回溯算法的应用

合集下载

回溯算法的应用场景

回溯算法的应用场景

回溯算法的应用场景回溯算法是一种经典的问题求解算法,常用于解决组合问题、排列问题、搜索问题等。

它通过不断地尝试和回退来寻找问题的解,可以在有限的时间内找到问题的所有解,或者找到满足特定条件的解。

下面将介绍回溯算法的几个常见应用场景。

1. 组合问题组合问题是指从给定的一组元素中选取若干个元素,使得它们满足一定的条件。

例如,在一副扑克牌中选取若干张牌,使得它们的点数之和等于给定的目标值。

回溯算法可以通过枚举所有可能的组合来解决这类问题。

具体实现时,可以使用递归或迭代的方式进行求解。

2. 排列问题排列问题是指从给定的一组元素中选取若干个元素进行全排列,使得每个元素都不重复出现。

例如,在一组数字中找出所有可能的排列。

回溯算法可以通过枚举所有可能的排列来解决这类问题。

具体实现时,同样可以使用递归或迭代的方式进行求解。

3. 搜索问题搜索问题是指在给定的搜索空间中找到满足一定条件的解。

例如,在迷宫中找到从起点到终点的路径,或者在一个图中找到满足特定条件的子图。

回溯算法可以通过不断地尝试和回退来搜索所有可能的解,并找到满足条件的解。

在搜索问题中,通常使用深度优先搜索来实现回溯算法。

4. 数独问题数独问题是指在一个9×9的网格中填入1至9的数字,使得每行、每列和每个小方格中的数字均不重复。

回溯算法可以通过逐个地尝试填入数字,并不断检查当前状态是否满足条件来解决数独问题。

当无法继续填入数字时,回溯算法会回退到前一步继续尝试其他可能的解。

5. 棋盘问题棋盘问题是指在一个给定大小的棋盘上放置一定数量的棋子,使得它们满足一定的规则。

例如,在N皇后问题中,要在一个N×N大小的棋盘上放置N个皇后,使得它们任意两个皇后都不在同一行、同一列或同一对角线上。

回溯算法可以通过逐行地尝试放置皇后,并检查每次放置是否满足规则来解决这类问题。

回溯算法的应用场景不仅限于上述几个例子,还涉及到许多其他问题,如密码破解、迷宫生成、单词搜索等。

回溯算法原理和几个常用的算法实例

回溯算法原理和几个常用的算法实例

回溯算法原理和几个常用的算法实例回溯算法是一种基于深度优先的算法,用于解决在一组可能的解中找到满足特定条件的解的问题。

其核心思想是按照特定的顺序逐步构造解空间,并通过剪枝策略来避免不必要的。

回溯算法的实现通常通过递归函数来进行,每次递归都尝试一种可能的选择,并在达到目标条件或无法继续时进行回溯。

下面介绍几个常用的回溯算法实例:1.八皇后问题:八皇后问题是一个经典的回溯问题,要求在一个8×8的棋盘上放置8个皇后,使得每个皇后都不能相互攻击。

即每行、每列和对角线上都不能有两个皇后。

通过在每一列中逐行选择合适的位置,并进行剪枝,可以找到所有满足条件的解。

2.0-1背包问题:0-1背包问题是一个经典的组合优化问题,要求在一组物品中选择一些物品放入背包,使得其总重量不超过背包容量,同时价值最大化。

该问题可以通过回溯算法进行求解,每次选择放入或不放入当前物品,并根据剩余物品和背包容量进行递归。

3.数独问题:数独问题是一个经典的逻辑推理问题,要求在一个9×9的网格中填入数字1-9,使得每行、每列和每个3×3的子网格中都没有重复数字。

该问题可以通过回溯算法进行求解,每次选择一个空格,并依次尝试1-9的数字,然后递归地进行。

4.字符串的全排列:给定一个字符串,要求输出其所有可能的排列。

例如,对于字符串"abc",其所有可能的排列为"abc"、"acb"、"bac"、"bca"、"cab"和"cba"。

可以通过回溯算法进行求解,每次选择一个字符,并递归地求解剩余字符的全排列。

回溯算法的时间复杂度通常比较高,因为其需要遍历所有可能的解空间。

但是通过合理的剪枝策略,可以减少的次数,提高算法效率。

在实际应用中,可以根据具体问题的特点来设计合适的剪枝策略,从而降低算法的时间复杂度。

回溯算法及其案例用途

回溯算法及其案例用途

回溯算法及其案例⽤途回溯算法是⼀种递归模式,它是⼀种暴⼒求解⽅法(brute force method),⽤于求出所有可能的解,回溯算法通常会构建⼀个状态空间树(state space tree),将可能的组和从根到叶节点进⾏展开,然后以深度优先的⽅式搜索遍历状态树,遍历过程中遇到不符合解的节点⽴马返回进⾏新的遍历,⽽不是继续遍历,状态空间树的结构可⽤下图进⾏描述:回溯算法不是⽤来求解最优解,⽽是⽤来求解可⾏解的⽅法,回溯算法的代码结构:Backtrack(x)if x is not a solutionreturn false // return directlyif x is a new solutionadd to list of solutionsbacktrack(expand x)根据以上结构,⽤具体的⽰例进⾏分析,例如:1、排队问题,假设有2个男孩和1个⼥孩,⼥孩不能站在男孩的中间,则可以⽤⼀个树的结构进⾏描述:树是构建好了,根据构建树构建代码:arrange-boy-girl(p,index,result,mem)://index ⽤于记录孩⼦的位置,result是最终的排列结果,mem⽤于记录孩⼦是否已经排在队中了 if index == p.length: print(result);//输出结果 // expand p for i =0 to p.length: if(index == 2 && p[i]=='girl' || mem[i] ==1)://位置2不能是⼥孩,且该⼩孩没有在队列中,继续进⾏循环 continue; result[index]=p[i];//将⼩孩排到队中 mem[i]=1;//记录⼀下,下次这个⼩孩不能再排了,因为已经在队伍中了 index++;//排下⼀个位置 arrange-boy-girl(p,index,result,mem);//递归调⽤,排下⼀个位置 index--;//注意这⾥,index恢复原值,表⽰原来的index位置还可以安排下⼀个⼩孩,⽐如,位置0可以是boy1,也可以是boy2 mem[i]=0;//这⾥也是,index恢复原值后,mem也要恢复原值以上是⼀个全排列问题,但是它有⼀些限制,就是⼥孩不能排到男孩⼉中间。

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。

实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。

它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。

回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。

2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。

它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。

3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。

4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。

通过回溯法可以求解出所有的可能解。

实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。

从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。

当搜索到第八行时,获取一组解并返回。

代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。

算法设计中的回溯与分支限界

算法设计中的回溯与分支限界

算法设计中的回溯与分支限界在算法设计中,回溯(backtracking)和分支限界(branch and bound)是两个重要的技术手段。

它们在解决一些求解最优化问题或搜索问题时具有广泛的应用。

本文将介绍回溯和分支限界的基本概念、原理和应用,并探讨它们在算法设计中的意义和作用。

一、回溯算法回溯算法是一种穷举搜索算法,通过遍历问题的解空间来求解问题。

其基本思想是从初始解开始,逐步地扩展解的空间,直到找到满足问题要求的解。

如果扩展到某一步时发现无法继续扩展,那么就回溯到上一步,并继续向其他可能的解空间进行扩展。

回溯算法通常使用递归的方式实现。

回溯算法的应用非常广泛,适用于求解组合优化、满足约束条件的问题,例如八皇后问题、0-1背包问题、图的哈密顿路径等。

回溯算法虽然简单直观,但由于其穷举搜索的性质,时间复杂度较高,因此在面对问题规模较大时不一定是最优的选择。

二、分支限界算法分支限界算法是一种在解空间中搜索最优解的算法。

它通过在搜索过程中设定上、下界限制来避免对无效解的搜索,从而提高搜索效率。

分支限界算法通常使用优先队列(priority queue)来存储待扩展的节点,并按照一定的优先级进行扩展,每次选择优先级最高的节点进行扩展。

在扩展过程中,通过修剪(pruning)无效解的策略,可以进一步提高搜索效率。

分支限界算法的应用范围广泛,适用于求解组合优化问题、图论问题等。

通过合理的界限设定和剪枝策略,分支限界算法能够大幅减少搜索空间,提高求解效率。

但需要注意的是,分支限界算法并不能保证一定能够找到最优解,只能保证找到满足要求的解。

三、回溯与分支限界的比较回溯算法和分支限界算法都是基于搜索的算法,二者都可以求解组合优化问题和搜索问题。

回溯算法在搜索过程中对解空间进行穷举,而分支限界算法通过设定界限和剪枝策略来减少搜索空间。

因此,相较于回溯算法,分支限界算法具有更高的搜索效率。

然而,回溯算法也有其优点。

回溯算法的应用(DOC)

回溯算法的应用(DOC)

回溯算法的应用课程名称:算法设计与分析院系:************************学生姓名:******学号:************专业班级:***************************** 指导教师:******2013年12月27日回溯法的应用摘要:回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。

但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

回溯法,其意义是在递归直到可解的最小问题后,逐步返回原问题的过程。

而这里所说的回溯算法实际是一个类似枚举的搜索尝试方法,它的主题思想是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯算法是尝试搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”的思想,作为其控制结构。

在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。

当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

全排列和求最优解问题是比较经典的问题,我们可以采用多种算法去求解此问题,比如动态规划法、分支限界法、回溯法。

在这里我们采用回溯法来解决这个问题。

关键词:回溯法全排列最优值枚举目录第1章绪论 (4)1.1 回溯法的背景知识 (4)1.2 回溯法的前景意义 (4)第2章回溯法的理论知识 (5)2.1 问题的解空间树 (5)2.2 回溯法的一般性描述 (6)第3章 n的全排列 (7)3.1 问题描述 (7)3.2 问题分析 (7)3.3 算法设计 (7)3.4 测试结果与分析 (9)第4章最优化问题 (11)4.1 问题描述 (11)4.2 问题分析 (11)4.3 算法设计 (11)4.4 测试结果与分析 (14)第5章结论 (15)参考文献 (16)附件 (16)第1章绪论1.1 回溯法的背景知识回溯算法是尝试搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”的思想,作为其控制结构。

回溯算法的应用范文

回溯算法的应用范文

回溯算法的应用范文
<b>回溯算法的应用</b>
回溯算法是一种基于深度优先的解决问题的算法,它的主要思想是,
从一个方案出发,尝试逐步细化,最终达到我们想要的解。

它是古老的,
在早期的几何分析中就出现了,但直到20世纪60年代才开始被广泛使用。

它的优点是容易实现,只需要改变原来的变量即可,而且它能够处理复杂
的问题,得到较好的解决方案。

回溯算法的应用有许多,最典型的就是N皇后问题。

该问题是一个棋
盘问题,要求在N*N的棋盘上放置N个皇后,使得它们之间不冲突,即任
意两个皇后不在同一行、同一列或同一对角线上。

回溯算法可以用来求解
该问题,首先从第一行开始,尝试放置一个皇后,然后判断是否和之前放
置的皇后冲突,若不冲突则放置成功,然后继续尝试放置下一行,直到已
经放置的皇后数量达到N个,放置结束,可以得到一种解决方案。

此外,回溯算法还可以用来求解旅行售货员问题,该问题要求从一些1,经过n个城市,最终回到1,在此期间,以最短的路程访问每个城市
一次,并且不重复访问。

回溯算法在约束满足问题中的应用

回溯算法在约束满足问题中的应用

回溯算法在约束满足问题中的应用
回溯算法在约束满足问题中有着广泛的应用。

约束满足问题是
一类重要的组合优化问题,其目标是找到满足一系列约束条件的解。

典型的约束满足问题包括八皇后问题、数独、图着色等。

回溯算法
是一种基于深度优先搜索的算法,它通过不断地尝试可能的解,并
在尝试过程中检查是否满足约束条件来寻找问题的解。

在约束满足问题中,回溯算法通过逐步构建候选解,并在每一
步检查当前解是否满足约束条件。

如果当前解不满足约束条件,算
法会回溯到上一步,尝试其他的选择。

这种试错的方式能够高效地
搜索解空间,找到满足约束条件的解。

回溯算法的应用不仅局限于求解约束满足问题,它还可以用于
其他组合优化问题、图搜索等领域。

在实际应用中,可以通过剪枝
等技巧来优化回溯算法的性能,提高求解效率。

总的来说,回溯算法在约束满足问题中的应用是非常广泛的,
它通过深度优先搜索的方式高效地寻找满足约束条件的解,是求解
此类问题的重要算法之一。

回溯算法在生活中案例

回溯算法在生活中案例

回溯算法在生活中案例
回溯算法是一种通过探索所有可能的解来解决问题的算法,当发现当前解不满足条件时,它会回溯到上一步,重新尝试其他可能的解。

以下是一些回溯算法在生活中的实际应用案例:
1. 组合优化问题:在日常生活中,很多问题可以通过组合优化问题来求解。

例如,旅行商问题(Traveling Salesman Problem),该问题是一个著名的组合优化问题,通过回溯算法可以找到最短路径或最优解。

2. 游戏AI:在游戏中,AI常常需要做出决策,而回溯算法可以帮助AI在游戏中进行决策。

例如,在棋类游戏中,AI可以使用回溯算法来分析游戏局面,预测游戏的胜负结果。

3. 数据库查询优化:在数据库查询中,回溯算法可以用于优化查询。

例如,在关系型数据库中,查询优化器可以使用回溯算法来选择最优的查询计划。

4. 编译器设计:在编译器的设计中,回溯算法可以用于语法分析。

编译器通过语法分析将源代码转化为机器代码,而回溯算法可以帮助编译器检查源代码是否符合语法规则。

5. 图像处理:在图像处理中,回溯算法可以用于图像修复、去噪等任务。

通过回溯算法可以找到最优的修复方案或去噪参数。

6. 决策支持系统:在决策支持系统中,回溯算法可以帮助决策者进行决策。

例如,在医疗诊断中,医生可以使用回溯算法来分析病人的病情,并给出最佳的治疗方案。

总之,回溯算法在许多领域都有广泛的应用,可以帮助人们解决复杂的问题。

五大常用算法回溯算法

五大常用算法回溯算法

五大常用算法回溯算法一、回溯算法的概述回溯算法是一种常用的解决问题的算法,通常用于解决组合优化问题,如排列、组合、子集等问题。

回溯算法通过不断地尝试可能的解,直到找到问题的解或者确定不存在解为止。

它的核心思想是通过递归实现穷举,然后进行剪枝,以提高效率。

回溯算法主要包含以下五个步骤:1.选择:在每一步中,可以根据条件选择一个或多个可能的路径。

2.约束:根据问题的约束条件,限制可选择的路径。

3.:以递归的方式进行,尝试所有可能的解。

4.判断:在的过程中,判断当前路径是否符合问题的要求,如果符合则接受,否则进行回溯。

5.取消选择:在判断出当前路径不符合要求时,撤销当前选择,回到上一步继续尝试其他可能的选择。

回溯算法的优缺点:优点:1.简单直观:回溯算法的思路清晰,易于理解和实现。

2.灵活性高:回溯算法适用于各种问题,没有固定的限制条件,可以根据具体问题进行调整。

3.扩展性好:回溯算法可以通过剪枝策略提高效率,并且可以和其他算法结合使用。

缺点:1.效率低:回溯算法通常需要穷举所有的可能解,因此在处理大规模问题时效率较低。

2.可能的重复计算:由于回溯算法会尝试所有可能的解,所以有可能会产生重复计算的问题。

二、回溯算法的应用回溯算法在许多实际问题中都有应用,包括但不限于以下几个领域:1.组合求解:回溯算法可以用来求解排列、组合、子集等问题。

例如,在给定一组数字的情况下,找到所有可能的组合,使其和等于给定的目标值。

2.图的:回溯算法可以用来解决图的遍历问题,如深度优先、广度优先等。

例如,在给定一张无向图的情况下,找到从起点到终点的路径。

3.数独游戏:回溯算法可以用来解决数独游戏。

数独是一种逻辑类的游戏,在一个9×9的网格中填入1-9的数字,要求每行、每列、每个3×3的子网格都包含1-9的数字,且不能重复。

4.八皇后问题:回溯算法可以用来解决八皇后问题。

八皇后问题是在一个8×8的棋盘上放置八个皇后,要求每行、每列、每个对角线上都不能有两个皇后。

Python中的回溯算法详解

Python中的回溯算法详解

Python中的回溯算法详解回溯算法是一种用于解决组合问题的常用算法。

它通过递归地尝试所有可能的解决方案,当遇到不符合条件的情况时,会回溯到上一步进行另外一种尝试。

在本文中,我们将详细介绍Python中的回溯算法及其应用。

一、什么是回溯算法?回溯算法是一种穷举搜索算法,可用于求解在给定约束条件下的所有可能的解决方案。

它通过尝试每一种可能的选择来构建解决方案,并在达到不符合条件的情况时进行回溯,以选择其他可能的路径。

二、回溯算法的应用场景回溯算法适用于以下场景:1. 组合问题:如在一组数中找出所有的组合;2. 排列问题:如求全排列;3. 子集问题:如求目标集合的所有子集;4. 图的遍历问题:如求解图的哈密顿路径。

三、回溯算法的实现步骤回溯算法的实现包括以下步骤:1. 定义问题的解空间:即确定每个节点的选择范围以及约束条件;2. 组织数据结构:使用适当的数据结构来表示问题的解空间以及中间解;3. 确定搜索路径:定义递归函数来搜索问题空间,并处理中间解;4. 剪枝优化:通过剪枝操作来减少搜索空间,提高算法效率;5. 回溯和回退:当达到不符合条件的情况时,回溯到上一步并选择其他可能的路径。

四、回溯算法的示例代码下面是一个在Python中实现回溯算法的示例代码,用于求解全排列问题。

```pythondef backtrack(nums, track, res):# 结束条件,当track中包含了所有的数字if len(track) == len(nums):res.append(track[:])returnfor num in nums:# 排除不合法的选择if num in track:continue# 做出选择track.append(num)# 进入下一层决策树backtrack(nums, track, res)# 撤销选择track.pop()def permute(nums):res = []track = []backtrack(nums, track, res)return res```五、回溯算法的复杂度分析回溯算法的时间复杂度一般是指数级的,因为它需要遍历解空间的所有可能路径。

回溯算法实验报告(一)

回溯算法实验报告(一)

回溯算法实验报告(一)回溯算法实验报告1. 简介回溯算法是一种经典的解决问题的方法,特别适用于求解排列组合问题、迷宫问题以及图的搜索等。

本实验旨在探究回溯算法的原理、应用以及优缺点。

2. 原理回溯算法是一种递归的算法,通过不断试错来找出问题的解。

其基本思想是: - 从问题给定的初始解开始,逐步构建一个候选解; - 当候选解不满足约束条件时,进行回溯,返回上一步重新构建候选解;- 当所有候选解都被尝试过且都不满足约束条件时,算法停止。

3. 应用回溯算法在很多领域都有广泛的应用,以下列举几个常见的例子:1. 排列组合问题:如求解一个数组的全排列; 2. 迷宫问题:如求解从起点到终点的路径; 3. 图的搜索:如深度优先搜索(DFS)和广度优先搜索(BFS)。

4. 优缺点回溯算法有以下优点: - 适用性广:可以解决多种问题,特别擅长于求解排列组合和搜索类问题; - 简单直观:算法思想直观,易于理解和实现。

但回溯算法也有一些缺点: - 效率较低:因为回溯算法需要枚举所有可能的解,所以在问题规模较大时,时间复杂度较高; - 可能存在重复计算:如果问题的解空间中存在重复的子问题,回溯算法可能会进行重复的计算。

5. 实验结论通过本实验我们可以得出以下结论: 1. 回溯算法是一种经典的解决问题的方法,可应用于多个领域; 2. 回溯算法的基本原理是试错法,通过逐步构建候选解并根据约束条件进行回溯,找到问题的解;3. 回溯算法的优点是适用性广、简单直观,但缺点是效率较低且可能存在重复计算。

因此,在实际应用中,我们需要根据具体问题的特点来选择适合的算法。

回溯算法在问题规模较小时可以快速得到解答,但对于规模较大的问题,可能需要考虑其他高效的算法。

6. 探索进一步改进回溯算法的方法虽然回溯算法在解决一些问题时非常有用,但对于问题规模较大的情况,它可能会变得低效且耗时。

因此,我们可以探索一些方法来改进回溯算法的性能。

6.1 剪枝策略在回溯算法中,我们可以通过剪枝策略来减少无效的搜索路径,从而提高算法的效率。

python 回溯法

python 回溯法

python 回溯法Python回溯法回溯法是一种常用的解决问题的算法思想,通常用于求解组合问题、排列问题、搜索问题等。

它的基本思想是通过不断地尝试,逐步构建问题的解,当发现当前解不符合要求时,回溯到上一步,重新选择其他可能的选项。

本文将以Python回溯法为主题,介绍回溯法的原理、应用场景以及如何在Python中实现回溯算法。

一、回溯法的原理回溯法是一种深度优先搜索的算法,通过穷举所有可能的解来求解问题。

它的基本思想是从问题的初始状态开始,逐步构建问题的解,当发现当前解不符合要求时,回溯到上一步,重新选择其他可能的选项。

通过不断地尝试和回溯,最终找到问题的解或确定问题无解。

二、回溯法的应用场景回溯法广泛应用于求解组合问题、排列问题和搜索问题等。

例如,求解八皇后问题、0-1背包问题、数独游戏等都可以使用回溯法。

回溯法的优势在于可以穷举所有可能的解,但同时也存在着时间复杂度高的问题,因此在实际应用中需要根据具体问题的规模和复杂度进行选择。

三、Python中的回溯法实现在Python中,可以通过递归函数来实现回溯法。

具体步骤如下:1. 定义递归函数,函数的参数包括当前解、选择列表和目标解等。

2. 判断当前解是否符合要求,如果符合则将其加入结果集中。

3. 遍历选择列表,对于每个选择,将其加入当前解中,并递归调用函数。

4. 在递归调用结束后,需要回溯到上一步,将当前选择从当前解中移除,继续遍历其他选择。

5. 最终返回结果集。

下面以求解八皇后问题为例,介绍如何在Python中实现回溯法。

```pythondef solve_n_queens(n):def backtrack(row, queens):if row == n:result.append(queens)returnfor col in range(n):if is_valid(row, col, queens):backtrack(row+1, queens+[col])def is_valid(row, col, queens):for r, c in enumerate(queens):if c == col or r-c == row-col or r+c == row+col:return Falsereturn Trueresult = []backtrack(0, [])return result```以上代码使用递归函数`backtrack`来求解八皇后问题。

回溯法的功能

回溯法的功能

回溯法的功能
回溯法是一种既带有系统性又带有跳跃性的算法,以深度优先方式系统搜索问题解,适用于组合数较大的问题。

它的功能主要体现在以下几个方面:
1.系统性搜索:回溯法以深度优先的方式系统地搜索问题的所有解或任一解。

它从问题的初始状态开始,通过逐步构建解决方案,探索问题的所有可能解。

2.生成解空间:回溯法在搜索问题的解时,会生成一个状态空间树。

这个状态
空间树由每个可能的状态组成,每个状态对应一个可能的解决方案。

通过这个状态空间树,回溯法能够系统地搜索所有可能的状态。

3.剪枝优化:在搜索过程中,回溯法使用剪枝函数来避免无效的搜索。

当探索
到某一步时,如果发现当前选择并不优或达不到目标,它会退回一步重新选择,这种走不通就退回再走的技术为回溯法。

4.满足约束条件:在使用回溯法解决问题时,需要确保生成的解满足问题的约
束条件。

请注意,回溯法的效率在很大程度上取决于所面临的具体问题及其约束条件。

在处理大规模或复杂的问题时,回溯法可能需要大量的计算资源和时间。

回溯算法的应用

回溯算法的应用

回溯算法的应用回溯算法是一种通过逐步尝试所有可能的解决方案来解决问题的算法。

它是一个递归的算法,通过尝试一条路径,如果不符合要求,则退回到上一步,重新选择路径,直到找到问题的解决方案。

回溯算法适用于那些可以通过排列、组合、选择的方式进行解决的问题。

它的应用非常广泛,下面是一些常见的应用场景:1.八皇后问题:八皇后问题是一个著名的回溯算法问题。

在一个8x8的棋盘上放置八个皇后,使得它们不能相互攻击(同一行、同一列、同一对角线)。

通过回溯算法,可以穷举所有可能的解决方案,并找到满足条件的解。

2.数独问题:数独是一种非常经典的数学游戏,通过在9x9的格子中填入数字,使得每一行、每一列、每一个3x3的子网格都包含了数字1-9,且不重复。

回溯算法可以用来解决数独问题,通过穷举所有可能的填数方式,找到满足条件的解。

3.图的遍历:回溯算法可以用来遍历图中的所有节点。

通过递归地尝试从一个节点出发,访问邻接节点,并对每个邻接节点再进行递归。

可以使用回溯算法解决深度优先(DFS)问题,如寻找图中的路径、寻找连通分量等。

4.0-1背包问题:0-1背包问题是一个经典的动态规划问题,可以使用回溯算法进行求解。

在问题中,有一个背包和一组物品,每个物品有一定的重量和价值。

目标是在背包容量有限的情况下,选择一些物品放入背包,使得背包中的总价值最大。

5.解数独问题:解数独问题是为已给出的部分填写的数独面板找到一个解决方法。

回溯算法在解数独问题上的应用是一个很好的例子。

通过逐个尝试每个格子的数字并检查是否满足数独的规则,如果不满足则回退到上一个状态重新选择,直到找到一个解决方案或穷举所有可能。

深入研究回溯算法的应用与优化

深入研究回溯算法的应用与优化

深入研究回溯算法的应用与优化回溯算法是一种常见的问题求解方法,它通过不断尝试可能的解决方案,并在遇到错误时回溯到之前的状态,寻找其他的解决路径。

回溯算法在很多领域都有着广泛的应用,并且可以通过一些优化方法来提高效率。

一、回溯算法的应用1. 组合问题回溯算法可以用来解决组合问题,比如从给定的一组数中选出若干个数,使其和等于一个特定的值。

通过回溯算法,可以穷举所有可能的组合,找到满足条件的解。

2. 排列问题回溯算法也可以用来解决排列问题,比如给定一组数,求其所有的排列方式。

通过回溯算法,可以生成所有可能的排列,找到满足条件的解。

3. 子集问题回溯算法可以用来解决子集问题,比如给定一个集合,求其所有的子集。

通过回溯算法,可以生成所有可能的子集,找到满足条件的解。

4. 图的遍历回溯算法可以用来解决图的遍历问题,比如深度优先搜索(DFS)。

通过回溯算法,可以遍历图中的所有节点,找到满足条件的解。

二、回溯算法的优化1. 剪枝回溯算法中的剪枝操作可以提高算法的效率。

通过在搜索过程中,判断当前状态是否满足条件,如果不满足条件,则可以直接跳过当前状态,减少不必要的搜索。

2. 选择合适的搜索顺序在回溯算法中,选择合适的搜索顺序也可以提高算法的效率。

比如在组合问题中,可以按照从小到大的顺序选择数,这样可以尽早排除不满足条件的解。

3. 使用剪枝策略在某些情况下,可以使用剪枝策略来提高算法的效率。

比如在排列问题中,如果当前的排列已经满足条件的一部分,可以根据这部分条件,判断是否继续搜索,从而减少搜索的范围。

4. 使用记忆化搜索在某些情况下,可以使用记忆化搜索来提高算法的效率。

比如在图的遍历问题中,可以使用一个数组来记录已经访问过的节点,避免重复访问。

三、回溯算法的局限性尽管回溯算法在很多问题中都有着广泛的应用,但是它也有一些局限性。

首先,回溯算法的时间复杂度往往很高,随着问题规模的增大,搜索空间呈指数级增长,导致算法的效率低下。

回溯算法原理和几个常用的算法实例

回溯算法原理和几个常用的算法实例

回溯算法原理和几个常用的算法实例回溯算法是一种通过不断尝试和回退的方式来进行问题求解的算法。

它的基本思想是在过程中,当发现当前的选择并不符合要求时,就进行回退,尝试其他的选择,直到找到符合要求的解或者遍历完所有可能的选择。

回溯算法通常用于问题求解中的和排列组合问题,比如求解八皇后问题、0-1背包问题、数独等。

下面将介绍几个常用的回溯算法实例。

1.八皇后问题:八皇后问题是指在一个8×8的国际象棋棋盘上,放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一斜线上。

可以通过递归的方式依次尝试每一行的位置,并判断当前位置是否满足条件。

如果满足条件,则进入下一行尝试;否则回溯到上一行,并尝试其他的位置,直到找到解或遍历完所有的可能。

2.0-1背包问题:0-1背包问题是指在给定一组物品和一个容量为C的背包,每个物品都有自己的重量和价值,求解在不超过背包容量时,如何选择物品使得背包中物品的总价值最大。

可以通过递归的方式依次考察每个物品,并判断是否选择当前物品放入背包。

如果放入当前物品,则背包容量减小,继续递归考察下一个物品;如果不放入当前物品,则直接递归考察下一个物品。

直到遍历完所有物品或背包容量为0时,返回当前总价值。

3.数独问题:数独是一种通过填充数字的方式使得每一行、每一列和每一个九宫格内的数字都满足一定条件的谜题。

可以通过递归的方式依次尝试填充每一个空格,并判断当前填充是否符合条件。

如果符合条件,则继续递归填充下一个空格;如果不符合条件,则回溯到上一个空格,并尝试其他的数字,直到找到解或遍历完所有的可能。

回溯算法的时间复杂度一般较高,通常为指数级别。

因此,在实际应用中,可以结合剪枝等优化策略来提高算法的效率。

此外,回溯算法也可以通过非递归的方式进行实现,使用栈来存储当前的状态,从而避免递归带来的额外开销。

总之,回溯算法是一种非常有效的问题求解方法,通过不断尝试和回退,可以在复杂的空间中找到符合要求的解。

回溯算法应用实验报告

回溯算法应用实验报告

一、实验目的通过本次实验,旨在掌握回溯算法的基本原理和应用方法,加深对回溯算法的理解,并学会运用回溯算法解决实际问题。

实验内容包括:设计回溯算法解决八皇后问题、0-1背包问题以及TSP问题,并对算法进行时间复杂度和空间复杂度的分析。

二、实验内容1. 八皇后问题问题描述:在8x8的国际象棋棋盘上,放置8个皇后,使得它们互不攻击。

即任意两个皇后不能在同一行、同一列或同一斜线上。

算法设计:使用回溯算法,通过递归尝试在棋盘上放置皇后,当出现冲突时回溯到上一步,重新尝试。

代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(n):def backtrack(row):if row == n:result.append(board[:])returnfor col in range(n):if is_valid(board, row, col):board[row] = colbacktrack(row + 1)board[row] = -1board = [-1] nresult = []backtrack(0)return result```2. 0-1背包问题问题描述:给定n个物品,每个物品有一个价值v[i]和重量w[i],以及一个背包容量W,如何选择物品使得背包中的物品总价值最大且不超过背包容量。

算法设计:使用回溯算法,递归尝试选择每个物品,当背包容量不足或物品价值超过剩余容量时回溯到上一步。

代码实现:```pythondef knapsack(weights, values, capacity):def backtrack(i, cw, cv):if cw > capacity or i == len(weights):return cvif not backtrack(i + 1, cw, cv):return cvif cw + weights[i] <= capacity:return max(backtrack(i + 1, cw, cv), backtrack(i + 1, cw + weights[i], cv + values[i]))else:return cvreturn backtrack(0, 0, 0)```3. TSP问题问题描述:给定n个城市,以及每对城市之间的距离,求出一条最短路径,使得路径上的城市互不相同,并且最终回到起点。

回溯算法入门及应用

回溯算法入门及应用

回溯算法入门及应用广东省东莞市东华高级中学杨光文难易指数:★★★在求解一些问题(如马的遍历、选书、八皇后问题、自然数的拆分等问题)时,题目的要求可能是求出原问题的一种或所有可能的解决方案。

这类问题的解往往是由一个一个的步骤或状态所构成的,每一步骤又有若干种可能的决策方案;由于没有固定、明确的数学解析方法,往往要采用搜索的做法,即从某一个初始状态出发,不断地向前(即下一个状态)搜索,以期最终达到目标状态,从而得到原问题的一个解或所有的解。

在搜索的过程中,由于问题本身及所采取的搜索方法的特点(如在缺乏全局及足够的前瞻信息的情况下进行搜索等),会导致走到某一状态就走不下去的情况,这时,就必须回头(即回到上一步,而不是回到最初的状态),再尝试其他的可能性,换一个方向或方法再试试。

这样,不断地向前探索、回溯,再向前、再回溯,直至最终得出问题的解,或者一路回溯到出发点(出现这种情况即表示原问题无解)。

注意,这种搜索过程并不是尝试搜索问题解空间中所有的可能状态和路径,而是采用深度优先的方式,沿着一条路径,尽可能深入地向前探索,这就是回溯算法。

一、回溯算法的定义:回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

用回溯算法解决问题的一般步骤为:1、定义一个解空间,它包含问题的解。

2、利用适于搜索的方法组织解空间。

3、利用深度优先法搜索解空间。

4、利用限界函数避免移动到不可能产生解的子空间。

问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。

下面通过一个具体实例加深大家对回溯算法的认识。

二、回溯算法的应用举例:例1:马的遍历中国象棋半张棋盘如图1(a)所示。

马自左下角往向右上角跳。

规定只许往右跳,不许往左跳,马只能走日字。

比如图1(a)所示为一种跳行路线,并将所经路线打印出来,打印格式为:0,0->2,1->3,3->1,4->3,5->2,7->4,8。

回溯算法的应用

回溯算法的应用

回溯算法的应用课程名称:算法设计与分析院系:************************学生姓名:******学号:************专业班级:***************************** 指导教师:******2013年12月27日回溯法的应用摘要:回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。

但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

回溯法,其意义是在递归直到可解的最小问题后,逐步返回原问题的过程。

而这里所说的回溯算法实际是一个类似枚举的搜索尝试方法,它的主题思想是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯算法是尝试搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”的思想,作为其控制结构。

在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。

当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

全排列和求最优解问题是比较经典的问题,我们可以采用多种算法去求解此问题,比如动态规划法、分支限界法、回溯法。

在这里我们采用回溯法来解决这个问题。

关键词:回溯法全排列最优值枚举目录第1章绪论 (4)1.1 回溯法的背景知识 (4)1.2 回溯法的前景意义 (4)第2章回溯法的理论知识 (5)2.1 问题的解空间树 (5)2.2 回溯法的一般性描述 (6)第3章 n的全排列 (7)3.1 问题描述 (7)3.2 问题分析 (7)3.3 算法设计 (7)3.4 测试结果与分析 (9)第4章最优化问题 (11)4.1 问题描述 (11)4.2 问题分析 (11)4.3 算法设计 (11)4.4 测试结果与分析 (14)第5章结论 (15)参考文献 (16)附件 (16)第1章绪论1.1 回溯法的背景知识回溯算法是尝试搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”的思想,作为其控制结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回溯算法的应用课程名称:算法设计与分析院系:************************学生姓名:******学号:************专业班级:***************************** 指导教师:******2013年12月27日回溯法的应用摘要:回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。

但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

回溯法,其意义是在递归直到可解的最小问题后,逐步返回原问题的过程。

而这里所说的回溯算法实际是一个类似枚举的搜索尝试方法,它的主题思想是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯算法是尝试搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”的思想,作为其控制结构。

在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。

当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

全排列和求最优解问题是比较经典的问题,我们可以采用多种算法去求解此问题,比如动态规划法、分支限界法、回溯法。

在这里我们采用回溯法来解决这个问题。

关键词:回溯法全排列最优值枚举目录第1章绪论 (4)1.1 回溯法的背景知识 (4)1.2 回溯法的前景意义 (4)第2章回溯法的理论知识 (5)2.1 问题的解空间树 (5)2.2 回溯法的一般性描述 (6)第3章 n的全排列 (7)3.1 问题描述 (7)3.2 问题分析 (7)3.3 算法设计 (7)3.4 测试结果与分析 (9)第4章最优化问题 (11)4.1 问题描述 (11)4.2 问题分析 (11)4.3 算法设计 (11)4.4 测试结果与分析 (14)第5章结论 (15)参考文献 (16)附件 (16)第1章绪论1.1 回溯法的背景知识回溯算法是尝试搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”的思想,作为其控制结构。

在递归算法中,其存在的意义是在递归知道可解的最小问题后,逐步返回原问题的过程。

实际上是一个类似于枚举的搜索尝试方法,他的主题思想是在搜索尝试的过程中寻找问题的解,当发现不满足条件时就回溯返回,尝试别的路径。

简单的说就是:从问题的某一种初始状态出发,依次搜寻每一种可能到达的情况,当走到这条路的“尽头”时,回过头到上一个情况,看这个情况是否还有没有走过的路,依次进行下去,直到遍历完所有的情况。

回溯法实际上是一种深度优先搜索的方式。

对于回溯法解决的问题,通常将其解空间组织成图或者树的形式。

对于用回溯法求解的问题,首先要将问题进行适当的转化,得出状态空间树。

这棵树的每条完整路径都代表了一种解的可能。

通过深度优先搜索这棵树,枚举每种可能的解的情况;从而得出结果。

但是,回溯法中通过构造约束函数,可以大大提升程序效率,因为在深度优先搜索的过程中,不断的将每个解与约束函数进行对照从而删除一些不可能的解,这样就不必继续把解的剩余部分列出从而节省部分时间。

1.2 回溯法的前景意义在做题时,有时会遇到这样一类题目,它的问题可以分解,但是又不能得出明确的动态规划或是递归解法,此时可以考虑用回溯法解决此类问题。

回溯法的优点在于其程序结构明确,可读性强,易于理解,而且通过对问题的分析可以大大提高运行效率。

通过运用回溯法,可以解决很多问题,譬如我们所熟知的“八皇后问题”、“0/1背包问题”,这只是在教学阶段中的运用,在实际运用中回溯法也能起到很大的作用。

回溯法适用于解决难以归纳一般规律解法的问题,其适用范围广,灵活性大,在解一些列举方法的问题时尤其可用。

但是,其缺点也是明显的,即时间复杂度较大;因此在采用时我们应该因情况的不同而做出不同的选择。

第2章回溯法的理论知识2.1 问题的解空间树对于全排列问题。

对n位数进行全排列,知道了这个数的位数就知道有多少种排列方法,在n位数中选定一个数为首位就可以进行下面的排列。

当n=4时,我们要从一个数开始排列,再进行其他两位数。

假设排列从1开始出发,则可能的路径如下图2.1。

图2.1 选择的路径活结点:不是叶结点,满足约束条件,使目标函数有所改善,儿子结点有尚未访问的(可继续搜索下去)。

否则为死结点。

E-结点:扩展结点,当前正在搜索的活结点。

死结点:即如果取了这个结点,将不会有可行解。

2.2 回溯法的一般性描述回溯法的一般描述可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。

其中S i 是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。

我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。

解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。

但显然,其计算量是相当大的。

我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,x i )满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<=i)元组(x1,x2,…,x j )一定也满足D中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。

换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反D中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反D中仅涉及到x1,x2,…,xi的一个约束,n≥i≥j。

因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,x j 的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,x j ,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。

回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。

第3章n的全排列3.1 问题描述输出自然数1到n所有不重复的全排列。

3.2 问题分析在n的全排列是一组n元一维向量,(x1,x2,x3,…,xn),搜索空间是:1<=xi<=n i=1,2,3…,n约束条件很简单,xi互不相同。

3.3 算法设计1、算法介绍本例题采用“数组记录状态信息”的方法检查在搜索过程中是否满足约束条件。

一般的方法是用cheak()函数进行判断,cheak()函数中当前元素与前面的元素进行逐个比较。

而在这个算法中用的是try( )函数,是搜索的过程更加快。

void TRY(int k)//找第k个数{int j;for(j=1;j<=n;j++){if(d[j]==0)//判断第k个数是否可用{a[k]=j;d[j]=1;}elsecontinue;//第k个数不可用if(k<n)TRY(k+1);//找第k+1个数else{p++;output() ; } //输出元素d[a[k]]=0;//将数组中的数设为未使用}}具体方式为:设置n个元素的一维数组d,在该算法中的一维数组d用于记录数组中的元素的状态(是否被搜索过),其中的n个元素用来记录数据1~n的使用情况,已使用置1,未使用置0。

直到所有元素的已使用,输出结果;然后循环进行,直到输出所有排列。

在该算法中最重要的一个函数就是d[a[k]]=0,这是回溯的核心,用以上回溯法搜索算法完成算法的全排列问题的复杂度为O(n^n),不是最佳算法。

如果在算法中运用try ()函数自身之间的交换,for 循环语句for(j=t;j<=n;j=j+1),而且for循环体中的第二个swap()调用,是用来恢复原顺序的,在每次回溯时,都要恢复本次操作前的原始操作。

这个全排列算法的复杂度为O(n!),其结果可以为搜索排列树所用。

2、流程图3.4 测试结果与分析(1)测试结果:图3.1 全排列问题的解图3.2 全排列问题的解(2)对测试结果的分析:从图3.1、3.2中可以看出全排列的排列方法,当n=2时有两种排列,当n=3时有六种排列,所以对于n的全排列有n!种排列方法。

第4章最优化问题4.1 问题描述一个有趣的高精度数据:构造一个尽可能大的数,使其从高到低满足前一位能被1整除,前2位能被2整除,……,前n位能被n整除。

数学模型:记高精度数据为a1,a2,…,an,题目很明确有两个要求:(1)a1能被1整除且(a1*10+a2)能被2整除且……(a1*10^n-1+a2*10^n-2+…+an)能被能整除;(2)求最大的这样的数。

a1能被1整除且(a1*10+a2)能被2整除且……(a1*10^n-1+a2*10^n-2+…+an)能被能整除;4.2 问题分析此数只能用从高位到低位逐位尝试,失败回溯的算法策略求解,生成的高精度数据用数组从高位到低位存储,1号元素开始存储最高位。

此数的大小无法估计不妨为数组开辟100个空间。

4.3 算法设计1、算法介绍算法中数组A位当前求解的高精度数据的暂存处,数组B为当前最大的满足条件的数。

算法的首位A[1](最高位)从1开始枚举。

以后各位从0开始枚举。

所以求解出的满足条件的数据之间只须比较位数就能确定大小。

n为当前满足条件的最大数据的位数,i 为当前满足条件数据的位数,当i>=n就认为找到了更大的解。

当i>n不必解释,位数多数据一定大;i=n时,由于尝试是由小到大进行的,虽然位数相等,但后来满足条件的数据一定比前面的大。

(1)从A[1]=1开始,每增加一位A[i](初值为0)先计算r=(A[1]*10^i-1+A[2]*10^i-2+…+A[i]),再测试r=r mod i是否。

(2)r=0 表示增加第i位后,满足条件,与原有满足条件的数(存在数组B中)比较,若前者大,则更新后者(数组B),继续增加下一位。

(3)r !0表示增加i位不满足整除条件,接下来算法中并不是继续尝试A[i]=A[i]+1,而是继续尝试A[i]=A[i]+i-r,因为若A[i]=A[i]+i-r<=9时,(A[1]*10^i-1+A[2]*10^i-2+…+A[i]-r+i)mod i肯定为0.这样可以减少尝试次数。

相关文档
最新文档