考数学专题题库∶反比例函数的综合题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、反比例函数真题与模拟题分类汇编(难题易错题)
1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等
于0的常数)的图象在第一象限交于点A(1,n).求:
(1)一次函数和反比例函数的解析式;
(2)当1≤x≤6时,反比例函数y的取值范围.
【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,
∴b=1,
∴一次函数解析式为:y=x+1,
∵点A(1,n)在一次函数y=x+b的图象上,
∴n=1+1,
∴n=2,
∴点A的坐标是(1,2).
∵反比例函数的图象过点A(1,2).
∴k=1×2=2,
∴反比例函数关系式是:y=
(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,
∴当1≤x≤6时,反比例函数y的值:≤y≤2
【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.
2.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反
比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).
(1)求一次函数和反比例函数的解析式;
(2)根据图象,直接写出y1>y2时x的取值范围;
(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.
【答案】(1)解:把B(3,2)代入得:k=6
∴反比例函数解析式为:
把C(﹣1,n)代入,得:
n=﹣6
∴C(﹣1,﹣6)
把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:
所以一次函数解析式为y1=2x﹣4
(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.
(3)解:y轴上存在点P,使△PAB为直角三角形
如图,
过B作BP1⊥y轴于P1,
∠B P1 A=0,△P1AB为直角三角形
此时,P1(0,2)
过B作BP2⊥AB交y轴于P2
∠P2BA=90,△P2AB为直角三角形
在Rt△P1AB中,
在Rt△P1 AB和Rt△P2 AB
∴
∴P2(0,)
综上所述,P1(0,2)、P2(0,).
【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.
3.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.
(1)求反比例函数和一次函数解析式;
(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,
求D,E的坐标.
(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.
【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,
∴m=(﹣1)×2=﹣2,
∴反比例函数的表达式为y=﹣,
∵点B(2,n)也在反比例函数的y=﹣图象上,
∴n=﹣1,
即B(2,﹣1)
把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,
∴一次函数的表达式为y=﹣x+1,
答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;
(2)解:如图1,
连接AF,BF,
∵DE∥AB,
∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),
∵直线AB的解析式为y=﹣x+1,
∴C(0,1),
设点F(0,m),
∴AF=1﹣m,
∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,
∴m=﹣1,
∴F(0,﹣1),
∵直线DE的解析式为y=﹣x+1,且DE∥AB,
∴直线DE的解析式为y=﹣x﹣1①.
∵反比例函数的表达式为y=﹣②,
联立①②解得,或
∴D(﹣2,1),E(1,﹣2);
(3)解:如图2
由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),
∴Q(p,﹣p﹣1),R(p,﹣),
PQ=|2+p+1|,QR=|﹣p﹣1+ |,
∵QR=2QP,
∴|﹣p﹣1+ |=2|2+p+1|,
解得,p= 或p= ,
∴P(,2)或(,2)或(,2)或
(,2).
【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;
(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;
(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.
4.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是________;
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=
图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是________.
【答案】(1)﹣2
(2)3
【解析】【解答】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2),
依题意得:,
解得:k=﹣2.
故答案为:﹣2.
(2)∵BO⊥x轴,CE⊥x轴,
∴BO∥CE,