椭圆的几何性质及综合问题
历年高考“椭圆”考点分析与应对策略
历年高考“椭圆”考点分析与应对策略考点1 椭圆的定义与标准方程调研1 对于常数m 、n ,“0mn >”是“方程221mx ny +=表示的曲线是椭圆”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】若方程221mx ny +=表示的曲线是椭圆,则有0,0,m n m n >>≠,所以“0mn >”是“方程221mx ny +=表示的曲线是椭圆”的必要不充分条件.调研2 设0a b >>,0k >且1k ≠,则椭圆22122:1x y C a b+=A .顶点B .焦点C .离心率D .长轴和短轴【答案】C【解析】椭圆22122:1x y C a b +=的离心率为c e a ==22221x y ka kb +=.故选C.☆技巧点拨☆求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且.考点2 椭圆的简单几何性质调研 1 椭圆221259x y +=的左焦点为1F ,P 为椭圆上的动点,M 是圆22(1x y +-=上的动点,则1PM PF +的最大值是_______________.【答案】17【解析】圆22(1x y +-=的圆心为C ,半径为1.由椭圆方程221259x y +=可知2225,9a b ==,所以5a =,左焦点为1(4,0)F -,右焦点为()24,0F .故122221010PC PF PC a PF PC PF CF +=+-=+-≤+=, 所以1max 1max ()()117PM PF PC PF +=++=.调研2 设1F 、2F 是椭圆2221(02)4x y b b+=<<的左、右焦点,过1F 的直线l 交椭圆于A ,B 两点,若22||||AF BF +的最大值为5,则椭圆的离心率为A .12B .2C D 【答案】A【解析】因为124AF AF +=,124BF BF +=,所以2ABF △的周长为228AF BF AB ++=,显然,当AB 最小时,22AF BF +有最大值,而22min 2b AB b a==,所以285b -=,解得23b =,21c =,从而12e =.故选A.☆技巧点拨☆1.利用椭圆几何性质解题时的注意点及技巧: (1)注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系. (2)利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系. 2.求椭圆离心率问题的一般思路:求椭圆离心率或其范围时,一般是根据题意设出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2,消去b 即可求得离心率或离心率的范围.考点3 直线与椭圆的位置关系调研1 已知直线l 过椭圆22:12x C y +=的左焦点F ,且与椭圆C 交于,P Q 两点,M 为弦PQ 的中点,O 为坐标原点,若FMO △是以线段OF 为底边的等腰三角形,则直线l 的斜率为 .【答案】【解析】由题意得222,1a b ==,可得21c =,即1c =,所以椭圆C 的左焦点为(1,0)F -.由题意得直线l的斜率存在且不为0,可设直线l 为y kx k =+,直线l 与椭圆C 交于11)(,P x y 、22(),Q x y ,联立2212x y +=与y kx k =+,化简可得2222(21)4220k x k x k +++-=,所以2122421k x x k -=++;而点M 为PQ 的中点,所以点M 的横坐标为21222221x x k k +-=+.因为F M O △是以OF 为底边的等腰三角形,所以2221212k k -=-+,即212k =,k =,即直线l 的斜率为调研2 设1F 是椭圆2222:1x y C a b +=(0a b >>)的左焦点,M 是C 上一点,且1MF 与x 轴垂直,若132MF =,椭圆的离心率为12. (1)求椭圆C 的方程;(2)以椭圆C 的左顶点A 为Rt ABD △的直角顶点,边,AB AD 与椭圆C 交于,B D 两点,求ABD △面积的最大值.【答案】22143x y +=;(2)14449.【解析】(1)因为点()1,0F c -,1MF与x 轴垂直,. 所以2,b M c a ⎛⎫- ⎪⎝⎭或2,b M c a ⎛⎫-- ⎪⎝⎭,故椭圆C 的方程为22143x y +=. (2)点()2,0A -,设直线AB 的方程为()2y k x =+(0k >),联立方程得()222143y k x x y ⎧=++=⎪⎨⎪⎩,消去y 得()2222341616120k x k x k +++-=,设()11,B x y ,则2121612234k x k --=+,所以2128634k x k -+=+,直线AD 的方程为()12y x k=-+,同理可得23AD k =+,所以ABD △的面积令1t k k=+, 因为0k >,所以12t k k=+≥,当且仅当1k =时取等号. 因为()112f t t t=+在[)2,+∞上单调递增, 所以()49f t ≥, 即ABD △面积的最大值为14449.【名师点睛】椭圆是重要的圆锥曲线代表之一,也是高考重点考查的知识点与考点之一,常以解答题的形式出现.求解本题的第一问时,从而使得问题获解;求解第二问时,先建立直线AB 的方程为()2y k x =+(0k >),再与椭圆方程联立,运用直线与椭圆的位置关系中的坐标关系建立ABD △面积关于斜率的函数关系,进而运用函数的单调性进行分析求解,使得问题获解.☆技巧点拨☆1.直线与圆锥曲线的位置关系是高考必考题,难度为中高档,常作为压轴题出现,大致在第20题的位置. 2.直线与椭圆综合问题的常见题型及解题策略(1)求椭圆方程或有关几何性质.可依据条件,寻找满足条件的关于a ,b ,c 的等式,解方程即可求得椭圆方程或椭圆有关几何性质.(2)关于弦长问题.一般是利用根与系数的关系、弦长公式求解.特别对于中点弦或弦的中点问题,一般利用点差法求解. 3.具体解题步骤:对于直线与圆锥曲线的位置关系问题,一般要把圆锥曲线的方程与直线方程联立来处理.(1)设直线方程,在直线的斜率不确定的情况下要分斜率存在和不存在两种情况进行讨论,或者将直线方程设成x=my+b的形式.(2)联立直线方程与曲线方程并将其转化成一元二次方程,利用方程根的判别式或根与系数的关系得到交点的横坐标或纵坐标的关系.(3)一般涉及弦的问题,要用到弦长公式|AB|=1+k2|x1-x2|或|AB|=1+1k2·|y1-y2|.1.(2018年普通高等学校招生全国统一考试模拟试题(衡水金卷信息卷))在区间[]0,1上随机取一个数k,则方程2213421x yk k+=--表示焦点在y轴上的椭圆的概率为A.124B.112C.16D.14【答案】B2.(山西省榆社中学2018届高三诊断性模拟考试)若椭圆2214x ym+=上一点到两焦点的距离之和为3m-,则此椭圆的离心率为A BC.7D.37或59【答案】A3.(宁夏银川市第二中学2018届高三下学期高考等值卷(二模))已知椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M 、N ),△AF 1B 的周长为AM 与AN 的斜率之积为-23,则C 的方程为 A .22=1128x y +B .22=1124x y + C .22=132x y +D .22=13x y + 【答案】C【解析】由△AF 1B的周长为1212|||||4|||AF AF BF BF a +++==.解得a =()),M N.设点()00,A x y ,由直线AM 与AN 的斜率之积为-23,23=-.即()2200233y x =--.①又2200213x y b +=,所以2220013x y b ⎛⎫=- ⎪⎝⎭,②由①②解得:22b =.所以椭圆C 的方程为22132x y +=.故选C .【名师点睛】此题主要考查椭圆方程,由椭圆定义可得出焦半径的性质,由椭圆上的点和顶点连线的斜率乘积可得出关系式,考查了斜率的坐标表示以及点在椭圆方程上的灵活应用,属于中档题型,也是常考考点.数形结合法是数学解题中常用的思想方法之一,通过“以形助数,以数解形”,根据数列与形之间的对应关系,相互转化来解决问题.4.(湖北省荆州市2018届高三质量检查(III ))设椭圆22221(0)x y a b a b+=>>的右焦点与抛物线216y x=,则此椭圆的方程为__________. 【答案】221248x y +=5.(北京市海淀区2018届高三第二学期期末练习(二模))已知椭圆C : 2222x y +=的左、右顶点分别为1A ,2A .(Ⅰ)求椭圆C 的长轴长与离心率;(Ⅱ)若不垂直于x 轴的直线l 与椭圆C 相交于P ,Q 两点,直线1A P 与2A Q 交于点M ,直线1A Q 与2A P 交于点N .求证:直线MN 垂直于x 轴.【答案】(Ⅰ);(Ⅱ)证明见解析. 【解析】(Ⅰ)椭圆C 的方程可化为2212x y +=,所以1,1a b c ===.所以长轴长为2a =,离心率2c e a ==【名师点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(Ⅰ)由椭圆C 的方程可化为2212x y +=,可得1,1a b c ===,所以长轴长为2a =,离心率2c e a ==;(Ⅱ)设直线1A P 的方程为(1y kx =,2A Q 的方程为(2y k x =, 联立可得)2121M k k x k k +=-,同理可得)4343N k k x k k +=-,可证明1412k k =-且2312k k =-,从而可得)1221211211221122N Mk k k k x x k k k k ⎛⎫--⎪+⎪⎪+⎝⎭===----,进而可得结果.1.(2017新课标全国卷Ⅲ理科)已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3 B.3 CD .13【答案】A【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =c a;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).2.(2016新课标全国卷Ⅲ理科)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13 B .12 C .23D .34【答案】A3.(2017新课标全国卷Ⅰ理科)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1)2214x y +=;(2)见解析.222(41)8440k x kmx m +++-=.由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+. 而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【思路点拨】(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x 轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.4.(2017新课标全国卷Ⅱ理科)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 【答案】(1) 222x y +=;(2)见解析.由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以OQ PF ⋅=0,即⊥OQ PF .又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【思路点拨】(1)设出点P 的坐标,利用2=NP NM 得到点P 与点M 坐标之间的关系即可求得轨迹方程为222x y +=;(2)利用1OP PQ ⋅=可得坐标之间的关系:2231m m tn n --+-=,结合(1)中的结论整理可得OQ PF ⋅=0,即⊥OQ PF ,据此即可得出结论. 【名师点睛】求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系F (x ,y )=0. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程. (4)代入(相关点)法:动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而运动,常利用代入法求动点P (x ,y )的轨迹方程.5.(2016新课标全国卷Ⅰ理科)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[.6.(2016新课标全国卷Ⅱ理科)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. (Ⅰ)当t =4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.(II )由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk x x t k t +++-=.由(221233t k tx tk-⋅=+得)21233tk x tk-=+,故1AM x ==由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==, 由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当k =因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得32020k k ->⎧⎨-<⎩,或32020k k -<⎧⎨->⎩2k <<. 因此k 的取值范围是)2.【思路点拨】(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN △的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示||AM ,同理用,t k 表示||AN ,再由2AM AN =及t 的取值范围求k 的取值范围. 【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.。
高二数学椭圆试题答案及解析
高二数学椭圆试题答案及解析1.已知椭圆:的左焦点,离心率为,函数,(Ⅰ)求椭圆的标准方程;(Ⅱ)设,,过的直线交椭圆于两点,求的最小值,并求此时的的值.【答案】(Ⅰ);(Ⅱ)的最小值为,此时.【解析】(Ⅰ)利用左焦点F(-1,0),离心率为,及求出几何量,即可求椭圆C的标准方程;(Ⅱ)分类讨论,设直线l的方程来:y=k(x-t)代入抛物线方程,利用韦达定理,结合向量的数量积公式,即可求的最小值,并求此时的t的值.试题解析:(Ⅰ),由得,椭圆方程为(Ⅱ)若直线斜率不存在,则=若直线斜率存在,设直线,由得所以故故的最小值为,此时.【考点】直线与圆锥曲线的综合问题.2.设分别是椭圆的左,右焦点.(1)若是椭圆在第一象限上一点,且,求点坐标;(5分)(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.(7分)【答案】(1);(2).【解析】(1)设,求点坐标,即要构建关于的两个方程,第一个方程可根据点在曲线上,点的坐标必须适合曲线的方程得到,即有,第二个方程可由通过坐标化得到,即有,联立方程组,可解得点坐标;(2)求直线的斜率的取值范围,即要构建关于的不等式,可通过为锐角,转化为不等关系,进而转化为关于的不等式,解出的取值范围.注意不要忽略,这是解析几何中常犯的错误.试题解析:(1)依题意有,所以,设,则由得:,即,又,解得,因为是椭圆在第一象限上一点,所以. 5分(2)设直线与椭圆交于不同两点的坐标为、,将直线:代入,整理得:(),则,,因为为锐角,所以,从而整理得:,即,解得,且()方程必须满足:,解得,因此有,所以直线的斜率的取值范围为. 12分【考点】1.直线与椭圆的位置关系;2.方程与不等式思想,3.设而不求的思想与等价转化思想.3.双曲线与椭圆的离心率互为倒数,则()A.B.C.D.【答案】B.【解析】由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为、,然后由题意得,即,将其两边平方化简即可得出结论.【考点】双曲线的几何性质;椭圆的几何性质.4.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
人教A版高中数学选择性必修第一册《椭圆》能力探究课件
解析 由于两个椭圆的焦点相同,所以可采用待定系数法,利用共焦点的椭圆系方程求解.
由题意可设椭圆的方程为
+
+
+
= ( > −).
又所求椭圆过点(, ),
所以将(,
)代入椭圆方程,得
+
故所求的椭圆方程为
+
= .
+
+
= ,解得 = ( = −舍去).
中心坐标;一类是与坐标系无关的本身固有性质,如长轴长、短轴长、焦距、
离心率.对于第一类性质,只要
和纵坐标互换,就可以得出
+
+
= ( > > )的有关性质中横坐标
= ( > > )的有关性质.总结如下:
估计解释能力、分析计算能力
方程
图形
人教A版同步教材名师课件
椭圆
---能力探究
估计解释能力、分析计算能力
椭圆及其标准方程
1.判断椭圆类型的方法
中心在原点、焦点分别在轴上、轴上的椭圆标准方程的
相同点:形状相同、大小相同;都有 > > , = + .
不同点:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个∴ =Fra bibliotek=
−
+
= .∴ =
.
当 < + < 时, = , = + ,
∴ =
−
专题20椭圆(学生版)-2021年高考数学二轮复习专题核心考点突破
专题20椭圆【考点命题趋势分析】1专题综述椭圆是圆锥曲线的重要组成部分,是解析几何的核心内容之一,椭圆在解析几何中起着承前启后的作用,同时也是历届高考命题的热点和焦点.笔者统揽近三年高考数学全国卷和各省市卷,高考对椭圆部分的考查大都聚焦在以下三个方面:其一,考查椭圆的定义、标准方程和简单的几何性质;其二,考查直线与椭圆的位置关系;其三,考查椭圆相关的综合问题(定点、定值、最值及范围问题).解析几何是以坐标为桥梁,用代数知识来研究几何问题是其本质特征.将椭圆与平面几何、向量、函数、数列、不等式、导数等知识融合命制考题,既广泛而深入地考查了数形结合、转化与化归、分类整合、函数与方程等数学思想以及灵活运用椭圆知识观察、分析和解决问题的能力,同时又对考生的几何直观、逻辑推理和数学运算等素养提出了较高的要求.下面主要以高考试题为例,对椭圆相关的考点举例阐述,以期对今年高考复习有所帮助.典型例题与解题方法2考点剖析2.1椭圆方程及其几何性质求动点的轨迹或是轨迹方程是圆锥曲线的常见问题,椭圆也不例外,一般设置在第一问.这要求学生能熟练地使用常用的方法:直接法、定义法、相关点法、交轨法和代换法,另外,几何性质的灵活运用也往往起到事半功倍之效.一般求解步骤是:建系一设点一坐标代换一化简一检验.注意求轨迹方程和求轨迹应是两种不同的结果表述,前者是方程,后者是图形.例1设圆x2+y2+2x−15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,交圆A于C,D两点,过B作AC的平行线交AD于点E.证明|EA|+|EB|为定值,并写出点E的轨迹方程.例2已知椭圆C:x 2a2+y2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )A.√63B.√33C.√23D.132.2直线与椭圆的位置关系在函数与方程思想的统领下,直线与椭圆的位置关系重点考查以下内容:其一,直线与椭圆的位置关系;其二,直线与椭圆相交,有关中点弦所在直线的方程;其三,直线与椭圆相交,被直线截得的弦长等问题.直线与椭圆的位置关系常用的判断方法有:代数法和坐标变换法.直线与椭圆相交,有关中点弦所在直线方程常用求法有:韦达定理法、点差法、直线参数方程法和对称设点法;直线与椭圆相交,求直线被截得的弦长常用求解方法有:韦达定理法、过焦点弦长公式(利用椭圆第二定义)以及利用过椭圆上一点的切线方程等方法.例3过椭圆x 216+y 24=1内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程.例4设椭圆x 2a 2+y 2=1(a >1),求直线y =kx +1被椭圆截得的线段长(用a ,k 表示). 2.3与椭圆相关的综合问题在数形结合思想统领下椭圆的综合问题主要考查以下内容:斜率和离心率范围、定点问题、定值问题和最值问题等.定点、定值一般涉及曲线过定点、与曲线上的动点有关的问题以及与椭圆有关的弦长、面积、横(纵)坐标等的定值问题.椭圆中最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或椭圆中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.椭圆的探索性问题主要体现在以下方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立,涉及这类命题的求解主要是研究直线与椭圆的位置关系问题.例5已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1 (I )求椭圆C 的方程;(Ⅱ)设P 在椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |⋅|BM |为定值. 3复习对策与建议(1)立足基础,把控规律,回归教材.从宏观上把握椭圆问题的解题要点,注重通性通法、一题多解和多题化归,优化解题过程,淡化特殊技巧,掌握常用的一些解题策略.(2)发掘几何性质,简化代数运算.高度重视对椭圆的定义与几何性质、解析法的理解与运用,既可提高解题效率,又可以提升学生的信心.重视运算能力与运算速度的提高,特别是字母式的变形运算,在平时的训练中要注重算理、算法,细化运算过程,转化相关条件,注重整体代换等运算技能的培养.重视椭圆与函数、导数、方程、不等式等知识的交汇训练.(3)注重数学思想和能力的训练,不断积累解匙经验.重视数形结合、转化化归、分类整合以及函数与方程思想的训练;培养学生善于透过问题背景扣住问题本质的能力;培养学生善于合理简化和量化,建数学模型的能力,培养学生能用精确和简洁的数学语言表达数学问题的能力.积累多方位、多角度探寻解决问题的经验.最新模拟题强化训练1.已知椭圆()2222:10x y C a b a b+=>>的左顶点为A ,上顶点为B ,右焦点为F ,若90ABF ∠=︒,则椭圆C 的离心率为()A B .12C .14+ D .142.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .143.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A.12-B.2C.12D14.(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .135.已知椭圆C :22221(0)x y a b a b+=>>的左右焦点为F 1,F 2过F 2的直线l 交C 与A,B 两点,若△AF 1B的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=6.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为( )AB .3C .6D7.设椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上的点,2PF ⊥1F 2F ,∠12PF F =30,则C 的离心率为( )A B .13C .12D .38.设P 是椭圆22116925x y +=上一点,M ,N 分别是两圆:()22121x y ++=和()22121x y -+=上的点,则PM PN +的最小值、最大值分别为( )A .18,24B .16,22C .24,28D .20,269.已知点(,4)P n 为椭圆C :22221(0)x y a b a b+=>>上一点,12,F F 是椭圆C 的两个焦点,如12PF F ∆的内切圆的直径为3,则此椭圆的离心率为( )A .57B .23C .35D .4510. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 ( ) A .13B .12C .23D .3411.已知点P 是椭圆22221(0)x y a b a b+=>>上的一点,1F ,2F 分别为椭圆的左、右焦点,已知12120F PF ∠=,且122PF PF =,则椭圆的离心率为______.12.已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.13.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为___.14.已知椭圆2221x y a+=的左、右焦点为1F 、2F ,点1F 关于直线y x =-的对称点P 仍在椭圆上,则12PF F ∆的周长为__________.15.已知椭圆22:143x y C +=的左右两焦点为12,F F ,ABC ∆为椭圆的内接三角形,已知2(3A ,且满足2220F A F B F C ++=,则直线BC 的方程为__________.16.已知直线230x y +-=与椭圆()222210x ya b a b+=>>相交于A ,B 两点,且线段AB 的中点在直线3410x y -+=上,则此椭圆的离心率为______.17.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,P 为椭圆C 上一点,且123F PF π∠=,若1F 关于12F PF ∠平分线的对称点在椭圆C 上,则该椭圆的离心率为______.18.如图,在ABC 中,已知120BAC ∠=︒其内切圆与AC 边相切于点D ,延长BA 到E ,使BE BC =,连接CE ,设以,E C 为焦点且经过点A 的椭圆的离心率为1e ,以,E C 为焦点且经过点A 的双曲线的离心率为2e ,则当1221e e +取最大值时,AD DC的值为__.19.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为__________.20.已知点是抛物线:214y x =与椭圆:()222210x y b a a b+=>>的公共焦点,2F 是椭圆2C 的另一焦点,P 是抛物线1C 上的动点,当12PF PF 取得最小值时,点P 恰好在椭圆2C 上,则椭圆2C 的离心率为_______.21.在平面直角坐标系中,()2,0A -,()2,0B ,设直线AC 、BC 的斜率分别为1k 、2k 且1212k k ⋅=- , (1)求点C 的轨迹E 的方程;(2)过()F 作直线MN 交轨迹E 于M 、N 两点,若MAB △的面积是NAB △面积的2倍,求直线MN 的方程.22.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.23.已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF 的斜O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.24.设椭圆()2222:10x y C a b a b+=>>,右顶点是()2,0A ,离心率为12.(1)求椭圆C 的方程;(2)若直线l 与椭圆交于两点,M N (,M N 不同于点A ),若0AM AN ⋅=,求证:直线l 过定点,并求出定点坐标.25.设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3AB =(1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ 面积的2倍,求k 的值.26.如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB ,求直线l 的方程. 27.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.28.已知椭圆2222:1(0)x y E a b a b +=>>1,2⎛ ⎝⎭在E 上. (1)求E 的方程;(2)设直线:2l y kx =+与E 交于A ,B 两点,若2OA OB ⋅=,求k 的值.29.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I)求椭圆的方程和抛物线的方程;(II)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为2AP 的方程.30.已知离心率为√22的椭圆E:x 2a2+y 2b 2=1 (a >b >0)经过点A(1,√22). (1)求椭圆E 的方程; (2)若不过点A 的直线l:y =√22x +m 交椭圆E 于B,C 两点,求ΔABC 面积的最大值.。
椭圆(1)
所以|AB|= 85c2+353c+ 3c2=156c.
于是|MN|=58|AB|=2c.圆心(-1, 3)到直线PF2的距离
d=|-
3- 3- 2
3c|=
3|2+c| 2.
因为d2+(|M2N|)2=42,所以34(2+c)2+c2=16.整理得7c2+12c-52 =0,得c=-276(舍),或c=2.所以椭圆方程为1x62+1y22 =1.
答案: D
返回
4.(教材习题改编)已知椭圆x52+my2=1的离心率e= 510,则m的值 为________. 解析:当椭圆焦点在x轴上a2=5,b2=m,∴c2=5-m. ∴ 5-5 m= 510.∴5-5 m=1205. ∴m=3. 焦点在y轴上时得mm-5=1205. ∴m=235.∴m的值为m=3或m=235. 答案:3或235
返回
[巧练模拟]—————(课堂突破保分题,分分必保!)
5.(2012·合肥模拟)椭圆的两个焦点坐标分别为F1(- 3,0)和 F2( 3,0),且椭圆过点(1,- 23). (1)求椭圆方程; (2)过点(-65,0)作不与y轴垂直的直线l交该椭圆于M,N两点,A 为椭圆的左顶点,试判断∠MAN的大小是否为定值,并说明理由.
在y轴上,还是两个坐标轴都有可能.
返回
(2)设方程:根据上述判断设方程xa22+by22=1(a>b>0)或xb22+ay22 =1(a>b>0). (3)找关系:根据已知条件,建立关于a、b、c的方程组. (4)得方程:解方程组,将解代入所设方程,即为所求. 注意:当椭圆焦点位置不明确而无法确定标准方程时,可设为xm2+yn2= 1(m>0,n>0,m≠n),也可设为Ax2+By2=1(A>0,B>0且A≠B).
椭圆综合复习-2021-2022学年高二上学期数学人教A版选修2-1
椭圆综合复习学习目标:1..了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.3.能够把研究直线与椭圆位置关系的问题转化为研究方程解的问题,会根据根与系数的关系及判别式解决问题.技巧攻略:要点一、椭圆的定义及其标准方程椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c<2a,其中a>0,c>0,且a,c为常数.椭圆的标准方程:标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点顶点坐标A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系a2=b2+c2要点二、椭圆的几何性质焦点在x轴上焦点在y轴上标准方程22221(0)x y a b a b +=>> 22221(0)x y a b b a +=>> 图形性质焦点 1(,0)F c -,2(,0)F c 1(0,)F c -,2(0,)F c焦距 2212||2()F F c c a b ==-2212||2()F F c c a b ==-范围 ||x a ≤,||y b ≤||x b ≤,||y a ≤对称性 关于x 轴、y 轴和原点对称顶点 (,0)a ±,(0,)b ± (0,)a ±,(,0)b ±轴长轴长=a 2,短轴长=2b离心率(01)ce e a=<< 要点三、直线与椭圆的位置关系 直线与椭圆的位置关系将直线的方程y kx b =+与椭圆的方程22221x y a b+=(0)a b >>联立成方程组,消元转化为关于x 或y 的一元二次方程,其判别式为Δ.①Δ>0⇔直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点); ②Δ=0⇔直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点); ③Δ<0⇔直线和椭圆相离⇔直线和椭圆无公共点.直线与椭圆的相交弦设直线y kx b =+交椭圆22221x y a b+=(0)a b >>于点111222(,),(,),P x y P x y 两点,则22121212||()()PP x x y y -+-22121212()[1()]y y x x x x --+-2121|k x x +-同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -12||y y -椭圆的中点弦问题遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆22221x y a b +=中,以00(,)P x y 为中点的弦所在直线的斜率2020b x k a y =-;涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.要点四、椭圆的实际应用与最值问题对于椭圆的实际应用问题,我们要抽象出相应的数学问题,即建立数学模型,一般要先建立直角坐标系,然后利用椭圆定义,构建参数a,b,c 之间的关系,得到椭圆方程,利用方程求解椭圆中的最值问题,按照转化途径主要有以下三种: (1)利用定义转化 (2)利用椭圆的几何性质 (3)转化为函数求最值经典例题透析:类型一:椭圆的方程与性质 例1:求适合下列条件的椭圆的标准方程 (1)焦点在y 轴上,且经过两个点(0,2)和(1,0);(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点⎝⎛⎭⎫-32,52; (3)经过点P ⎝⎛⎭⎫13,13,Q ⎝⎛⎭⎫0,-12.【变式1】:求适合下列条件的椭圆的标准方程. (1)短轴长25,离心率e =23;(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6.【变式2】:分别求出满足下列条件的椭圆的标准方程.(1)短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3; (2)离心率为32,经过点(2,0).例2. 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.【变式1】:若方程22221(1)x y m m +=-表示焦点在y 轴上的椭圆,则m 的取值范围是( )A.12m >B. 12m <C. 112m m >≠且 D. 102m m <≠且【变式2】已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.例3. 已知椭圆C :22a x +22by =1(a >b >0)的每一个焦点为(5,0),离心率为35.(1)求椭圆C 的标准方程;(2)若动点P(x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【变式1】:如图所示,已知动圆P 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其内切,求动圆圆心P 的轨迹方程.【变式2】ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G的轨迹和顶点A 的轨迹.类型二:椭圆的几何性质(离心率,焦点三角形)例4:椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( )11..5432A B C D 例5:椭圆22221(a b 0)x y a b+=>>的两顶点为A (a ,0),B(0,b ),且左焦点为F ,FAB ∆是以角B 为直角的直角三角形,则椭圆的离心率e 为( )A.12 B. 14+ C. 12 D. 14+例6:的直线l 与椭圆22221(0)x y a b a b+=>>交于不同的两点,且这两个交点在x 轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为( )A .2B .12CD .13例7:已知椭圆22221(0)x y a b a b +=>>,F 1,F 2是两个焦点,若椭圆上存在一点P ,使1223F PF π∠=,求其离心率e 的取值范围。
椭圆的简单几何性质ppt课件
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
椭圆专题复习讲义
椭圆专题考点1 椭圆定义及标准方程 题型1:椭圆定义的运用[例1 ] (湖北部分重点中学高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4aB .2(a -c)C .2(a+c)D .以上答案均有可能【变式训练】1.短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( )A.3B.6C.12D.242.已知P 为椭圆2212516x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆22(3)4x y -+=上的点,则PM PN +的最小值为( )A . 5B . 7C .13D . 15题型2 求椭圆的标准方程[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程.【变式训练】3. 如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.4. 椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,求这个椭圆方程.考点2 椭圆的几何性质题型1:求椭圆的离心率(或范围)[例3 ] 在ABC △中,3,2||,300===∠∆ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .【变式训练】5.如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为 A .45 B .23 C .22D .216.已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆122=+ny m x 的离心率为题型2:椭圆的其他几何性质的运用(范围、对称性等)[例4 ] 已知实数y x ,满足12422=+y x ,求x y x -+22的最大值与最小值【变式训练】7.已知点B A ,是椭圆22221x y m n+=(0m >,0n >)上两点,且BO AO λ=,则λ=8.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点则1234567PF P F PF P F P F P F P F ++++++=________________考点3 椭圆的最值问题[例5 ]椭圆191622=+y x 上的点到直线l:09=-+y x 的距离的最小值为___________.【变式训练】9.椭圆191622=+y x 的内接矩形的面积的最大值为 10. P 是椭圆12222=+by a x 上一点,1F 、2F 是椭圆的两个焦点,求||||21PF PF ⋅的最大值与最小值11.已知点P 是椭圆1422=+y x 上的在第一象限内的点,又)0,2(A 、)1,0(B , O 是原点,则四边形OAPB 的面积的最大值是_________.考点4 椭圆的综合应用题型:椭圆与向量、解三角形的交汇问题[例6 ] 已知椭圆C 的中心为坐标原点O ,一个长轴端点为()0,1,短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A 、B ,且PB AP 3=. (1)求椭圆方程;(2)求m 的取值范围.[例7 ]、从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴引垂线,垂足恰为椭圆的左焦点1F ,A 为椭圆的右顶点,B 是椭圆的上顶点,且(0)AB OP λλ=>.⑴、求该椭圆的离心率.⑵、若该椭圆的准线方程是25x =±,求椭圆方程.【变式训练】题型:椭圆与直线的综合问题[例8 ]、设1F 、2F 分别是椭圆2214x y +=的左、右焦点。
专题三直线与椭圆综合讲解
专题三 直线与椭圆综合1.(12分)已知椭圆2222:1(0)x y C a b b a +=>>椭圆C 的长轴长为4. (1)求椭圆C 的方程;(2)已知直线:l y kx =C 交于A ,B 两点,是否存在实数k 使得以线段AB 为直径的圆恰好经过坐标原点O ?若存在,求出k 的值;若不存在,请说明理由.2.(本小题满分14分) 已知椭圆G 的离心率为,其短轴的两个端点分别为A (0,1),B(0,-1).(Ⅰ)求椭圆G 的方程;(Ⅱ)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .判断以MN 为直径的圆是否过点A ,并说明理由.3.(本小题满分12分)已知直线l : 323-=x y 过椭圆C :2221x a b2y +=(a >b>0)的右焦点,且椭圆的离心率为3(Ⅰ)求椭圆C 的方程;(Ⅱ)过点D (0,1)的直线与椭圆C 交于点A ,B ,求△AOB 的面积的最大值.4.已知椭圆2222:1x y C a b+=(a>b>0)的两个焦点分别为12,F F ,离心率为12,过1F 的直线l 与椭圆C 交于M ,N 两点,且2MNF ∆的周长为8.(Ⅰ)求椭圆C 的方程;(Ⅱ)过原点O 的两条互相垂直的射线与椭圆C 分别交于A,B 两点,证明:点O 到直线AB 的距离为定值,并求出这个定值.5.已知椭圆的中心为原点,焦点在x 轴上,离心率为,且经过点(4,1)M ,直线:l y x m =+交椭圆于异于M 的不同两点,A B .直线MA MB x 、与轴分别交于点E F 、.(1)求椭圆标准方程;(2)求m 的取值范围;(3)证明MEF ∆是等腰三角形.6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率为12,椭圆C 上的点到焦点距离的最大值为3.(Ⅰ)求椭圆C 的标准方程; (Ⅱ)若过点(0,)P m 的直线l 与椭圆C 交于不同的两点,A B ,且3AP PB =,求实数m 的取值范围.7.(本小题满分13分)已知点P (一1,32)是椭圆E :22221(0)x y a b a b+=>>上一点F 1,F 2分别是椭圆E 的左、右焦点,O 是坐标原点,PF 1⊥x 轴.(1)求椭圆E 的方程;(2)设A ,B 是椭圆E 上两个动点,满足:(04,2)PA PB PO λλλ+=<<≠且,求直线AB 的斜率8.已知椭圆E :()22221 0, 0x ya b a b +=>>的离心率 e =,并且经过定点1)2P (1)求椭圆 E 的方程;(2)问是否存在直线y=-x+m ,使直线与椭圆交于 A, B 两点,满足OA OB ⊥,若存在求 m 值,若不存在说明理由.9.椭圆2222:1(0)x y C a b a b+=>>过点3(1,)2A ,离心率为12,左、右焦点分别为12,F F ,过1F 的直线交椭圆于,A B 两点.(1)求椭圆C 的方程;(2)当2F AB ∆的面积为7时,求直线的方程.10.已知椭圆2222:1(0)x y C a b a b +=>>经过点(2, 1)A ,离心率为2,过点(3, 0)B 的直线l 与椭圆C 交于不同的两点,M N .(1)求椭圆C 的方程;(2)求BM BN ⋅的取值范围.11.(满分14分)如图在平面直角坐标系xoy 中,12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1FC .(1)若点C 的坐标为41(,)33,且2BF =,求椭圆的方程; (2)若1FC AB ⊥,求椭圆离心率e 的值. 12.已知椭圆)0(1:2222>>=+b a by a x C 过点)3,2(A ,且离心率21=e . (1)求椭圆C 的标准方程;(2)是否存在过点)4,0(-B 的直线l 交椭圆于不同的两点M 、N ,且满足167OM ON ⋅=(其中点O 为坐标原点),若存在,求出直线l 的方程,若不存在,请说明理由.13.已知椭圆22221(0)x y a b a b +=>>的离心率为e =12), (1)求椭圆的方程;(2)设直线:(0,0)l y kx m k m =+≠>与椭圆交于P ,Q 两点,且以PQ 为对角线的菱形的一顶点为(-1,0),求:△OPQ 面积的最大值及此时直线的方程.参考答案1.(1)2214y x +=;(2)存在实数2k =±使得以线段AB 为直径的圆恰好经过坐标原点O .【解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和长轴长列出方程,解出a 和c 的值,再利用222a b c =+计算b 的值,从而得到椭圆的标准方程;第二问,将直线与椭圆联立,消参,利用韦达定理,得到12x x +、12x x ,由于以线段AB 为直径的圆恰好经过坐标原点O ,所以0OA OB ∙=,即12120x x y y +=,代入12x x 和12y y ,解出k 的值.试题解析:(1)设椭圆的焦半距为c,则由题设,得22a c a=⎧⎪⎨=⎪⎩解得2a c =⎧⎪⎨=⎪⎩222431b a c =-=-=, 故所求椭圆C 的方程为2214y x +=. (2)存在实数k 使得以线段AB 为直径的圆恰好经过坐标原点O .理由如下:设点11(,)A x y ,22(,)B x y , 则⎪⎩⎪⎨⎧=++=14322x y kx y并整理,得22(4)10k x ++-=.(*)则12x x +=,12214x x k =-+. 因为以线段AB 为直径的圆恰好经过坐标原点O ,所以0OA OB ⋅=,即12120x x y y +=.又2121212()3y y k x x x x =++,()()033121212=++++∴x x k x x k 于是2222163044k k k k +--+=++,解得k = 经检验知:此时(*)式的Δ>0,符合题意.所以当2k =±时,以线段AB 为直径的圆恰好经过坐标原点O . 考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系.2.(Ⅰ)2212x y +=;(Ⅱ)以MN 为直径的圆不过A 点. 【解析】试题分析:(Ⅰ)由已知条件设椭圆G 的方程为:()22211y x a a +=,>由c a =可得222,1a b ==由此能求出椭圆的标准方程.(Ⅱ)设11C x y (,),且10x ≠,则11D x y -(,),由已知条件推导出202011x AM AN y -=+-⋅,()220021x y -=,由此能求出以线段MN 为直径的圆不过点A .试题解析:(Ⅰ)设椭圆G 的方程为:()22211y x a a +=,>,所以,1b =,2c a =,222a c =,∴21c =,∴222,1a b ==, ∴椭圆方程为2212x y += (Ⅱ)设00(,)C x y ,则00(,)D x y -,001AC y k x -=,001BD y k x +=-, 000011:1,:1,y y AC y x BD y x x x -+=+=-- 令0y =,则0000,,11M N x x x x y y -==-+ ∴0000(,1),(,1)11x x AM AN y y =-=---+,∴2001(1)(1)xAM ANy y-⋅=+-+=2200211x yy--+-∵2212xy+=∴22012xy-=,∴22212xAM ANx-⋅==-,∴AM与AN不垂直,∴以MN为直径的圆不过A点.考点:椭圆的性质、直线与圆锥曲线的位置关系3.(Ⅰ)221 62x y+=;【解析】试题分析:(Ⅰ)通过分析可知直线l与x轴的交点为(2,0),得2c=,又cea==,得a=2222b a c=-=,可得,22=b即可求得椭圆方程为22162x y+=;(Ⅱ)可设直线AB方程为1y kx=+,设1122(,),(,)A x yB x y,故1112AOB AOD BODS S S OD x x∆∆∆=+=-=,为此可联立221162y kxx y=+⎧⎪⎨+=⎪⎩,整理得22(31)630k x kx++-=,利用韦达定理,求出12122263,3131kx x x xk k-+==++,可得AOBS∆==令21,31tk=+则AOBS∆==1=t,即0k=时,AOBS∆试题解析:(Ⅰ)∵a b>,∴椭圆的焦点为直线l与x轴的交点,∵直线l与x轴的交点为(2,0),∴椭圆的焦点为(2,0),∴2c=, 1分又∵3c e a ==,∴a =2222b a c =-= 3分 ∴椭圆方程为22162x y +=. 4分 (Ⅱ) 直线AB 的斜率显然存在,设直线AB 方程为1y kx =+设1122(,),(,)A x y B x y ,由221162y kx x y =+⎧⎪⎨+=⎪⎩,得22(31)630k x kx ++-=, 显然0∆>,12122263,3131k x x x x k k-+==++ 6分 1212AOB AOD BODS S S OD x x∆∆∆=+=-=分====分令2,31t k =+则(]0,1t∈, AOB S ∆==1t ∴=,即0k =时,AOB S ∆分考点:1、椭圆的标准方程;2、直线与曲线相交问题.4.(Ⅰ)22143x y +=;. 【解析】试题分析:(Ⅰ)由2MNF ∆的周长为8,得4a=8,由12e =得222222314a c e ab a --===,从而可求得b ;(Ⅱ)分情况进行讨论:由题意,当直线AB 的斜率不存在,此时可设0000A x x B x x -(,),(,),再由A 、B 在椭圆上可求0x ,此时易求点O 到直线AB 的距离;当直线AB 的斜率存在时,设直线AB 的方程为y=kx+m ,代入椭圆方程消掉y 得x 的二次方程,知0∆>,由OA ⊥OB ,得12120x x y y +=,即12120x x kx m kx m +++=()(),整理后代入韦达定理即可得m ,k 关系式,由点到直线的距离公式可求得点O 到直线AB 的距离,综合两种情况可得结论,注意检验0∆>.试题解析:(Ⅰ)由题意知,4a=8,所以a=2,因为12e =,所以222222314a c e ab a --===,23b ∴=.所以椭圆C 的方程22143x y +=; (Ⅱ)由题意,当直线AB 的斜率不存在,此时可设0000A x x B x x -(,),(,).又A ,B 两点在椭圆C 上,222000121437x x x ∴+=,=所以点O 到直线AB的距离7d = 当直线AB 的斜率存在时,设直线AB 的方程为y=kx+m .22143x y kx m y ⎧⎪⎨+=⎩+⎪=,消去y 得2223484120k x kmx m +++-=(). 由已知0∆>,设1122A x y B x y (,),(,).212122284343412km m x x x x k k -+-++=,=, ()()221212121212120010OA OB x x y y x x kx m kx m k x x km x x m ⊥∴+=∴+++=∴++++,.()(),=.()22222222284123431071142m k k k m k m m k -∴+++-+∴=+=.(),满足0∆>.所以点O 到直线AB的距离7d =为定值. 考点:椭圆标准方程,直线与圆锥曲线的位置关系5.(1)221205x y +=;(2)(5,3)(3,5)---;(3)详见解析. 【解析】 试题分析:(1,得224a b = ,由经过点(4,1)M ,得221611a b +=,联立求,a b 即可;(2)本题考查直线和椭圆位置关系,要注意判别式的隐含条件,联立椭圆方程和直线方程,利用0∆>和直线不经过点(4,1)M ,得关于m 的不等式,解不等式得m 的取值范围;(3)由数形结合可知,要证明MEF ∆是等腰三角形,只需证明120k k +=,表示两条直线的斜率,利用韦达定理设而不求,可证明120k k +=.试题解析:(1)设椭圆的方程为22221,x y a b+=因为e =,所以224a b =, 又因为椭圆过点(4,1)M ,所以221611a b+=,解得225,20b a ==,故椭圆标准方程为 221205x y += 4分 (2)将y x m =+代入221205x y +=并整理得22584200,x mx m ++-= 令 2(8)m ∆=220(420)0m -->,解得 55m -<<.又由题设知直线不过M (4,1),所以41m +≠,3m ≠-,所以m 的取值范围是(5,3)(3,5)---. 8分(3)设直线,MA MB 的斜率分别为1k 和2k ,要证明MEF ∆是等腰三角形,只要证明120k k +=即可.设11(,)A x y ,22(,)B x y ,由(2)知1285m x x +=-,2124205m x x -=.则1212121144y y k k x x --+=+-- 122112(1)(4)(1)(4)(4)(4)y x y x x x --+--=--.1221(1)(4)(1)(4)y x y x --+-- 1221(1)(4)(1)(4)x m x x m x =+--++--=122x x +12(5)()8(1)m x x m -+--22(420)8(5)8(1)55m m m m --=--- =0, 120k k ∴+=, 所以MEF ∆是等腰三角形. 14分考点:1、椭圆标准方程;2、直线和椭圆位置关系;3、韦达定理.6.(Ⅰ)22143x y +=;(Ⅱ)3([,3). 【解析】试题分析:(Ⅰ)椭圆C 上的点到焦点距离的最大值为3a c +=,且离心率为12,结合222a b c =+,求得,a b 的值,进而求椭圆方程;(Ⅱ)直线和圆锥曲线位置关系问题,往往会将直线方程和圆锥曲线方程联立,根据其位置关系注意判别式符号的隐含条件,同时要善于利用韦达定理对交点设而不求。
椭圆的几何性质及综合问题
椭圆的几何性质一、概念及性质1.椭圆的“范围、对称性、顶点、轴长、焦距、离心率及范围、a ,b ,c 的关系”;2.椭圆的通经:3.椭圆的焦点三角形的概念及面积公式:4.椭圆的焦半径的概念及公式:主要用来求离心率的取值范围,对于此问题也可以用下列性质求解:c a PF c a +≤≤-1.5.直线与椭圆的位置关系:6.椭圆的中点弦问题:【注】:椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下三个命题角度:(1)根据椭圆的性质求参数的值或范围; (2)由性质写椭圆的标准方程; (3)求离心率的值或范围.题型一:根据椭圆的性质求标准方程、参数的值或范围、离心率的值或范围. 【典例1】求适合下列条件的椭圆的标准方程:(1)经过点)2,0(),0,3(--Q P ;(2)长轴长等于20,离心率等于53. 【典例2】求椭圆400251622=+y x 的长轴和短轴长、离心率、焦点坐标和顶点坐标.【典例3】已知A ,P ,Q 为椭圆C :)0(12222>>=+b a b y a x 上三点,若直线PQ 过原点,且直线AP ,AQ 的斜率之积为21-,则椭圆C 的离心率为( )A.22B.21C.42D.41【练习】(1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)(2)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21(3)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.【典例4】已知F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,P 为椭圆上任意一点,且215PF PF =,则该椭圆的离心率的取值范围是练习:如图,把椭圆1162522=+y x 的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分与P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则721PF PF PF +++ =【典例5】若 “过椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点F 1,F 2的两条互相垂直的直线l 1,l 2的交点在椭圆的内部”,求离心率的取值范围.【典例6】已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【方法归纳】:1.在利用椭圆的性质求解椭圆的标准方程时,总体原则是“先定位,再定量”.2.求解与椭圆几何性质有关的问题时,其原则是“数形结合,定义优先,几何性质简化”,一定要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系,充分利用平面几何的性质及有关重要结论来探寻参数a ,b ,c 之间的关系,以减少运算量.3.在求解有关圆锥曲线焦点问题时,结合图形,注意动点到两焦点距离的转化.4. 求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围;有时也可利用正弦、余弦的有界性求解离心率的范围.5.在探寻a ,b ,c 的关系时,若能充分考虑平面几何的性质,则可使问题简化,如典例5. 【本节练习】1.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A .x 216+y 27=1B .x 216+y 27=1或x 27+y 216=1C .x 216+y 225=1D .x 216+y 225=1或x 225+y 216=12.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)3.已知椭圆短轴上的两个顶点分别为B 1,B 2,焦点为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则这个椭圆的离心率e 等于( )A .22B .12C .32D .334.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.5.已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为33,过F 2的直线l 交C 于A,B 两点,若△AF 1B 的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y x C.181222=+y x D.141222=+y x6.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.7.设21,F F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23ax =上一点,12PF F ∆是底角为300的等腰三角形,则E 的离心率为( )A.21B. 32C.43D. 548.过椭圆)0(12222>>=+b a b y a x 的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若02160=∠PF F ,则椭圆的离心率为( )A.25B.33C.21D.319.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,右顶点为A ,上顶点为B ,若BA BF ⊥,则称其为“优美椭圆”,那么“优美椭圆”的离心率为10.已知1F 为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当A F PF 11⊥,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为11.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)12.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 313.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 28+y 24=1D .x 216+y 24=114.如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.15.已知抛物线42x y =与椭圆)0(118222>=+a y ax 在第一象限相交于A 点,F 为抛物线的焦点,AB ⊥y 轴于B 点,当∠BAF =300时,a =16. 设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.17.椭圆x 236+y 29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则EP →·QP →的最小值为( )A .6B .3- 3C .9D .12-6 318.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.19.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是________.20.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( )A .4B .3C .2D .114. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____设F 1(-c , 0), F 2(c , 0)是椭圆12222=+by a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为 (A )316 (B )23 (C )22 (D )32若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是21.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于以椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为( )A .53 B .23 C .22 D .5922. 已知,,A P Q 为椭圆:C 22221(0)x y a b a b+=>>上三点,若直线PQ 过原点,且直线,AP AQ 的斜率之积为12-,则椭圆C 的离心率等于( )A .2B .12C .4D .14题型二:直线与椭圆的位置关系的判定.【典例1】当m 为何值时,直线m x y l +=:与椭圆14416922=+y x 相切、相交、相离?【典例2】已知椭圆192522=+y x ,直线04054:=+-y x l ,椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?反馈:(2012福建)如图,椭圆E :)0(12222>>=+b a by a x 的左右焦点分别为F 1、F 2,离心率21=e ,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :m kx y +=与椭圆E 有且只有一个公共点P ,且与直线x =4交于Q ,试探究:在坐标平面内,是否存在定点M ,使得以PQ 为直径的圆恒过定点M ,若存在,求出点M 的坐标,若不存在,请说明理由.【方法归纳】:直线与椭圆位置关系判断的步骤: ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.注:对比直线与圆的位置关系的判断,它们之间有何联系与区别?题型三:直线与椭圆相交(及中点弦)问题该问题属高考中对圆锥曲线考查的热点和重点问题,其主要方法是数形结合、判别式、根与系数的关系、整体代换.【典例1】已知斜率为1的直线l 过椭圆1422=+y x 的右焦点,交椭圆于A ,B 两点,求弦AB 的长及1ABF ∆的周长、面积.【典例2】已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.【典例3】已知一直线与椭圆369422=+y x 相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.变式:过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为【典例4】(2015新课标文)已知椭圆()2222:10x y C a b a b+=>> 的离心率为,点(在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【典例5】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【典例6】已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :m kx y +=与椭圆C 相交于A ,B 两点(A ,B 均不在左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.【方法归纳】:(1)解决直线与椭圆相交问题的原则有两个:一是数形结合;二是一条主线:“斜率、方程组、判别式、根与系数的关系”.利用根与系数的关系整体代换,以减少运算量.(2)如果题设中没有对直线的斜率的限定,一定要讨论斜率是否存在,以免漏解;这里又有两个问题需要注意:①若已知直线过y 轴上的定点P (0,b ),可将直线设为斜截式,即纵截距式,即y =kx +b ,但要讨论斜率是否存在;②若已知直线过x 轴上的定点P (a ,0),可以直接将直线方程设为横截距式,即x =my +a ,这样可避免讨论斜率是否存在,但此时求弦长时,需将下面弦长公式中的k 用m1替换. (3)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).【本节练习】1.(2014·高考安徽卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.2. (2015·豫西五校联考)已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1、F 2,过F 1的直线l 交椭圆于A 、B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1B . 2C .32 D . 33.(2015·宜昌调研)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△PAB 的面积.5.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.5’.已知椭圆)0(12222>>=+b a by a x 的离心率为23,右焦点到直线06=++y x 的距离为32. (1)求椭圆的方程;(2)过点)1,0(-M 作直线l 交椭圆于A ,B 两点,交x 轴于N 点,满足57-=,求直线l 的方程.6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,且长轴长为12,过点P(4,2)的直线l 与椭圆交于A,B 两点.(1)求椭圆方程;(2)当直线l 的斜率为21时,求AB 的值;(3)当点P 恰好为线段AB 的中点时,求直线l 的方程.7. 平面直角坐标系xoy 中,过椭圆M :)0(12222>>=+b a b y a x 的右焦点F 作直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为21. (Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.8. 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l与E 相交于,A B 两点,且22,,AF AB BF 成等差数列. (1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程.9. 设F 1 ,F 2分别是椭圆C :12222=+by a x (a >b >0)的左,右焦点,M 是C 上一点且MF 2与x轴垂直,直线MF 1与C 的另一个交点为N . (I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .10. 如图,点F 1(-c ,0),F 2(c ,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b>0)的左,右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.11.已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB , (文)求线段AB 长度的最小值.(理)试判断直线AB 与圆222=+y x 的位置关系.圆锥曲线在高考中的考查主要体现“一条主线,五种题型”,所谓一条主线:是指直线与圆锥曲线的综合.五种题型是指“最值问题;定点问题;定值问题;参数的取值范围问题;存在性问题”. 一、 最值问题 【规律方法】:(1)最值问题有两大类:距离、面积的最值以及与之有关的一些问题;求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见方法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解题;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法;若是分式函数则可先分离常数,再求最值;若是二次函数,可用配方法;若是更复杂的函数,还可用导数法. (3)圆锥曲线的综合问题要四重视: ①重视定义在解题中的作用;②重视平面几何知识在解题中的作用;③重视根与系数的关系在解题中的作用;④重视曲线的几何特征与方程的代数特征在解题中的作用.如定值中2014江西文科考题,范围中的题6、7.1.已知椭圆C :1222=+y ax (a >0)的焦点在x 轴上,右顶点与上顶点分别为A 、B .顶点在原点,分别以A 、B 为焦点的抛物线C 1、C 2交于点P (不同于O 点),且以BP 为直径的圆经过点A .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若与OP 垂直的动直线l 交椭圆C 于M 、N 不同两点,求△OMN 面积的最大值和此时直线l 的方程.2.已知椭圆C :)0(12222>>=+b a by a x 的上顶点为(0,1),且离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)证明:过椭圆)0(12222>>=+n m ny m x 上一点),(00y x Q 的切线方程为12020=+nyy m x x ; (Ⅲ)从圆1622=+y x 上一点P 向椭圆C 引两条切线,切点分别为A 、B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.3.已知动点P 到定点F (1,0)和到定直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :n mx y +=与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合). (Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆122=+y x 相切时,四边形ACBD 的面积是否有最大值.若有,求出其最大值及相应的直线l 的方程;若没有,请说明理由.4. 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>F 是椭圆的右焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.5.平面直角坐标系xOy 中,已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,且点)21,3(在椭圆C 上,(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆144:2222=+by a x E ,P 为椭圆C 上任意一点,过点P 的直线m kx y +=交椭圆E 于B A ,两点,射线PO 交椭圆E 于点Q .(ⅰ)求OPOQ 的值;(ⅱ)求ABQ ∆面积的最大值。
2025年新高考数学题型解密:椭圆 解析版
椭圆命题解读考向考查统计1.高考对椭圆的考查,重点是(1)椭圆的定义、几何图形、标准方程。
(2)椭圆的简单几何性质(范围、对称性、顶点、离心率)。
(3)直线和椭圆的位置关系及综合应用。
椭圆的定义和弦长2022·新高考Ⅰ卷,16椭圆的离心率2023·新高考Ⅰ卷,5直线与椭圆的应用2022·新高考Ⅱ卷,162023·新高考Ⅱ卷,5椭圆的轨迹方程2024·新高考Ⅱ卷,5命题分析2024年高考新高考Ⅰ卷椭圆的考查体现在大题中,后续专题会解读。
Ⅱ卷考查了椭圆的轨迹方程求法,难度较易。
椭圆是圆雉曲线的重要内容,高考主要考查椭圆定义的运用、椭圆方程的求法以及椭圆的简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现。
预计2025年高考还是主要考查椭圆的定义和离心率。
试题精讲一、单选题1(2024新高考Ⅱ卷·5)已知曲线C:x2+y2=16(y>0),从C上任意一点P向x轴作垂线段PP ,P 为垂足,则线段PP 的中点M的轨迹方程为()A.x216+y24=1(y>0) B.x216+y28=1(y>0) C.y216+x24=1(y>0) D.y216+x28=1(y>0)【答案】A【分析】设点M(x,y),由题意,根据中点的坐标表示可得P(x,2y),代入圆的方程即可求解.【详解】设点M(x,y),则P(x,y0),P (x,0),因为M为PP 的中点,所以y0=2y,即P(x,2y),又P在圆x2+y2=16(y>0)上,所以x2+4y2=16(y>0),即x216+y24=1(y>0),即点M的轨迹方程为x216+y24=1(y>0).故选:A一、单选题1(2023新高考Ⅰ卷·5)设椭圆C 1:x 2a2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A.233B.2C.3D.6【答案】A【分析】根据给定的椭圆方程,结合离心率的意义列式计算作答.【详解】由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a2,而a >1,所以a =233.故选:A2(2023新高考Ⅱ卷·5)已知椭圆C :x 23+y 2=1的左、右焦点分别为F 1,F 2,直线y =x +m 与C 交于A ,B 两点,若△F 1AB 面积是△F 2AB 面积的2倍,则m =( ).A.23B.23C.-23D.-23【答案】C【分析】首先联立直线方程与椭圆方程,利用Δ>0,求出m 范围,再根据三角形面积比得到关于m 的方程,解出即可.【详解】将直线y =x +m 与椭圆联立y =x +mx 23+y 2=1,消去y 可得4x 2+6mx +3m 2-3=0,因为直线与椭圆相交于A ,B 点,则Δ=36m 2-4×43m 2-3 >0,解得-2<m <2,设F 1到AB 的距离d 1,F 2到AB 距离d 2,易知F 1-2,0 ,F 22,0 ,则d 1=|-2+m |2,d 2=|2+m |2,S △F 1AB S △F 2AB =|-2+m |2|2+m |2=|-2+m ||2+m |=2,解得m =-23或-32(舍去),故选:C .二、填空题3(2022新高考Ⅰ卷·16)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE 的周长是.【答案】13【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c2=1,即3x 2+4y 2-12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =3y -c ,代入椭圆方程3x 2+4y 2-12c 2=0,整理化简得到:13y 2-63cy -9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13.【详解】∵椭圆的离心率为e =c a =12,∴a =2c ,∴b 2=a 2-c 2=3c 2,∴椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2-12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,OF 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为33,斜率倒数为3,直线DE 的方程:x =3y -c ,代入椭圆方程3x 2+4y 2-12c 2=0,整理化简得到:13y 2-63cy -9c 2=0,判别式Δ=63c 2+4×13×9c 2=62×16×c 2,∴DE =1+3 2y 1-y 2 =2×Δ13=2×6×4×c13=6,∴c =138,得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为DF 2 +EF 2+DE = DF 2+ EF 2+ DF 1+ EF 1= DF 1+ DF 2+ EF 1+ EF 2 =2a +2a =4a =13.故答案为:13.4(2022新高考Ⅱ卷·16)已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且|MA |=|NB |,|MN |=23,则l 的方程为.【答案】x +2y -22=0【分析】令AB 的中点为E ,设A x 1,y 1 ,B x 2,y 2 ,利用点差法得到k OE ⋅k AB =-12,设直线AB :y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;【详解】[方法一]:弦中点问题:点差法令AB 的中点为E ,设A x 1,y 1 ,B x 2,y 2 ,利用点差法得到k OE ⋅k AB =-12,设直线AB :y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;解:令AB 的中点为E ,因为MA =NB ,所以ME =NE ,设A x 1,y 1 ,B x 2,y 2 ,则x 126+y 123=1,x 226+y 223=1,所以x 126-x 226+y 123-y 223=0,即x 1-x 2 x 1+x 2 6+y 1+y 2 y 1-y 23=0所以y 1+y 2 y 1-y 2 x 1-x 2 x 1+x 2=-12,即k OE ⋅k AB =-12,设直线AB :y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =-m k ,即M -mk,0 ,N 0,m ,所以E -m 2k ,m2 ,即k ×m 2-m 2k=-12,解得k =-22或k =22(舍去),又MN =23,即MN =m 2+2m 2=23,解得m =2或m =-2(舍去),所以直线AB :y =-22x +2,即x +2y -22=0;故答案为:x +2y -22=0[方法二]:直线与圆锥曲线相交的常规方法解:由题意知,点E 既为线段AB 的中点又是线段MN 的中点,设A x 1,y 1 ,B x 2,y 2 ,设直线AB :y =kx +m ,k <0,m >0,则M -m k ,0 ,N 0,m ,E -m 2k ,m2,因为MN =23,所以OE =3联立直线AB与椭圆方程得y=kx+mx26+y23=1消掉y得(1+2k2)x2+4mkx+2m2-6=0其中Δ=(4mk)2-4(1+2k2)(2m2-6)>0,x1+x2=-4mk1+2k2,∴AB中点E的横坐标x E=-2mk1+2k2,又E-m2k,m2,∴x E=-2mk1+2k2=-m2k∵k<0,m>0,∴k=-22,又OE=-m2k2+m2 2=3,解得m=2所以直线AB:y=-22x+2,即x+2y-22=0一、椭圆的定义平面内与两个定点F1,F2的距离之和等于常数2a(2a>|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距,记作2c,定义用集合语言表示为:P||PF1|+|PF2|=2a(2a>|F1F2|=2c>0)注意:当2a=2c时,点的轨迹是线段;当2a<2c时,点的轨迹不存在.二、椭圆的方程、图形与性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1a>b>0y2a2+x2b2=1a>b>0统一方程mx2+ny2=1(m>0,n>0,m≠n)参数方程x=a cosθy=b sinθ,θ为参数(θ∈[0,2π])x=a cosθy=b sinθ,θ为参数(θ∈[0,2π])第一定义到两定点F1 、 F2的距离之和等于常数2a,即|MF1|+|MF2|=2a(2a>|F1F2|)范围-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a顶点Α1-a,0、Α2a,0Β10,-b、Β20,bΑ10,-a、Α20,aΒ1-b,0、Β2b,0轴长长轴长=2a,短轴长=2b长轴长=2a,短轴长=2b对称性关于x轴、y轴对称,关于原点中心对称焦点F1-c,0、F2c,0F10,-c、F20,c焦距F1F2=2c(c2=a2-b2)离心率e=ca=c2a2=a2-b2a2=1-b2a2(0<e<1)准线方程x=±a2 c点和椭圆的关系x20a2+y20b2>1=1<1⇔点(x0,y0)在椭圆外上内y20a2+x20b2>1=1<1⇔点(x0,y0)在椭圆外上内切线方程x0xa2+y0yb2=1((x0,y0)为切点)y0ya2+x0xb2=1((x0,y0)为切点)对于过椭圆上一点(x0,y0)的切线方程,只需将椭圆方程中x2换为x0x,y2换为y0y可得切点弦所在的直线方程x0xa2+y0yb2=1(点(x0,y0)在椭圆外)y0ya2+x0xb2=1(点(x0,y0)在椭圆外)焦点三角形面积①cosθ=2b2r1r2-1,θmax=∠F1BF2,(B为短轴的端点)②SΔPF1F2=12r1r2sinθ=b2tanθ2=c|y0|,焦点在x轴上c|x0|,焦点在y轴上(θ=∠F1PF2)③当P点在长轴端点时,(r1r2)min=b2当P点在短轴端点时,(r1r2)max=a2焦点三角形中一般要用到的关系是|MF1|+|MF2|=2a(2a>2c)SΔPF1F2=12|PF1||PF2|sin∠F1PF2|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2焦半径左焦半径:MF1=a+ex0又焦半径:MF1=a-ex0上焦半径:MF1=a-ey0下焦半径:MF1=a+ey0焦半径最大值a+c,最小值a-c通径过焦点且垂直于长轴的弦叫通径:通径长=2b2a(最短的过焦点的弦)弦长公式设直线与椭圆的两个交点为A(x1,y1),B(x2,y2),k AB=k,则弦长AB =1+k 2x 1-x 2 =1+k 2(x 1+x 2)2-4x 1x 2=1+1k2(y 1+y 2)2-4y 1y 2=1+k 2Δ|a |(其中a 是消y 后关于x 的一元二次方程的x 2的系数,Δ是判别式)【椭圆常用结论】1、过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为2b 2a.①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a +c ,距离的最小值为a -c .2、椭圆的切线①椭圆x 2a 2+y 2b 2=1 (a >b >0)上一点P (x 0 , y 0)处的切线方程是x 0x a 2+y 0y b2=1;②过椭圆x 2a 2+y 2b 2=1 (a >b >0)外一点P (x 0 , y 0),所引两条切线的切点弦方程是x 0x a 2+y 0y b 2=1;③椭圆x 2a 2+y 2b2=1 (a >b >0)与直线Ax +By +C =0相切的条件是A 2a 2+B 2b 2=c 2.一、单选题1(2024·湖北荆州·三模)已知椭圆C :x 28+y 2k =1的一个焦点为0,2 ,则k 的值为()A.4B.8C.10D.12【答案】D【分析】利用椭圆的标准方程与焦点位置即可得解.【详解】由题意得,c 2=4,a 2=k ,b 2=8,所以k =4+8=12.故选:D .2(2024·山东烟台·三模)若椭圆x 24+y 23=1与椭圆x 2+y 2b2=1(b >1)的离心率相同,则实数b 的值为()A.233B.43C.52D.54【答案】A【分析】由离心率相等列出关于b 的方程求解即可.【详解】若椭圆x 24+y 23=1与椭圆x 2+y 2b 2=1(b >1)的离心率相同,则4-34=b 2-1b 2,解得b =233>1满足题意.故选:A .3(2024·江西九江·三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 1且倾斜角为π6的直线交C 于第一象限内一点A .若线段AF 1的中点在y 轴上,△AF 1F 2的面积为23,则C 的方程为()A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 23=1D.x 29+y 26=1【答案】D【分析】根据题意得到Rt △AF 1F 2,∠AF 1F 2=π6, ,设AF 2 =t ,其它边全部用t 表示,运用面积为23构造方程求出t .再用椭圆定义求出a ,进而求出c ,b 即可.【详解】如图,∵O 为线段F 1F 2的中点,B 为线段AF 1的中点,∴OB ∥AF 2,又OB ⊥x 轴,∴AF 2⊥x 轴.在Rt △AF 1F 2中,∠AF 1F 2=π6,设AF 2 =t ,则AF 1 =2t ,F 1F 2 =3t .∵△AF 1F 2的面积为23,∴12×3t ×t =23,t =2.∴2a =AF 1 +AF 2 =3t =6,a =3,2c =F 1F 2 =3t =23,c =3,b 2=a 2-c 2=6,则C 的方程为x 29+y 26=1.故选:D .4(2024·河南·三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴长为23,点M 在椭圆上,若|MF |的最大值是最小值的3倍,则椭圆的焦距为()A.3 B.4 C.1 D.2【答案】D【分析】利用椭圆的几何性质得到关于a ,c 的方程组,解之即可得解.【详解】依题意,椭圆短轴长为23,得b =3,则a 2-c 2=b 2=3,又|MF |的最大值是最小值的3倍,即a +c =3(a -c ),所以a =2c ,所以a =2,c =1,则其焦距为2c =2.故选:D5(2024·浙江绍兴·三模)已知直线y =kx k ≠0 与椭圆C :x 2a 2+y 2b2=1a >b >0 交于A ,B 两点,以线段AB 为直径的圆过椭圆的左焦点F 1,若F 1A =2F 1B ,则椭圆C 的离心率是()A.52B.54C.53D.59【答案】C【分析】由题意可得四边形AF 1BF 2为矩形,结合椭圆定义与勾股定理可将F 1A +F 1B 分别用a 和c 表示,即可得离心率.【详解】取右焦点F 2,连接AF 2、BF 2,由F 1在以线段AB 为直径的圆上,故AF 1⊥BF 1,结合对称性可知四边形AF 1BF 2为矩形,有AF 2 =BF 1 ,有OA =OB =OF 1=c ,又F 1A =2F 1B ,由F 1A 2+F 1B 2=2c 2,则F 1A =455c ,F 1B =255c ,由椭圆定义可得F 1A +AF 2 =2a ,故F 1A +F 1B =455c +255c =655c =2a ,则e =c a =2655=53.故选:C .6(2024·江西鹰潭·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,倾斜角为45°且过原点的直线l 交椭圆于M ,N 两点.若MN =F 1F 2 ,设椭圆的离心率为e ,则e 2=()A.2-1B.2-2C.3-1D.3-3【答案】B【分析】根据题意MN =F 1F 2 =2c ,得到四边形NF 1MF 2为矩形,由直线l 过原点且倾斜角为45°,在△MOF 2和△MOF 1中,利用余弦定理计算得MF 1 ,MF 2 ,结合椭圆的定义2a =MF 1 +MF 2 ,求得离心率,进而计算出e 2.【详解】如图所示,因为MN =F 1F 2 =2c ,且O 分别为MN 和F 1F 2的中点,OM =OF 2 =ON =OF 1 =c ,所以四边形NF 1MF 2为矩形,又直线l 过原点且倾斜角为45°,即∠MOF 2=45°,∠MOF 1=135°,且△MOF 2为等腰三角形,所以,在△MOF 2中,根据余弦定理可得MF 2 2=c 2+c 2-2×c ×c ×cos45°=(2-2)c 2,即MF 2 =2-2c ,同时,在△MOF 1中,根据余弦定理可得MF 1 2=c 2+c 2-2×c ×c ×cos135°=(2+2)c 2,即MF 1 =2+2c ,所以2a =MF 1 +MF 2 =2-2c +2+2c ,可得e =ca=22-2+2+2,e 2=22-2+2+22=42-2+22+2+2=22+2=2- 2.故选:B .7(2024·天津河西·三模)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,若椭圆的离心率为e 1,双曲线的离心率为e 2,则e 21+e 22的最小值为()A.3+3 B.5+32C.2+32D.4【答案】C【分析】设椭圆和双曲线的方程分别为:x 2a 21+y 2b 21=1,x 2a 22-y 2b 22=1,易得a 21-b 21=a 22+b 22=c 2,设PF 1 =m ,PF 2 =n ,利用椭圆和双曲线的定义得到m =a 1-a 2,n =a 1+a 2,然后在△PF 1F 2中,利用余弦定理得到1e 21+3e 22=4,然后利用基本不等式求解.【详解】解:如图所示:设椭圆和双曲线的方程分别为:x 2a 21+y 2b 21=1,x 2a 22-y 2b 22=1,由题意得a 21-b 21=a 22+b 22=c 2,设PF 1 =m ,PF 2 =n ,则m +n =2a 1,n -m =2a 2,解得m =a 1-a 2,n =a 1+a 2,在△PF 1F 2中,由余弦定理得:F 1F 2 2=PF 1 2+PF 2 2-2PF 1 ⋅PF 2 ⋅cos ∠F 1PF 2,即2c 2=a 1-a 2 2+a 1+a 2 2-a 1-a 2 a 1+a 2 ,化简得4c 2=a 21+3a 22,则1e 21+3e 22=4,所以e 21+e 22=14e 21+e 22 1e 21+3e 22=14e 22e 21+3e 21e 22+4,≥142e 22e 21⋅3e 21e 22+4=2+32,当且仅当e 22e 21=3e 21e 22,即e 22=3e 21时,等号成立;故选:C8(2024·四川·三模)已知椭圆C :x 24+y 2b2=1(b >0) 的左、右焦点分别为F 1,F 2,点P 是椭圆上一点,若△PF 1F 2的内心为M ,连接PM 并延长交x 轴于点Q ,且PM =3QM ,则椭圆的短轴长为()A.2 B.22C.23D.463【答案】D【分析】合理构建图形,利用角平分线定理和等比定理得到PF 2QF 2=2a2c ,再求短轴长度即可.【详解】如图,连接MF 1,MF 2,在△PF 1Q 和△PF 2Q 中,利用角平分线定理可得PMQM =PF 1QF 1=PF 2QF 2=3,由等比定理可得PF 2QF 2=PF 1+PF 2QF 1+QF 2=2a 2c ,从而c =233,b =263.故椭圆的短轴长为2b =463,故B 正确.故选:B【点睛】关键点点睛:本题考查解析几何,解题关键是合理构建图形,然后利用角平分线定理和等比定理得到PF 2QF 2=2a2c ,再求解短轴长度即可.9(2024·广东汕头·三模)已知椭圆C :x 216+y 212=1的两个焦点分别为F 1,F 2,P 是C 上任意一点,则下列不正确的是()A.C 的离心率为12B.PF 1 的最小值为2C.PF 1 ⋅PF 2 的最大值为16D.可能存在点P ,使得∠F 1PF 2=65°【答案】D【分析】求出椭圆C 的长短半轴长及半焦距,再结合椭圆的性质逐项分析计算即可.【详解】椭圆C :x 216+y 212=1的长半轴长a =4,短半轴长b =23,半焦距c =a 2-b 2=2,对于A ,C 的离心率e =c a =12,A 正确;对于B ,由PF 1+ PF 2 =2aPF 1- PF 2 ≤2c,得a -c ≤|PF 1|≤a +c ,因此|PF 1|min =a -c =2,B 正确;对于C ,|PF 1|⋅|PF 2|≤|PF 1|+|PF 2|22=a 2=16,当且仅当|PF 1|=|PF 2|=4时取等号,C 正确;对于D ,当P 不在x 轴上时,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(2a )2-(2c )22|PF 1||PF 2|-1,=24|PF 1||PF 2|-1≥2416-1=12,当且仅当|PF 1|=|PF 2|=4取等号,当P 在x 轴上时,cos ∠F 1PF 2=1,上述不等式成立,因此∠F 1PF 2最大为60°,D 错误.故选:D10(2024·河北衡水·模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2向圆x 2+y 2=14b 2引切线交椭圆于点P ,O 为坐标原点,若OP =OF 2 ,则椭圆的离心率为()A.12B.32C.53D.23【答案】C【分析】先画出图形,由OP =OF 2 =OF 1 得PF 1⊥PF 2,进而得OM ⎳PF 1,PF 1 =2OM =b ,然后由椭圆的定义可得PF 2 =2a -b ,由勾股定理b a =23,从而即可得到离心率.【详解】由题意画出图形,如下图:设切点为M ,连接PF 1,由已知OP =OF 2 =OF 1 ,∴PF 1⊥PF 2,∵OM ⊥PF 2,∴OM ⎳PF 1,又O 是F 1F 2的中点,圆x 2+y 2=14b 2的半径为12b ,PF 1 =2OM =b ,PF 2 =2a -b ,∴b 2+2a -b 2=4c 2=4a 2-b 2 ,即2a =3b ,得b a =23,e =c a=a 2-b 2a 2=1-b a 2=53.故选:C .11(2024·浙江·三模)已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 2的直线l 与椭圆Γ相交于A 、B 两点,与y 轴相交于点C .连接F 1C ,F 1A .若O 为坐标原点,F 1C ⊥F 1A ,,则椭圆Γ的离心率为()A.105B.55C.1010D.510【答案】A【分析】由三角形面积关系得出F 2C =4t =F 1C ,再由勾股定理及椭圆定义求出t ,利用余弦定理及cos ∠AF 2F 1+cos ∠CF 2O =0求解即可.【详解】设F2A =t ,由可得,由于△F 1CF 2与△AF 1F 2等高,所以F 2C =4t =F 1C ,又F1C⊥F1A,AC=5t,∴F1A=3t,又AF1+AF2=2a=4t,∴t=a 2,在中,cos∠CF2O=c2a,∵cos∠AF2F1+cos∠CF2O=0,∴cos∠AF2F1=-c2a在中,cos∠AF2F1=AF22+F1F22-AF122F2A⋅F1F2=2c2-a2ac=-c2a,化简可得2a2=5c2,解得e=c2a2=105,故选:A.【点睛】关键点点睛:本题关键点之一根据三角形面积关系得出F2C=F1C=4t,其次需要根据cos∠AF2F1 +cos∠CF2O=0建立a,c关系.二、多选题12(2024·河南开封·三模)椭圆C:x2m2+1+y2m2=1m>0的焦点为F1,F2,上顶点为A,直线AF1与C的另一个交点为B,若∠F1AF2=π3,则()A.C的焦距为2B.C的短轴长为23C.C的离心率为32D.△ABF2的周长为8【答案】ABD【分析】根据∠F1AF2=π3以及椭圆的对称性可得b2a2=322=m2m2+1,进而可求解a=2,b=3,c=1,即可根据选项逐一求解.【详解】由于∠F1AF2=π3,所以∠F1AO=∠OAF2=π6,故cos∠F1AO=cos π6=AOAF1=bc2+b2=ba=32,因此b2a2=322=m2m2+1,故m2=3,所以椭圆C :x 24+y 23=1,a =2,b =3,c =1对于A ,焦距为2c =2,故A 正确,对于B ,短轴长为2b =23,B 正确,对于C ,离心率为e =c a =12,C 错误,对于D ,△ABF 2的周长为4a =8,D 正确,故选:ABD13(2024·全国·模拟预测)已知长轴长、短轴长和焦距分别为2a 、2b 和2c 的椭圆Ω,点A 是椭圆Ω与其长轴的一个交点,点B 是椭圆Ω与其短轴的一个交点,点F 1和F 2为其焦点,AB ⊥BF 1.点P 在椭圆Ω上,若∠F 2PF 1=π3,则()A.a ,b ,c 成等差数列B.a ,b ,c 成等比数列C.椭圆Ω的离心率e =5+1D.△ABF 1的面积不小于△PF 1F 2的面积【答案】BD【分析】AB 选项,根据垂直关系得到k BF 1k AB =-1,求出b 2=ac ,得到A 错误,B 正确;C 选项,根据b 2=ac 得到c 2+ac -a 2=0,进而求出离心率;D 选项,计算出△ABF 1和△PF 1F 2的面积,作差法结合基本不等式求出答案.【详解】AB 选项,椭圆方程为x 2a 2+y 2b 2=1,不妨设A a ,0 ,B 0,b ,故F 1-c ,0 ,因为AB ⊥BF 1,且直线AB ,BF 1的斜率存在,所以k BF 1k AB =-1,即b c ⋅-ba=-1,故b 2=ac ,a ,b ,c 成等比数列,A 错误,B 正确;C 选项,因为b 2=a 2-c 2,b 2=ac ,所以c 2+ac -a 2=0,方程两边同除以a 2得,e 2+e -1=0,解得e =-1±52,负值舍去,故离心率为e =5-12,C 错误;D 选项,由椭圆定义得PF 1 +PF 2 =2a ,F 1F 2 =2c ,因为 F 2PF 1=π3,所以PF 1 2+PF 2 2-PF 1 PF 2 =4c 2,PF 1 +PF 2 =2a 两边平方得PF 12+PF 2 2+2PF 1 ⋅PF 2 =4a 2,故3PF 1 ⋅PF 2 =4b 2,S △PF 1F 2=12PF 1 ⋅PF 2 ⋅32=3b 23,S △ABF 1=12AF 1 ⋅OB =12a +c ⋅b =ab +bc2,又b 2=ac ,且a >c ,由基本不等式得ab +bc 2-b 2=b 2a +c -2b =b2a +c -2ac >0,所以S △ABF 1=ab +bc2>b 2> S △PF 1F 2即△ABF 1的面积不小于△PF 1F 2的面积,D 正确.故选:BD14(2024·河南·三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点P (2,1),且离心率为22.记C 在P 处的切线为l ,平行于OP 的直线l 与C 交于A ,B 两点,则()A.C 的方程x 24+y 22=1B.直线OP 与l 的斜率之积为-1C.直线OP ,l 与坐标轴围成的三角形是等腰三角形D.直线P A ,PB 与坐标轴围成的三角形是等腰三角形【答案】ACD【分析】根据题干列出方程组,解方程组可判断A ;根据直线与椭圆相切的可求出直线l 的方程即可判断B ,C ;通过计算k P A +k PB =0可判断D .【详解】c a =222a 2+1b 2=1ab 2=b 2+c 2 , ∴a =2b =2c =2∴ 椭圆方程为:x 24+y 22=1,故A 正确;如图,因为点P 在第一象限,取椭圆方程的右半部分得:y =2-x 22,则y=122-x 22 -12·2-x 22=-x8-2x 2,所以k PM =yx =2 =-22,所以k OP ⋅k PM =-b 2a2=-12,故B 错误;k PM +k OP =0,则△POM 为等腰三角形,故C 正确;AB :y =22x +m ,y =22x +m x 24+y 22=1,消y 可得x 2+2mx +m 2-2=0,x 1+x 2=-2m , x 1x 2=m 2-2, k P A +k PB =y 1-1x 1-2+y 2-1x 2-2=22x 1+m -1x 1-2+22x 2+m -1x 2-2=2x 1x 2+(m -2)x 1+x 2 -22m +22x 1-2 x 2-2=0P A ,PB 与坐标轴围成的三角形是等腰三角形,故D 正确.故选:ACD15(2024·全国·二模)已知圆O :x 2+y 2=3经过椭圆C :y 2a 2+x 2b2=1(a >b >0)的两个焦点F 1,F 2,且P 为圆O 与椭圆C 在第一象限内的公共点,且△PF 1F 2的面积为1,则下列结论正确的是()A.椭圆C 的长轴长为2B.椭圆C 的短轴长为2C.椭圆C 的离心率为12 D.点P 的坐标为33,263【答案】BD【分析】根据圆的方程确定c 的值,再由△PF 1F 2的面积可得点P 的坐标,从而可得a ,b 的值,再逐项判断即可得答案.【详解】因为圆O :x 2+y 2=3经过椭圆C :y 2a 2+x 2b2=1(a >b >0)的两个焦点F 1,F 2,所以c =3,又P 为圆O 与椭圆C 在第一象限内的公共点,则S △PF 1F 2=12F 1F 2 ⋅x P =12×23⋅x P =1,故x P =33,代入圆方程可得x 2P +y 2P =3,所以y P =263,故点P 的坐标为33,263,故D 正确;将点P 的坐标33,263代入椭圆方程可得83a 2+13b2=1,又a 2=b 2+c 2=b 2+3,解得a =2,b =1,故椭圆C 的长轴长为4,短轴长为2,故A 不正确,B 正确;则椭圆C 的离心率为e =c a =32,故C 不正确.故选:BD .16(2024·江西南昌·三模)将椭圆C 1:x 2a 2+y 2b2=1(a >b >0)上所有的点绕原点旋转θ0<θ<π2 角,得到椭圆C 2的方程:x 2+y 2-xy =6,则下列说法中正确的是()A.a =23B.椭圆C 2的离心率为33C.(2,2)是椭圆C 2的一个焦点D.θ=π4【答案】ACD【分析】根据题意,由椭圆的对称性,求解顶点坐标,从而可得a ,b ,c ,再由椭圆的性质对选项逐一判断,即可得到结果.【详解】椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)上所有的点绕原点旋转θ0<θ<π2 角,得到椭圆C 2的方程:x 2+y 2-xy =6,设点P x ,y 在该椭圆上,则其关于y =x 的对称点P y ,x 代入椭圆方程有y 2+x 2-yx =6,即x 2+y 2-xy =6,则该对称点位于椭圆方程上,同理其关于y =-x 的对称点P -y ,-x 代入椭圆方程有-y2+-x 2--y -x =6,即x 2+y 2-xy =6,则该对称点位于椭圆方程上,则x 2+y 2-xy =6关于y =±x 对称,所以θ=π4,故D 正确;将y =x 代入x 2+y 2-xy =6可得x 2=6,可得椭圆长轴的顶点为6,6 ,-6,-6 ,所以a =6+6=23,故A 正确;将y =-x 代入x 2+y 2-xy =6可得x 2=2,可得椭圆长轴的顶点为2,2 ,-2,-2 ,所以b =2+2=2,则c =12-4=22,则e =c a =2223=63,故B 错误;所以焦点坐标为2,2 或-2,-2 ,所以C 正确;故选:ACD【点睛】关键点点睛:本题的关键通过证明该非标准椭圆的对称性,从而得到θ的值,再按照普通椭圆a ,b ,c 的定义计算即可,也可将该过程想象成坐标系的旋转.17(2024·江西宜春·三模)设椭圆C :x 28+y 24=1的左、右焦点分别为F 1,F 2,坐标原点为O .若椭圆C 上存在一点P ,使得|OP |=7,则下列说法正确的有()A.cos ∠F 1PF 2=35B.PF 1 ⋅PF 2 =5C.△F 1PF 2的面积为2D.△F 1PF 2的内切圆半径为2-1【答案】ACD【分析】根据已知求出P 点坐标,根据两点间距离公式分布求出PF 1 ,PF 2 ,在△F 1PF 2中利用余弦定理可判定A ,利用向量数量积公式可判定B ,三角形面积公式可判定C ,根据等面积法可判定D .【详解】法1:由题意得a =22,|F 1F 2|=2c =28-4=4,则F 1(-2,0),F 2(2,0).由对称性可设P (x 0,y 0)(x 0>0,y 0>0),|PF 1|=m ,|PF 2|=n ,∠F 1PF 2=θ,由x 208+y 204=1x 20+y 20=7,解得x 0=6y 0=1,又F 1(-2,0),F 2(2,0),所以m =(6+2)2+12=11+46,n =(6-2)2+12=11-46,所以mn =11+46⋅11-46=112-(46)2=5.由椭圆的定义得m +n =2a =42,在△F 1PF 2中,由余弦定理,得|F 1F 2|2=m 2+n 2-2mn cos θ,即42=(m +n )2-2mn -2mn cos θ=(42)2-2×5-2×5cos θ,解得cos θ=35,故A 正确;PF 1 ⋅PF 2 =mn cos θ=5×35=3,故B 错误;△F 1PF 2的面积为S △F 1PF 2=12mn sin θ=12×5×1-352=2,故C 正确;设△F 1PF 2的内切圆半径为r ,由△F 1PF 2的面积相等,得S △F 1PF 2=12(m +n +|F 1F 2|)r ,即2=12(42+4)r ,解得r =2-1,故D 正确.故选:ACD .法2:设|PF 1|=m ,|PF 2|=n ,∠F 1PF 2=θ.易知a =22,c =8-4=2,由极化恒等式,得PF 1 ⋅PF 2=|OP |2-|OF 1|2=7-4=3,故B 错误;由中线长定理得m 2+n 2=2(|OP |2+|OF 1|2)=22,由椭圆定义得m +n =2a =42,所以(m +n )2=m 2+n 2+2mn =22+2mn =32,所以mn =5,所以cos θ=PF 1 ⋅PF 2 mn =35,故A 正确;由cos θ=35,得sin θ=1-cos 2θ=45,所以S △F 1PF 2=12mn sin θ=12×5×45=2,故C 正确;设△F 1PF 2的内切圆半径为r ,由△F 1PF 2的面积相等,得S △F 1PF 2=12(m +n +|F 1F 2|)r ,即2=12(42+4)r ,解得r =2-1,故D 正确.故选:ACD .三、填空题18(2024·上海·三模)已知椭圆C 的焦点F 1、F 2都在x 轴上,P 为椭圆C 上一点,△PF 1F 2的周长为6,且PF 1 ,F 1F 2 ,PF 2 成等差数列,则椭圆C 的标准方程为.【答案】x 24+y 23=1【分析】根据给定条件,结合等差中项的意义及椭圆的定义列式求出a ,c 即可得解.【详解】令椭圆长半轴长为a ,半焦距为c ,依题意,PF 1+ PF 2+ F 1F 2 =6PF 1+ PF 2=2 F 1F 2,即2a +2c =62a =4c,解得a =2,c =1,则椭圆短半轴长b =a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.故答案为:x 24+y 23=119(2024·四川攀枝花·三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,点M ,N 在C 上,且F 1F 2 =3MN ,F 1M ⊥F 2N ,则椭圆C 的离心率为.【答案】5-2/-2+5【分析】延长F 1M ,F 2N 交于点B ,由题意可求出M -c 3,2c 3,因为点M 在C 上,代入椭圆的方程,化简即可得出答案.【详解】延长F 1M ,F 2N 交于点B ,因为F 1F 2 =3MN ,所以NM =2c3,所以点B 在y 轴上,因为F 1M ⊥F 2N,所以△BF 1F 2为等腰直角三角形,所以∠MF 1P =π4,过点M 作MP ⊥F 1F 2交F 1F 2于点P ,所以MP =F 1P =2c 3,所以M -c 3,2c 3,因为点M 在C 上,所以c 29a 2+4c 29b 2=1,即c 2a 2+4c 2a 2-c 2=9,则c 2a 2-c 2 +4a 2c 2=9a 2a 2-c 2 ,即14a 2c 2-c 4-9a 4=0,即e 4-14e 2+9=0,所以e 2=14±4102=7±210,因为0<e <1,所以e 2=7-210,所以e =5- 2.故答案为:5- 2.20(2024·山西·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,若C 上存在一点P ,使线段PF 1的中垂线过点F 2,则C 的离心率的最小值是.【答案】13【分析】由题意可知:PF 2 =F 1F 2 =2c ,可得a -c ≤2c ≤a +c ,运算求解即可.【详解】设椭圆C 的半焦距为c ∈0,a ,由题意可知:PF 2 =F 1F 2 =2c ,根据存在性结合椭圆性质可知:a -c ≤2c ≤a +c ,解得13a ≤c <a ,可得C 的离心率e =c a ∈13,1 ,所以C 的离心率的最小值是13.故答案为:13.21(2024·陕西咸阳·三模)已知椭圆C :x 25+y 24=1的左、右焦点分别为F 1、F 2,M 为椭圆C 上任意一点,P 为曲线E :x 2+y 2-6x -4y +12=0上任意一点,则MP +MF 2 的最小值为.【答案】22-1【分析】求出点F 2的坐标,求出圆E 的圆心和半径,再利用圆的性质求出最小值.【详解】椭圆C :x 25+y 24=1中,右焦点F 2(1,0),圆E :(x -3)2+(y -2)2=1的圆心E (3,2),半径r =1,显然椭圆C 与圆E 相离,由点P 在圆E 上,得|MP |min =|ME |-1,于是|MP |+|MF 2|≥|ME |-1+|MF 2|≥|EF 2|-1=(3-1)2+22-1=22-1,当且仅当M ,P 分别是线段EF 2与椭圆C 、圆E 的交点时取等号,所以MP +MF 2 的最小值为22-1.故答案为:22-122(2024·湖南长沙·三模)已知椭圆y 29+x 2=1,P 为椭圆上任意一点,过点P 分别作与直线l 1:y =3x 和l2:y =-3x 平行的直线,分别交l 2,l 1交于M ,N 两点,则MN 的最大值为.【答案】3【分析】根据题意画出示意图,可得四边形PMON 为平行四边形,设M (x 1,y 1),N (x 2,y 2),P (x 0,y 0),根据MN与OP 的中点相同,换算出关系式x 2-x 1=y 03y 2-y 1=3x 0,再由两点间的距离公式,结合椭圆的性质即可求解.【详解】设过点P 分别作直线l 3,l 4,由题意,画示意图如下:设M (x 1,y 1),N (x 2,y 2),P (x 0,y 0).则y 1=-3x 1,y 2=3x 2,由题意可知四边形PMON 为平行四边形,所以x 1+x 2=x 0+0=13y 2-y 1 y 1+y 2=y 0+0=3x 2-x 1 ,即x 2-x 1=y 03y 2-y 1=3x 0,又因P 为椭圆上任意一点,所以y 209+x 20=1,即y 209=1-x 20,所以MN =x 1-x 2 2+y 1-y 2 2=y 209+9x 20=9x 20+1-x 20 =8x 20+1,因为-1≤x 0≤1,所以0≤x 20≤1,所以由函数性质知:当x 20=1时,有|MN |max =8×1+1=3.故答案为:3【点睛】关键点点睛:本题结合两点间的距离公式考查椭圆的几何性质的应用,考查理解辨析能力与运算求解能力,解题的关键是利用平行四边形的性质找到点的坐标之间的关系.23(2024·重庆·三模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点为F 1,F 2,若椭圆上存在不在x 轴上的两点A ,B 满足F 1A +F 1B =F 1F 2 ,且sin ∠F 1AB =2sin ∠F 2AB ,则椭圆离心率e 的取值范围为.【答案】13,1 【分析】由F 1A +F 1B =F 1F 2 =2F 1O 判断出四边形AF 1BF 2为平行四边形,由正弦定理BF 1 =2AF 1 ,利用AF 2 -AF 1 <F 1F 2 可得答案.【详解】由F 1A +F 1B =F 1F 2 =2F 1O 知,O 为AB 中点,四边形AF 1BF 2为平行四边形,由∠F 2AB =∠F 1BA 与sin ∠F 1AB =2sin ∠F 2AB 可知,在△ABF 1中由正弦定理知,BF 1 =2AF 1 ,在△AF 1F 2中,有AF 2 =BF 1 =2AF 1 ,又因为AF 1 +AF 2 =2a ,可得AF 1 =23a ,AF 2 =43a ,由AF 2 -AF 1 <F 1F 2 ,得e >13,故离心率的取值范围为13,1.故答案为:13,1.式),进而求解离心率或范围.。
高二数学椭圆试题答案及解析
高二数学椭圆试题答案及解析1.已知椭圆上存在两点、关于直线对称,求的取值范围.【答案】.【解析】解题思路:利用直线与直线垂直,设出直线的方程,联立直线与椭圆方程,消去,整理成关于的一元二次方程,利用中点公式和判别式求出的范围.规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解..试题解析:设直线方程为,联立得从而则中点是,则解得由有实数解得即于是则的取值范围是.【考点】1.直线与椭圆的位置关系;2.对称问题.2.已知椭圆:的离心率为,一条准线.(1)求椭圆的方程;(2)设为坐标原点,是上的点,为椭圆的右焦点,过点作的垂线与以为直径的圆交于两点.①若=,求圆的方程;②若是上的动点,求证:点在定圆上,并求该定圆的方程.【答案】(1);(2)或;(3)点在定圆上【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)根据圆的圆心坐标和半径求圆的标准方程.(3)直线和圆相交,根据半径,弦长的一半,圆心距求弦长,圆的弦长的常用求法:(1)几何法:求圆的半径,弦心距,弦长,则(2)代数方法:运用根与系数的关系及弦长公式.(4)与圆有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用直线与圆的位置关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点.试题解析:解:(1)由题意可知:,解得,所以椭圆的方程为由①知:,设,则圆的方程:直线的方程:所以圆的方程:或②证明:设,由①知,化简得消去得:所以点在定圆上.【考点】(1)椭圆的标准方程;(2)圆的标准方程;(3)与圆有关的探索问题.3.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
【考点】(1)椭圆、双曲线离心率的求法;(2)椭圆、双曲线中的三者关系。
高数—椭圆的方程
1.如果方程222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是_____________.2.AB 是平面α上长度为4的一条线段,P 是平面α上的一个动员,且6||||=+PB PA ,M 是AB 的中点,则||PM 的取值范围是__________.3.已知1F 、2F 为椭圆192522=+y x 的两个焦点,过点1F 的直线交椭圆于A 、B 两点,若1222=+B F A F ,则=AB ____________.4.椭圆4422=+y x 的长轴上的一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,则该三角形的面积是____________.5.椭圆14922=+y x 的焦点为1F 、2F ,点P 为椭圆上的动点,当21PF F ∠为钝角时,点P 的横坐标的取值范围是______________.1、定义和标准方程:(1)平面上到两个定点12,F F 的距离和为定值(定值大于12F F )的点的轨迹称为椭圆,其中12,F F 称为椭圆的焦点,12F F 称为椭圆的焦距.若设动点为P ,则①当1212||||||PF PF F F +>时,动点P 的轨迹是椭圆. ②当1212||||||PF PF F F +=时,动点P 的轨迹是线段. ③当1212||||||PF PF F F +<时,动点P 的轨迹不存在. (2)标准方程:①焦点在x 轴上的椭圆:设椭圆上一点(),P x y ,()()12,0,,0F c F c -,设距离和122PF PF a +=,知识梳理热身练习椭 圆则椭圆的标准方程为:22221x y a b+=,其中()2220,a b b a c >>=-②焦点在y 轴上的椭圆:设椭圆上一点(),P x y ,()()120,,0,F c F c -,设距离和122PF PF a +=,则椭圆的标准方程为:22221y x a b+=,其中()2220,a b b a c >>=-(3)椭圆的参数方程①椭圆22221x y a b +=的参数方程是cos ,(02)sin x a y b ϕϕπϕ=⎧≤<⎨=⎩.②椭圆22221y x a b +=的参数方程是()πϕϕϕ20,sin ,cos ≤≤⎩⎨⎧==a y b x2、椭圆的性质:以焦点在x 轴的椭圆为例:()222210x y a b a b+=>>(1)a :与长轴的顶点有关:()()12,0,,0A a A a -,122A A a =称为长轴长 b :与短轴的顶点有关:()()120,,0,B b B b -,122B B b =称为短轴长c :与焦点有关:()()12,0,,0F c F c -,122F F c =称为焦距(2)对称性:椭圆关于x 轴,y 轴对称,且关于原点中心对称 (3)椭圆上点的坐标范围:设()00,P x y ,则00,a x a b y b -≤≤-≤≤ (4)通径:焦点弦长的最小值① 焦点弦:椭圆中过焦点的弦② 过焦点且与长轴垂直的弦22b PQ a=(称为通经,为最短的过交点的弦)(5)焦半径:称P 到焦点的距离为椭圆的焦半径:焦半径的最大值为a c +,最小值为a c - (6)焦点三角形面积:122tan 2PF F Sb θ=(其中12F PF θ=∠)因为1200122PF F Sc y c y =⋅⋅=⋅,所以2120tan 2F PFb c y ∠=⋅,由此得到的推论:① 12F PF ∠的大小与0y 之间可相互求出 ② 12F PF ∠的最大值:12F PF 最大⇔12PF F S最大⇔0y 最大⇔P 为短轴顶点(7)椭圆的焦点的光学性质:从任一焦点发出的光线通过椭圆面反射后,反射光线经过另一焦点. 3、点与椭圆的位置关系已知点00(,)P x y 与椭圆22221(0)x y a b a b+=>>(1F ,2F 为椭圆的焦点),则(1)点P 在椭圆上220012221||||2x y PF PF a a b ⇔+=⇔+=;(2)点P 在椭圆外220012221||||2x y PF PF a a b ⇔+>⇔+>;(3)点P 在椭圆内220012221||||2x y PF PF a a b⇔+<⇔+<.一、求椭圆方程的问题【例1】如图,已知圆22(2)36x y ++=的圆心为M ,设A 为圆上任一点,(2,0)N ,线段AN 的垂直平分线为l ,垂足B ,l 交MA 于点P .则(1)点B 的轨迹方程是_____________; (2)点P 的轨迹方程是_____________.【例2】求由下列条件所确定的椭圆的标准方程:(1)过焦点1(4,0)F -的弦AB 与另一焦点2F 所构成的2ABF △周长为20; (2)短轴长是2)P -;(3)椭圆中心在原点,焦点1F ,2F 在x 轴上,(3,4)P 为椭圆上一点,且12PF PF ⊥; (4)焦点在x 轴上,椭圆上一点(3,)P y 到两个焦点的距离分别为72,132; (5)经过点(2,,1,2⎛⎫- ⎪ ⎪⎝⎭. 例题解析【例3】已知椭圆()2222:10x y C a b a b+=>>的长轴长为4,若点P 是椭圆C 上任意一点,过原点的直线与椭圆相交于,M N 两点,记直线,PM PN 的斜率分别为12,k k ,且1214k k =-,则椭圆的方程为( ) A .221164x y += B .22142x y += C .2214y x += D .2214x y +=【例4】已知椭圆221123x y +=和直线:90l x y -+=,在l 上取一点M ,经过点M 且以已知椭圆的焦点12,F F 为焦点做另一个椭圆,问M 在何处时,所作椭圆的长轴最短,并求椭圆的方程.【巩固训练】1.点P 到)1,1(),1,1(--距离和为22,点P 的轨迹方程_______________2.ABC ∆中,6=BC ,A C B sin 2sin sin =+,则顶点A 的轨迹方程_____________________3.若椭圆12222=+by a x 的焦点在x 轴上,过点)21,1(作圆122=+y x 的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是______________.4.求以椭圆229545x y +=的焦点为焦点,且经过点(M 的椭圆的标准方程.5.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为______________.二、椭圆性质【例5】椭圆3010622=+y x 的长半轴长为_______,短半轴长为________,焦点坐标为_________.【例6】已知方程222222(2)60k x k y k k -++--=. (1)若方程表示为椭圆,求实数k 的取值范围;(2)若方程表示焦点在x 轴上的椭圆,求实数k 的取值范围.【例7】已知等腰直角三角形APB 的一条直角边AP 在y 轴上,点A 位于x 下方,点B 位于y 轴右方,斜边AB 的长为,A B 两点在椭圆22221(0)x y a b a b+=>>上,(1) 若()0,1P ,求椭圆的方程.(2) 若),0(t P ,(t 为常数),求使,A B 两点在椭圆上的t 的取值范围.【巩固训练】1.如果方程222=+ky x 表示焦点在y 轴的椭圆,那么实数k 的取值范围是______________.2.椭圆1)1(2222=-+m y m x 的焦点在y 轴上,则长轴长的取值范围__________________.3.已知曲线C 的方程为,122=-ny mx 其中{}4,3,2,1,0,1,2,3,---∈n m ,则曲线表示焦点在x 轴上的椭圆个数为_______________.4.椭圆22212a a x y -=焦距为4,则a =________________.5.已知c 是椭圆)0(12222>>=+b a b y a x 的半焦距,则acb +的取值范围是________________.6.已知:焦点在x 轴上的椭圆焦点与短轴两端点的连线互相垂直,求此焦点与长轴较近的端点距离为三、椭圆的定义的运用【例8】已知动M 与221:(1)1O x y ++=外切,与222:(1)9O x y -+=内切,求动圆圆心M 所在的曲线方程.【例9】已知椭圆2211612x y +=的左焦点是1F ,右焦点是2F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么12:PF PF =____________________.【例10】已知椭圆的方程为1162522=+y x ,1F 、2F 分别为椭圆的左、右焦点,A 点的坐标为()12,,P 为椭圆上一点,则2PF PA +的最大值与最小值分别是__________________.【例11】某海域有A 、B 两个岛屿,B 岛在A 岛正东4海里处. 经多年观察研究发现,某种鱼群洄游的路线是曲线C ,曾有渔船在距A 岛、B 岛距离和为8海里处发现过鱼群.以A 、B 所在直线为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系.(1)求曲线C 的标准方程;(2)某日,研究人员在A 、B 两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A 、B 两岛收到鱼群在P 处反射信号的时间比为3:5,问你能否确定P 处的位置(即点P 的坐标)?【巩固训练】1.已知圆226550x y x +--=,动圆M 经过定点(3,0)A -,且与已知圆相内切,求圆心M 的轨迹方程.xBAyO∙∙2.已知AB 是椭圆)0(12222>>=+b a by a x 的长轴,若把该长轴n 等分,过每个等分点作AB 的垂线,依次交椭圆的上半部分于点121,,,-n P P P ,设左焦点为1F ,则1111111lim ()n n F A F P F P F B n-→∞++++=______________.3.若F 1、F 2是椭圆2214+=x y 的左、右两个焦点,M 是椭圆上的动点,则的最小值为.4.设P是椭圆15922=+y x 上一点,M 、N 分别是圆A :()1222=++y x 和圆B :()1222=+-y x 上的点,则PN PM +的最大值和最小值分别是_______________.5.已知F 1,F 2分别是椭圆x 24+y 23=1的左、右焦点,A 是椭圆上一动点,圆C 与F 1A 的延长线、F 1F 2的延长线以及线段AF 2相切,若M (t ,0)为一个切点,则( ) A .t =2 B .t >2 C .t <2 D .t 与2的大小关系不确定6.设21,F F 为椭圆14922=+y x 的两个焦点,P 为椭圆上的一点,已知P 、1F 、2F 是一个直角三角形的三个顶点,且21PF PF >,求21PF PF 的值.三、椭圆的几何性质【例11】已知椭圆22221(0)+=>>x y a b a b上存在一点P ,使P 与椭圆两焦点1F 、2F 的连线互相2111MF MF +垂直,求ca的取值范围.【例12】已知、是椭圆两个焦点,点在椭圆上. (1)若,则这样的P 的个数是_______________个; (2)若12F PF ∠是钝角,则这样的P 存在吗?(3)若12F PF ∠是锐角,则点P 的横坐标的取值范围是_________________.【例13】椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点, (1)021=⋅PF .求21F PF ∆的面积 (2) 312=∆PF F S ,求21PF F ∠,12PF PF【例14】(1)椭圆22221x y a b +=的弦AB 的斜率为1k (1k 存在且不为0),中点M 与中心O 所在直线OM的斜率为2k ,证明2122b k k a⋅=-.(2)过椭圆22221x y a b +=中心的直线交椭圆于两点A ,B ,点P 为椭圆上除A ,B 外的一点.若直线AP的斜率存在,直线BP 的斜率存在,记作1k ,2k .求证:2122b k k a⋅=-.【例15】已知椭圆C 的方程是22221(0)x y a b a b+=>>,O 为坐标原点,点A 、B 在椭圆上,且OB OA ⊥,求证:动直线AB 必与一定圆相切. 1F 2F 22184x y +=P 12PF PF ⊥【巩固训练】1.已知1F 、2F 是椭圆C :()012222>>=+b a by a x 的两个焦点,点P 为椭圆C 上的一点,且021=⋅PF PF .若21F PF ∆的面积为9,则=b _____________.2.椭圆x 2a 2+y 25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A ,B .若△FAB 的周长的最大值是12,则a =_____________________.3.椭圆中心在原点,长轴长为310,一个焦点1F 的坐标为)5,0(,求经过此椭圆内一点⎪⎭⎫ ⎝⎛-21,21M ,且被点M 平分的弦所在的直线方程.4.已知椭圆2212x y +=,(1)过椭圆的左焦点F 引椭圆的割线,求截得的弦的中点P 的轨迹方程; (2)求斜率为2的平行弦中点Q 的轨迹方程.四、与椭圆有关的综合问题【例16】已知椭圆22121,,4x y F F +=是它的两个焦点,若P 是椭圆上任一点,(1)求1||PF 的最值; (2)求12||||PF PF 的最值;(3)求2212||||PF PF +的最值.【例17】已知P 为椭圆2214x y +=上任意一点,(,0)()M m m ∈R ,求PM 的最小值.【例18】F 是椭圆22143x y +=的右焦点,(1,1)A 为椭圆内一定点,P 为椭圆上一动点,则PA PF +的最小值为___________.【例19】点P 在椭圆22143x y +=上运动,Q 、R 分别在圆22(1)1x y ++=和圆22(1)1x y -+=上运动,则||||PQ PR +的最大值为_________,最小值为__________.【拓展】若过1C 的直线与1C 交于A B 、两点,过2C 的直线与2C 交于C D 、两点,则求PA PB PC PD ⋅+⋅的最小值.【例20】在椭圆2214x y +=上求一点P ,使它到直线:2100l x y ++=的距离最大(小),并求最大(小)值.【例21】设点)0,(m M 在椭圆1121622=+y x 的长轴上,点P 是椭圆上任意一点.当MP 的模最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.【例22】已知椭圆的标准方程是),0(,12222>>=+b a by a x 焦点P c F c F ),0,(),0,(21-是椭圆内的任意一点,(1) 证明:a PF PF c 2221<+≤(2) 线段AB 端点的坐标分别为(1,1),(2,2),若以),0,1(),0,1(21F F -为焦点的椭圆12222=+by a x 与线段AB 没有公共点,求a 的取值范围.【巩固训练】1.在椭圆22194x y +=上动点(,)P x y 与定点(,0)M m (03m <<)的距离的最小值为1,求m .2.如图是一个跨度和高都为2米的半椭圆形拱门,则能通过该拱门 的正方形玻璃板(厚度不计)的面积范围用开区间表示是 .3.椭圆22143x y +=的右焦点为F ,点P 是椭圆上一动点,点M 是圆22:(3)1C x y +-=上一动点,求||||PM PF +的最大值及此时点P 的坐标.4.点A 、B 分别是椭圆2213620x y +=长轴的左、右焦点,点F 是椭圆的右焦点点P 在椭圆上,且位于x 轴上方,PA PF ⊥(1)求P 点的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于MB ,求椭圆上的点到点M 的距离d 的最小值5.已知点)1,0(F ,一动圆过点F 且与圆8)1(22=++y x 内切. (1)求动圆圆心的轨迹C 的方程;(2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ;(3)在10<<a 的条件下,设△POA 的面积为1S (O 是坐标原点,P 是曲线C 上横坐标为a 的点),以)(a d 为边长的正方形的面积为2S .若正数m 满足21mS S ≤,问m 是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.(1)根据条件确定椭圆的标准方程.在解这类问题时,常常先明确椭圆的焦点是在哪一条坐标轴上,选择相应的标准方程,根据题意,利用待定系数法确定相关系数;或者利用定义法求得方程.(2)灵活运用定义解决有关问题,当某点在已知椭圆上时,不仅意味着点的坐标满足椭圆的方程,而且该点到两个焦点的距离和等于椭圆的长轴长,所以在处理与焦点相关的长度问题时多想想定义. (3)在处理与椭圆相关的最值问题时通常化归成求函数最值.1.已知)0,1()0,1(21F F 、-两点,若动点P 满足21212F F PF PF =+,则动点P 的轨迹方程是( )A 、191622=+y x B 、1121622=+y x C 、13422=+y x D 、14322=+y x 课后练习反思总结2.若直线x y 2=与椭圆)0(12222>>=+b a by a x 的一个交点的横坐标恰为)(为半焦距c c ,则a c 的值为( )A 、222- B 、2122- C 、13- D 、12- 3.P 是椭圆224312x y +=上任一点,1F 、2F 是它的两个焦点,则12F PF ∠的最大值是( ). A .32arctan4 B .12arcsin 4C .3πD .23π 4.点F 是椭圆)0(12222>>=+b a by a x 的一个焦点,PQ 是过椭圆中心O 的一条弦,则△PQF 面积的最大值是 ( )A 、ab 21B 、abC 、acD 、)(22b a c bc -=5.已知椭圆191622=+y x 的两个焦点为21F F 、,若点P 是此椭圆上的点,且→→⊥21PF PF ,则→OP =________ 6.若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则⋅的大 值为_______________.7.(1)已知边长为4的菱形ABCD 的两条对角线在坐标轴上,且顶角∠DAB =60°,以菱形ABCD 的不相邻的两个顶点A 、C 为焦点,且过菱形的另两个顶点的椭圆方程是______________;(2)若椭圆的长轴、焦距、短轴依次成等差数列,则满足条件的椭圆的标准方程是_____________.8.已知线段4=AB ,6=+PB PA ,C 是AB 的中点,当动点P 在同一平面内运动时,PC 的最大值是____________,最小值是____________.9.在椭圆)0,0(12222>>=+b a b y a x 中,设左焦点、右顶点、短轴上方的顶点的坐标分别为),0()0,()0,(b B a A c F 、、-,若c b a ,,成等比数列,则∠ABF 的大小为________________.10.已知椭圆122=+by ax 的一条弦AB 的斜率为k ,弦AB 的中点为M ,O 为坐标原点,若OM 的斜率22143x y +=为0k ,则0k k ⋅=_______________.11.设椭圆221259x y +=的两焦点分别为1F 、2F ,P 为椭圆上一点,求使12F PF ∠为钝角的P 点的横坐标的范围.12.已知椭圆2212516x y +=,1F 、2F 为其左、右焦点. (1)若弦AB 过点1F ,求2AF B △的周长; (2)若椭圆上一点P 满足123F PF π∠=,求12F PF △的面积.。
2021高考数学一轮复习第八章平面解析几何第5节椭圆第1课时椭圆及简单几何性质练习
第1课时 椭圆及简单几何性质[A 级 基础巩固]1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5解析:由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,所以|PF 2|=6,所以|PF 1|=2a -|PF 2|=10-6=4.答案:A2.(2020·南昌三中期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 解析:因为△AF 1B 的周长为43,且△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a +2a =4a , 所以4a =43,所以a =3, 因为离心率为33,所以c a =33,解得c =1, 所以b =a 2-c 2=2, 所以椭圆C 的方程为x 23+y 22=1.答案:A3.(2020·青岛十六中周考)若曲线x 21-k +y 21+k =1表示椭圆,则k 的取值范围是( )A .k >1B .k <-1C .-1<k <1D .-1<k <0或0<k <1解析:因为曲线x 21-k +y 21+k=1表示椭圆,所以⎩⎪⎨⎪⎧1-k >0,1+k >0,1-k ≠1+k ,解得-1<k <1,且k ≠0,则-1<k <0或0<k <1. 答案:D4.(2020·东营市联考)设F 1,F 2是椭圆x 24+y 2b2=1(0<b <2)的左、右焦点,过F 1的直线l交椭圆于A ,B 两点,若|AF 2|+|BF 2|最大值为5,则椭圆的离心率为( )A.12B.22C.5-12D.32解析:因x 24+y 2b2=1,则a =2,由0<b <2可知,焦点在x 轴上, 因为过F 1的直线l 交椭圆于A ,B 两点, 则|BF 2|+|AF 2|+|BF 1|+|AF 1|=2a +2a =4a =8, 所以|BF 2|+|AF 2|=8-|AB |,当AB 垂直x 轴时|AB |最小,|BF 2|+|AF 2|值最大, 此时|AB |=2b 2a=b 2,则5=8-b 2,解得b =3,则椭圆的离心率e =ca=1-b 2a 2=12. 答案:A5.(2020·聊城市调研)过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )A.x 25+y 210=1 B.x 210+y 215=1 C.x 215+y 210=1 D.x 225+y 210=1 解析:椭圆3x 2+8y 2=24化为x 28+y 23=1,它的焦点为(±5,0),可得c =5,设椭圆的方程为:x 2a 2+y 2b2=1(a >b >0),可得:9a 2+4b2=1,a 2-b 2=5,解得a =15,b =10,故所求的椭圆方程为x 215+y 210=1.答案:C6.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的标准方程为________.解析:由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由离心率e =55可得a 2=5c 2,所以b 2=4c 2,故椭圆的方程为x 25c 2+y 24c 2=1,将P (-5,4)代入可得c 2=9,故椭圆的方程为x 245+y 236=1.答案:x 245+y 236=17.如图所示,椭圆x 2a 2+y 22=1的左、右焦点分别为F 1、F 2,点P 在椭圆上,若|PF 1|=4,∠F 1PF 2=120°,则a 的值为________.解析:由题意知|F 1F 2|=2a 2-2,因为|PF 1|=4,|PF 1|+|PF 2|=2a ,所以|PF 2|=2a -4, 在△F 1PF 2中,由余弦定理得cos 120°=42+(2a -4)2-(2a 2-2)22×4×(2a -4)=-12,化简得8a =24,即a =3. 答案:38.(2020·雅礼中学质检)已知点P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1,F 2分别为椭圆的左、右焦点,已知∠F 1PF 2=120°,且|PF 1|=3|PF 2|,则椭圆的离心率为________.解析:点P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1,F 2分别为椭圆的左、右焦点,因为∠F 1PF 2=120°,且|PF 1|=3|PF 2|,如图所示,设|PF 2|=m ,则|PF 1|=3m ,则⎩⎪⎨⎪⎧4m =2a ,4c 2=m 2+9m 2-2·m ·3m cos 120°, 可得4c 2=13×a 24,解得e =c a =134.答案:1349.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0). (1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.解:(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),依题意得⎩⎪⎨⎪⎧2a =10,c =3,a 2=b 2+c 2,因此a =5,b =4,所以椭圆的标准方程为x 225+y 216=1.(2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12.10.(2020·青岛二中月考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1、F 2,左顶点为A ,若|F 1F 2|=2,椭圆的离心率为e =12.(1)求椭圆的标准方程;(2)若P 是椭圆上的任意一点,求PF 1→·PA →的取值范围. 解:(1)由题意,因为|F 1F 2|=2,椭圆的离心率为e =12,所以c =1,a =2, 所以b =3,所以椭圆的标准方程为x 24+y 23=1.(2)设P (x 0,y 0),A (-2,0),F 1(-1,0),所以PF 1→·PA →=(-1-x 0)(-2-x 0)+y 20=x 20+3x 0+2+y 20, 因为P 点在椭圆上,所以x 204+y 203=1,y 20=3-34x 20,所以PF 1→·PA →=14x 20+3x 0+5,由椭圆方程得-2≤x 0≤2,二次函数14x 20+3x 0+5的开口向上,对称轴x 0=-6<-2,当x 0=-2时,取最小值0, 当x 0=2时,取最大值12.所以PF 1→·PA →的取值范围是[0,12].[B 级 能力提升]11.(2020·菏泽市期末)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为( )A.12 B.23 C.32D.22解析:设|BF 1|=k (k >0), 则|AF 1|=3k ,|AB |=4k ,所以|AF 2|=2a -3k ,|BF 2|=2a -k ,因为cos ∠AF 2B =35,在△ABF 2中,由余弦定理得:|AB |2=|AF 2|2+|BF 2|2-2|AF 2|·|BF 2|cos ∠AF 2B , 所以(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k , 所以|AF 2|=|AF 1|=3k ,|BF 2|=5k ,|AB |=4k , 所以|BF 2|2=|AF 2|2+|AB |2, 所以AF 1⊥AF 2,且AF 1=AF 2=3k ,所以△AF 1F 2是等腰直角三角形,(2c )2=2a 2, 所以c =22a ,所以椭圆的离心率e =c a =22. 答案:D12.(2020·青岛实验高中测试)方程x 22m -y 2m -1=1表示焦点在y 轴上的椭圆,则m 的取值范围是______________________________.解析:因为方程x 22m -y 2m -1=1表示焦点在y 轴上的椭圆,所以该椭圆的标准方程为y 21-m +x 22m =1,满足1-m >2m >0,解之得0<m <13.答案:0<m <1313.如图所示,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF →·FB →=1,|OF →|=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c =1.因为AF →·FB →=1,即(a +c )(a -c )=1=a 2-c 2, 所以a 2=2,故椭圆方程为x 22+y 2=1.(2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y =x +m .联立⎩⎪⎨⎪⎧y =x +m ,x 2+2y 2=2,得3x 2+4mx +2m 2-2=0, 则x 1+x 2=-4m 3,x 1x 2=2m 2-23.因为MP →·FQ →=0=x 1(x 2-1)+y 2(y 1-1), 又y i =x i +m (i =1,2),得x 1(x 2-1)+(x 2+m )(x 1+m -1)=0, 即2x 1x 2+(x 1+x 2)(m -1)+m 2-m =0, 所以2·2m 2-23-4m 3(m -1)+m 2-m =0,解得m =-43或m =1(舍去).经检验m =-43符合条件,所以直线l 的方程为y =x -43.故存在直线l ,使得点F 恰为△PQM 的垂心,此时l 的方程为y =x -43.[C 级 素养升华]14.(多选题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线x -y +6=0相切,则椭圆C 的方程为( )A.x 28+y 26=1B.x 212+y 29=1 C.x 24+y 23=1 D .3x 2+4y 2=12解析:由题意知e =c a =12,所以e 2=c 2a 2=a 2-b 2a 2=14,即a 2=43b 2,以原点为圆心,椭圆的短半轴长为半径的圆的方程为x 2+y 2=b 2.由题意可知b =62=3,所以a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1,即3x 2+4y 2=12. 答案:CD素养培育数学运算——离心率求解面面观(自主阅读)离心率是圆锥曲线中的一个重要元素,它的变化会直接导致曲线形状甚至是类型的变化.近年来,涉及离心率的问题频频出现在高考试题和各省市高考模拟试题中,且题型不断翻新,显示出旺盛的生命力!解决有关离心率的问题,除了要求深刻领会离心率的概念、几何意义之外,还要常常综合运用其他有关知识,因而,涉及离心率的问题不仅具有很强的综合性,而且其解法极富灵活性.1.巧求离心率的值[典例1] 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F 1,F 2是一对相关曲线的焦点,P 是椭圆和双曲线在第一象限的交点,当∠F 1PF 2=60°时,这一对相关曲线中椭圆的离心率为( )A.33B.32C.22 D.12解析:设|F 1P |=m ,|F 2P |=n ,|F 1F 2|=2c ,由余弦定理得(2c )2=m 2+n 2-2mn cos 60°,即4c 2=m 2+n 2-mn ,设a 1是椭圆的长半轴,a 2是双曲线的实半轴,由椭圆及双曲线定义,得m +n =2a 1,m -n =2a 2,所以m =a 1+a 2,n =a 1-a 2,代入上式得4c 2=3a 22+a 21,又它们的离心率互为倒数,c a 1·ca 2=1,即c 2=a 1a 2,代入4c 2=3a 22+a 21得3a 22-4a 1a 2+a 21=0,a 1=3a 2,e 1·e 2=c a 1·c a 2=c a 1·3c a 1=1,即3e 21=1,所以e 1=33. 答案:A2.求离心率的取值范围[典例2] 设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足FA →·FB →=0,|FB |≤|FA |≤2|FB |,则椭圆C 的离心率的取值范围是( )A.⎣⎢⎡⎦⎥⎤22,53 B.⎣⎢⎡⎭⎪⎫53,1 C.⎣⎢⎡⎦⎥⎤22,3-1 D .[3-1,1)解析:设椭圆左焦点为F ′,连接AF ′、BF ′.由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA →·FB →=0,即FA ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c .设|AF ′|=n ,|AF |=m ,则在直角三角形AF ′F 中m +n =2a ,m 2+n 2=4c 2,①得mn =2b 2,②①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c2b2.又由|FB |≤|FA |≤2|FB |得1≤|FA ||FB |≤2,则m n =t ∈[1,2],所以t +1t =2c 2b 2∈⎣⎢⎡⎦⎥⎤2,52, 又2c2b 2=2c 2a 2-c 2=2e 21-e 2,则可得22≤e ≤53,即离心率的取值范围是⎣⎢⎡⎦⎥⎤22,53. 答案:A3.探寻离心率的最值[典例3] 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B.233C .3D .2 解析:设|PF 1|=r 1,|PF 2|=r 2,r 1>r 2,|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 21+r 22-2r 1r 2cos π3,得4c 2=r 21+r 22-r 1r 2.由r 1+r 2=2a 1,r 1-r 2=2a 2,得r 1=a 1+a 2,r 2=a 1-a 2,所以1e 1+1e 2=a 1+a 2c =r 1c.令m =r 21c 2=4r 21r 21+r 22-r 1r 2=41+⎝ ⎛⎭⎪⎫r 2r 12-r 2r 1=4⎝ ⎛⎭⎪⎫r 2r 1-122+34,当r 2r 1=12时,m max =163,所以⎝ ⎛⎭⎪⎫r 1c max =433,即1e 1+1e 2的最大值为433. 答案:A。
(2015-2017)三年高考真题精编解析一专题17 椭圆及其综合应用
1.【2017浙江,2】椭圆22194x y +=的离心率是A .133B .53C .23D .59【答案】B 【解析】 试题分析:94533e -==,选B .2.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C 2D .13【答案】A 【解析】试题分析:以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即:22d a a b==+,整理可得223a b =,即()222223,23a a c a c =-=,从而22223c e a ==,椭圆的离心率263c e a ===故选A .【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式e =c a; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A 【解析】则很容易出现错误。
高二数学椭圆试题
高二数学椭圆试题1.过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B,若M是线段AB的中点,则椭圆C的离心率为()A.B.C.D.【答案】A【解析】设A(x1,y1),B(x2,y2),则 ,∵过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B,若M是线段AB的中点,∴两式相减可得 , .故选A.【考点】直线与圆锥曲线的综合问题2.已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在y轴上.(1)求双曲线的离心率,并写出其渐近线方程;(2)求椭圆的标准方程.【答案】(1)e1=2,渐近线方程为y=±;(2).【解析】(1)首先由已知双曲线的标准方程求出双曲线的几何量,就可得焦点及离心率,渐近线方程;(2)根据已知条件求出椭圆的离心率及焦距,利用椭圆的三个参数的关系,求出椭圆中的三个参数,从而就可求出椭圆的方程.试题解析:(1)设双曲线的焦距为2c1,离心率为e1,(2分)则有:c12=4+12=16,c1=4 (4分)∴e1=2,渐近线方程为y=±;(6分)(2)椭圆的离心率为,∴.又a=4,∴c=;∵a2=b2+c2,(10分)∴b2=;∴所求椭圆方程为(12分)【考点】1.双曲线的简单性质;2.椭圆的标准方程.3.已知椭圆:的左焦点,离心率为,函数,(Ⅰ)求椭圆的标准方程;(Ⅱ)设,,过的直线交椭圆于两点,求的最小值,并求此时的的值.【答案】(Ⅰ);(Ⅱ)的最小值为,此时.【解析】(Ⅰ)利用左焦点F(-1,0),离心率为,及求出几何量,即可求椭圆C的标准方程;(Ⅱ)分类讨论,设直线l的方程来:y=k(x-t)代入抛物线方程,利用韦达定理,结合向量的数量积公式,即可求的最小值,并求此时的t的值.试题解析:(Ⅰ),由得,椭圆方程为(Ⅱ)若直线斜率不存在,则=若直线斜率存在,设直线,由得所以故故的最小值为,此时.【考点】直线与圆锥曲线的综合问题.4.(本小题满分12分)如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.(1)求椭圆的离心率;(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是,求此时椭圆的方程.【答案】(1);(2).【解析】(1)点M与椭圆右焦点的连线与x轴垂直,可得,又,椭圆中,可得;(2)设直线PQ的方程为,代入椭圆方程整理得又,可得从而解得,可得椭圆的标准方程.解:(1)易得(2)令,设直线PQ的方程为.代入椭圆方程消去x得:,整理得:∴因此a2=50,b2=25,所以椭圆方程为【考点】椭圆的几何性质,直线与椭圆的位置关系,设而不求.5.若点P为共焦点的椭圆和双曲线的一个交点,、分别是它们的左右焦点.设椭圆离心率为,双曲线离心率为,若,则()A.4B.3C.2D.1【答案】C【解析】由题设中的条件,设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,根据椭圆和双曲线的性质以及勾弦定理建立方程,联立可得m,a,c的等式,整理即可得到结论,【考点】椭圆与双曲线的几何性质.6.椭圆的左、右顶点分别为,点在上且直线的斜率的取值范围是,那么直线斜率的取值范围是()A.B.C.D.【答案】B【解析】由椭圆可知其左顶点A1(-2,0),右顶点A2(2,0).设P(x,y)(x≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【考点】椭圆的性质.7.已知椭圆上一点到右焦点的距离是1,则点到左焦点的距离是()A.B.C.D.【答案】D【解析】根据椭圆的定义,点P到两个焦点距离和等于2a=即可.【考点】椭圆的定义.8.已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程为A.B.C.D.【答案】D【解析】因为焦点相同所以有,解得,即。
椭圆的几何性质及其综合问答
椭圆的几何性质一、概念及性质1.椭圆的“范围、对称性、顶点、轴长、焦距、离心率及范围、a ,b ,c 的关系”;2.椭圆的通经:3.椭圆的焦点三角形的概念及面积公式:4.椭圆的焦半径的概念及公式:主要用来求离心率的取值范围,对于此问题也可以用下列性质求解:c a PF c a +≤≤-1.5.直线与椭圆的位置关系:6.椭圆的中点弦问题:【注】:椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下三个命题角度:(1)根据椭圆的性质求参数的值或范围; (2)由性质写椭圆的标准方程; (3)求离心率的值或范围.题型一:根据椭圆的性质求标准方程、参数的值或范围、离心率的值或范围.【典例1】求适合下列条件的椭圆的标准方程:(1)经过点)2,0(),0,3(--Q P ;(2)长轴长等于20,离心率等于53. 【典例2】求椭圆400251622=+y x 的长轴和短轴长、离心率、焦点坐标和顶点坐标.【典例3】已知A ,P ,Q 为椭圆C :)0(12222>>=+b a b y a x 上三点,若直线PQ 过原点,且直线AP ,AQ 的斜率之积为21-,则椭圆C 的离心率为( )A.22B.21C.42D.41【练习】(1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)(2)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21(3)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.【典例4】已知F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,P 为椭圆上任意一点,且215PF PF =,则该椭圆的离心率的取值范围是练习:如图,把椭圆1162522=+y x 的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分与P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则721PF PF PF +++Λ=【典例5】若 “过椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点F 1,F 2的两条互相垂直的直线l 1,l 2的交点在椭圆的内部”,求离心率的取值范围.【典例6】已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【方法归纳】:1.在利用椭圆的性质求解椭圆的标准方程时,总体原则是“先定位,再定量”.2.求解与椭圆几何性质有关的问题时,其原则是“数形结合,定义优先,几何性质简化”,一定要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系,充分利用平面几何的性质及有关重要结论来探寻参数a ,b ,c 之间的关系,以减少运算量.3.在求解有关圆锥曲线焦点问题时,结合图形,注意动点到两焦点距离的转化.4. 求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围;有时也可利用正弦、余弦的有界性求解离心率的范围.5.在探寻a ,b ,c 的关系时,若能充分考虑平面几何的性质,则可使问题简化,如典例5. 【本节练习】1.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A .x 216+y 27=1B .x 216+y 27=1或x 27+y 216=1C .x 216+y 225=1D .x 216+y 225=1或x 225+y 216=12.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)3.已知椭圆短轴上的两个顶点分别为B 1,B 2,焦点为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则这个椭圆的离心率e 等于( )A .22B .12C .32D .334.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.5.已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为33,过F 2的直线l 交C 于A,B 两点,若△AF 1B 的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y x C.181222=+y x D.141222=+y x6.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.7.设21,F F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23ax =上一点,12PF F ∆是底角为300的等腰三角形,则E 的离心率为( )A.21B. 32C.43D. 548.过椭圆)0(12222>>=+b a b y a x 的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若02160=∠PF F ,则椭圆的离心率为( )A.25B.33C.21 D.319.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,右顶点为A ,上顶点为B ,若BA BF ⊥,则称其为“优美椭圆”,那么“优美椭圆”的离心率为10.已知1F 为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当A F PF 11⊥,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为11.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)12.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 313.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 28+y 24=1D .x 216+y 24=114.如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.15.已知抛物线42x y =与椭圆)0(118222>=+a y ax 在第一象限相交于A 点,F 为抛物线的焦点,AB ⊥y 轴于B 点,当∠BAF =300时,a =16. 设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.17.椭圆x 236+y 29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则EP →·QP →的最小值为( )A .6B .3- 3C .9D .12-6 318.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.19.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是________.20.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( )A .4B .3C .2D .114. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____设F 1(-c , 0), F 2(c , 0)是椭圆12222=+by a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为(A )316 (B )23 (C )22 (D )32若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是21.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于以椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为( )A .53B .23C .22D .5922. 已知,,A P Q 为椭圆:C 22221(0)x y a b a b+=>>上三点,若直线PQ 过原点,且直线,AP AQ 的斜率之积为12-,则椭圆C 的离心率等于( )A B .12 C D .14题型二:直线与椭圆的位置关系的判定.【典例1】当m 为何值时,直线m x y l +=:与椭圆14416922=+y x 相切、相交、相离?【典例2】已知椭圆192522=+y x ,直线04054:=+-y x l ,椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?反馈:(2012福建)如图,椭圆E :)0(12222>>=+b a by a x 的左右焦点分别为F 1、F 2,离心率21=e ,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8. (1)求椭圆E 的方程;(2)设动直线l :m kx y +=与椭圆E 有且只有一个公共点P ,且与直线x =4交于Q ,试探究:在坐标平面内,是否存在定点M ,使得以PQ 为直径的圆恒过定点M ,若存在,求出点M 的坐标,若不存在,请说明理由.【方法归纳】:直线与椭圆位置关系判断的步骤: ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.注:对比直线与圆的位置关系的判断,它们之间有何联系与区别?题型三:直线与椭圆相交(及中点弦)问题该问题属高考中对圆锥曲线考查的热点和重点问题,其主要方法是数形结合、判别式、根与系数的关系、整体代换.【典例1】已知斜率为1的直线l 过椭圆1422=+y x 的右焦点,交椭圆于A ,B 两点,求弦AB 的长及1ABF ∆的周长、面积.【典例2】已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.【典例3】已知一直线与椭圆369422=+y x 相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.变式:过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为【典例4】(2015新课标文)已知椭圆()2222:10x y C a b a b+=>> 的离心率为22,点()2,2在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【典例5】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的焦点,直线AF 23O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【典例6】已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :m kx y +=与椭圆C 相交于A ,B 两点(A ,B 均不在左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.【方法归纳】:(1)解决直线与椭圆相交问题的原则有两个:一是数形结合;二是一条主线:“斜率、方程组、判别式、根与系数的关系”.利用根与系数的关系整体代换,以减少运算量.(2)如果题设中没有对直线的斜率的限定,一定要讨论斜率是否存在,以免漏解;这里又有两个问题需要注意:①若已知直线过y 轴上的定点P (0,b ),可将直线设为斜截式,即纵截距式,即y =kx +b ,但要讨论斜率是否存在;②若已知直线过x 轴上的定点P (a ,0),可以直接将直线方程设为横截距式,即x =my +a ,这样可避免讨论斜率是否存在,但此时求弦长时,需将下面弦长公式中的k 用m1替换. (3)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).【本节练习】1.(2014·高考安徽卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.2. (2015·豫西五校联考)已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1、F 2,过F 1的直线l 交椭圆于A 、B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1B . 2C .32 D . 33.(2015·宜昌调研)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△P AB 的面积.5.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.5’.已知椭圆)0(12222>>=+b a by a x 的离心率为23,右焦点到直线06=++y x 的距离为32. (1)求椭圆的方程;(2)过点)1,0(-M 作直线l 交椭圆于A ,B 两点,交x 轴于N 点,满足57-=,求直线l 的方程.6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,且长轴长为12,过点P(4,2)的直线l 与椭圆交于A,B 两点.(1)求椭圆方程;(2)当直线l 的斜率为21时,求AB 的值;(3)当点P 恰好为线段AB 的中点时,求直线l 的方程.7. 平面直角坐标系xoy 中,过椭圆M :)0(12222>>=+b a b y a x 的右焦点F 作直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为21. (Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.8. 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列.(1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程.9. 设F 1 ,F 2分别是椭圆C :12222=+by a x (a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .10. 如图,点F 1(-c ,0),F 2(c ,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.11.已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB , (文)求线段AB 长度的最小值.(理)试判断直线AB 与圆222=+y x 的位置关系.圆锥曲线在高考中的考查主要体现“一条主线,五种题型”,所谓一条主线:是指直线与圆锥曲线的综合.五种题型是指“最值问题;定点问题;定值问题;参数的取值范围问题;存在性问题”.一、 最值问题 【规律方法】:(1)最值问题有两大类:距离、面积的最值以及与之有关的一些问题;求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见方法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解题;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法;若是分式函数则可先分离常数,再求最值;若是二次函数,可用配方法;若是更复杂的函数,还可用导数法. (3)圆锥曲线的综合问题要四重视: ①重视定义在解题中的作用;②重视平面几何知识在解题中的作用;③重视根与系数的关系在解题中的作用;④重视曲线的几何特征与方程的代数特征在解题中的作用.如定值中2014江西文科考题,范围中的题6、7.1.已知椭圆C :1222=+y ax (a >0)的焦点在x 轴上,右顶点与上顶点分别为A 、B .顶点在原点,分别以A 、B 为焦点的抛物线C 1、C 2交于点P (不同于O 点),且以BP 为直径的圆经过点A .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若与OP 垂直的动直线l 交椭圆C 于M 、N 不同两点,求△OMN 面积的最大值和此时直线l 的方程.2.已知椭圆C :)0(12222>>=+b a by a x 的上顶点为(0,1),且离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)证明:过椭圆)0(12222>>=+n m ny m x 上一点),(00y x Q 的切线方程为12020=+nyy m x x ; (Ⅲ)从圆1622=+y x 上一点P 向椭圆C 引两条切线,切点分别为A 、B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.3.已知动点P 到定点F (1,0)和到定直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :n mx y +=与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合). (Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆122=+y x 相切时,四边形ACBD 的面积是否有最大值.若有,求出其最大值及相应的直线l 的方程;若没有,请说明理由.4. 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的右焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.5.平面直角坐标系xOy 中,已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,且点)21,3(在椭圆C 上,(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆144:2222=+b y a x E ,P 为椭圆C 上任意一点,过点P 的直线m kx y +=交椭圆E 于B A ,两点,射线PO 交椭圆E 于点Q .(ⅰ)求OPOQ 的值;(ⅱ)求ABQ ∆面积的最大值。
椭圆练习及参考答案
椭圆练习及参考答案一、单选题(共 50 分)1.椭圆x 29+y28=1的左右焦点为F1,F2,P为椭圆上第一象限内任意一点,F1关于P的对称点为M,关于F2的对称点为N,则ΔMF1N的周长为()A.8B.10C.16D.22【详解】因为F1关于P的对称点为M,关于F2的对称点为N,所以PF2为△F1MN的中位线,所以MF1+MN=2PF1+2PF2=2(PF1+PF2)=2×2a=12,F1N=2F1F2=4c=4√9−8=4,所以ΔMF1N的周长为12+4=16.【点睛】本题考查了点与点的对称性,椭圆的定义,属于基础题.2.已知定圆C1:(x+5)2+y2=1,C2:(x−5)2+y2=225,动圆C满足与C1外切且与C2内切,则动圆圆心C的轨迹方程为()A.x 264+y239=1 B.x239+y264=1 C.x2256+y2241=1 D.x2241+y2256=1【详解】解:设动圆圆心C的坐标为(x,y),半径为r,则|CC1|=r+1,|CC2|=15−r,∴|CC1|+|CC2|=r+1+15−r=16>|C1C2|=10,由椭圆的定义知,点C的轨迹是以C1,C2为焦点的椭圆,则2a=16,a=8,c=5,b2=82−52=39,椭圆的方程为:x264+y239=1【点睛】考查圆与圆的位置关系,考查椭圆的定义,考查学生分析解决问题的能力,中档题.3.设F1、F2是椭圆E:x 2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,ΔF2PF1是底角为30∘的等腰三角形,则E的离心率为()A.12B.23C.34D.45试题分析:如下图所示,ΔF2PF1是底角为30∘的等腰三角形,则有|F1F2|=|PF2|,∠PF1F2=∠F2PF1=30∘所以∠PF2A=60∘,∠F2PA=30∘,所以|PF2|=2|AF2|=2(32a−c)=3a−2c又因为|F1F2|=2c,所以,2c=3a−2c,所以e=ca =34所以答案选C.考点:椭圆的简单几何性质.4.椭圆x 29+y26=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则ΔPF1F2的面积为()A.2√3B.3√2C.√32D.√23【详解】解:∵椭圆x29+y26=1的焦点为F1、F2,点P在椭圆上,|PF1|=4,∴F1(−√3,0),F2(√3,0),|PF2|=6﹣4=2,|F1F2|=2√3,则△PF1F2是直角三角形,∴△PF1F2的面积为S=12×2×2√3=2√3.【点睛】本题考查椭圆的简单性质,三角形的面积的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.5.已知椭圆x 24+y2=1的焦点分别是F1,F2,点M在该椭圆上,如果F1M⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F2M⃑⃑⃑⃑⃑⃑⃑⃑ =0,那么点M到y轴的距离是()A.√2B.2√63C.3√22D.1【详解】设M(x,y),则椭圆x24+y2=1…①,∵椭圆x24+y2=1的焦点分别是F1,F2,∴F1(−√3,0),F2(√3,0)∵F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x −√3,y),F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x +√3,y), F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =0,∴x 2+y 2=3…②由①②得x 2=83,x =±2√63, ∴点M 到y 轴的距离为2√63,故选B .【点睛】本题考查了椭圆的方程及向量运算,属于中档题. 7.已知直线l 与椭圆x 216+y 22=1交于A,B 两点,AB 中点是M (−2,1),则直线l 的斜率为( )A.-4B.-14C.14D.4【详解】设交点坐标A (x 1,y 1),B (x 2,y 2),则{x 1216+y 122=1x 2216+y 222=1,两式相减得,(x 1+x 2)(x 1−x 2)16+(y 1+y 2)(y 1−y 2)2=0 ,故y 1−y2x 1−x 2=−2(x 1+x 2)16(y 1+y 2)=−2×(−2×2)16×(1×2)=14 ,故选C【点睛】本题考查了直线与椭圆的相交弦问题,一般涉及弦的中点和直线斜率问题时,可采用“点差法”,建立中点坐标与斜率的关系求解.8.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B,C 两点,且∠BFC =90°,则该椭圆的离心率为( )A.√63B.2√33C.12D.√22【详解】将y =b2代入椭圆方程得:B (−√32a,b2),C (√32a,b2)又椭圆焦点F (c,0) ∴BF ⃑⃑⃑⃑⃑ =(c +√32a,−b 2),CF ⃑⃑⃑⃑⃑ =(c −√32a,−b 2) ∵∠BFC =90∘∴BF ⃑⃑⃑⃑⃑ ⋅CF⃑⃑⃑⃑⃑ =c 2−34a 2+b 24=c 2−34a 2+a 2−c 24=34c 2−12a 2=0∴e 2=c 2a 2=23 ∴e =√63,故选A 【点睛】本题考查椭圆离心率的求解问题,关键是能够利用垂直关系构造出关于a,c 的齐次方程,从而根据e =ca 求得离心率.9.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为() A.13B.15C.16D.25【详解】如图所示,由椭圆x 225+y 216=1,可得a =5,b =4,c =√a 2−b 2=3,所以F 1(−3,0),F 2(3,0),由椭圆的定义可得|PF 1|+|PF 2|=2a =10,所以|PM |+|PF 1|=|PM |+2a −|PF 2|=10+(|PM |−|PF 2|)≤10+|MF 2|=10+√32+42=15,则|PM |+|PF 1|的最大值15.故选B . 【点睛】本题主要考查了椭圆的定义及标准方程的应用,以及三角形三边大小关系的应用,其中解答中熟练应用椭圆的定义转化是解答的关键,着重考查了推理与运算能力,属于基础题.10.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长、短轴长和焦距成等差数列,若点P 为椭圆C 上的任意一点,且P 在第一象限,O 为坐标原点,F (3,0)为椭圆C 的右焦点,则OP ⃑⃑⃑⃑⃑ •PF ⃑⃑⃑⃑⃑ 的取值范围为( ) A.(−16,−10)B.(−10,−394)C.(−16,−394]D.(−∞,−394]【详解】因为椭圆C 的长轴长、短轴长和焦距成等差数列 所以2a +2c =4b ,即a +c =2b F(3,0)为椭圆C 的右焦点,所以c=3 在椭圆中,a 2=c 2+b 2所以{a 2=c 2+b 2a +c =2bc =3 ,解方程组得{a =5b =4c =3所以椭圆方程为x 225+y 216=1设P(m,n) (0<m <5)则m 225+n 216=1,则n 2=16−1625m 2 OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ =(m,n )(3−m,−n ) =3m −m 2−n 2=3m −m 2−(16−1625m 2) =−925m 2+3m −16=−925(m −256)2−394因为0<m <5,所以当m =256时,OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 取得最大值为−394当m 趋近于0时,OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ 的值趋近于-16 ,所以OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 的取值范围为(-16,-394] 【点睛】本题考查了椭圆性质的综合应用,向量在解析几何中的用法,属于中档题. 二、填空题(共 25 分) 11.已知椭圆x 24+y 23=1的左、右焦点为F 1,F 2,则椭圆的离心率为_____,过F 2且垂直于长轴的直线与椭圆交于点A ,则|F 1A |=_____. 【详解】椭圆x 24+y 23=1,可得a =2,b =√3,则c =1,所以椭圆的离心率为:e =c a =12.过F 2且垂直于长轴的直线与椭圆交于点A ,所以|AF 2|=b 2a=32,由椭圆的定义可知:|F 1A |=2a ﹣|AF 2|=4−32=52.故答案为12;52.【点睛】本题考查椭圆的离心率和椭圆的定义,解题时由椭圆标准方程确定出a,b 再计算出c ,可求离心率,而求椭圆上的点到焦点的距离时,可以与椭圆定义联系起来.12.如果椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是______. 【详解】由椭圆x 2144+y 236=1,可得a =12,由椭圆的定义可知:|PF 1|+|PF 2|=2a =24,因为椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是:24-10=14.故答案为14.【点睛】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.属于基础题. 13.已知椭圆中心在原点,一个焦点为F(−2√3,0),且长轴长是短轴长的2倍.则该椭圆的长轴长为______;其标准方程是________. 【详解】解:已知{a =2b,c =2√3a 2−b 2=c 2∴{b 2=4a 2=162a =8则该椭圆的长轴长为8;其标准方程是x 216+y 24=1.故答案为椭圆的长轴长为8;其标准方程是x 216+y 24=1.【点睛】本题主要考查椭圆的标准方程.属基础题.14.已知P 是椭圆x 210+y 2=1上的一点,F 1,F 2是椭圆的两个焦点,当∠F 1PF 2=2π3时,则ΔPF 1F 2的面积为_____.【详解】设|PF 1|=m ,|PF 2|=n ,则m +n =2a =2√10在ΔPF 1F 2中,由余弦定理得:F 1F 22=m 2+n 2−2mncos∠F 1PF 2即:36=(m +n )2−2mn −2mncos2π3=40−mn ,解得:mn =4∴S ΔPF 1F 2=12mnsin 2π3=√3 【点睛】本题考查焦点三角形面积的求解,关键是能够利用余弦定理构造出关于焦半径之积的方程,属于常考题型.15.已知P 是椭圆E:x 2a 2+y 2b 2=1(a >b >0)上异于点A(−a,0),B(a,0)的一点,E 的离心率为√32,则直线AP 与BP 的斜率之积为__________.【解析】设P (x 0,y 0),有x 02a 2+y 02b 2=1,且c a =√32,得b a =12,k AP k BP =y 0x+a ⋅y 0x−a=y 02x 02−a 2=y 02(1−y 02b 2)a 2−a 2=−14.点睛:本题考查椭圆的几何性质.由离心率,得到a,b,c 的比例关系.本题中由题意可知,题目由点P 的位置决定,所以设P (x 0,y 0),得到斜率关系k AP k BP =y 0x 0+a ⋅y 0x0−a=y 02x02−a 2=y 02(1−y 02b 2)a 2−a 2=−14,为定值.三、解答题(共 34 分)16.已知点A(0,−2),椭圆E:x 2a2+y2b2=1(a>b>0)的离心率为√22,F是椭圆E的右焦点,直线AF的斜率为2,O为坐标原点.(1)求E的方程;(2)设过点P(0,√3)且斜率为k的直线l与椭圆E交于不同的两M、N,且|MN|=8√27,求k的值.【详解】解:(1)由离心率e=ca =√22,则a=√2c,直线AF的斜率k=0−(−2)c−0=2,则c=1,a=√2,b2=a2﹣c2=1,∴椭圆E的方程为x 22+y2=1;(2)设直线l:y=kx﹣√3,设M(x1,y1),N(x2,y2),则{y=kx−√3x22+y2=1,整理得:(1+2k2)x2﹣4√3kx+4=0,△=(﹣4√3k)2﹣4×4×(1+2k2)>0,即k2>1,∴x1+x2=4√3k1+2k2,x1x2=41+2k2,∴|MN|=√1+k2|x1−x2|=√1+k2√(x1+x2)2−4x1x2=4√(1+k2)(k2−1)1+2k2=8√27,即17k4−32k2−57=0,解得:k2=3或−1917(舍去)∴k=±√3,【点睛】考查直线与椭圆的位置关系,椭圆的求法,弦长的计算,考查转化思想以及计算能力.17.设O为坐标原点,动点M在椭圆E:x 24+y22=1上,过点M作x轴的垂线,垂足为N,点P满足NP⃑⃑⃑⃑⃑⃑ =√2NM⃑⃑⃑⃑⃑⃑⃑ .(1)求点P的轨迹方程;(2)设A(1,0),在x轴上是否存在一定点B,使|BP|=2|AP|总成立?若存在,求出B点坐标;若不存在,说明理由.【详解】(1)设P(x,y),M(x1,y1),则N(x1,0)∵M 在椭圆E 上 ∴x 124+y 122=1…①由NP ⃑⃑⃑⃑⃑⃑ =√2NM ⃑⃑⃑⃑⃑⃑⃑ 知:{x =x 1y =√2y 1 ,即:{x 1=x y 1=√22y ,代入①得:x 2+y 2=4即点P 的轨迹方程为:x 2+y 2=4…② (2)假设存在点B (m,0)满足条件,设P (x,y )由|BP |=2|AP |得:√(x −m )2+y 2=2√(x −1)2+y 2 即:3x 2+3y 2+(2m −8)x =m 2−4此方程与(1)中②表示同一方程,故:{2m −8=0m 2−4=12,解得:m =4∴存在点B (4,0)满足条件【点睛】本题考查椭圆的综合应用问题,涉及到动点轨迹的求解、定点问题的求解等知识;求解定点问题的关键是能够通过假设存在的方式,利用已知中的等量关系建立起关于变量的方程,通过求解方程确定变量的取值,从而得到定点是否存在.18.已知点M (2√33,√33)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且点M 到C 的左、右焦点的距离之和为2√2.(1)求C 的方程;(2)设O 为坐标原点,若C 的弦AB 的中点在线段OM (不含端点O ,M )上,求OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ 的取值范围.【详解】(1)由条件知43a 2+13b 2=1,2a =2√2,所以a =√2,b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)设点A 、B 的坐标为A (x 1,y 1),B (x 2,y 2),则AB 中点(x 1+x 22,y 1+y 22)在线段OM 上,且k OM =12,∴x 1+x 2=2(y 1+y 2),又x 122+y 12=1,x 222+y 22=1,两式相减得(x 1−x 2)(x 1+x 2)2+(y 1−y 2)(y 1+y 2)=0,易知x 1−x 2≠0,y 1+y 2≠0,所以y 1−y 2x 1−x 2=−x 1+x22(y 1+y 2)=−1,即k AB =−1. 设AB 方程为y =−x +m ,代入x 22+y 2=1并整理得3x 2−4mx +2m 2−2=0.由Δ=8(3−m 2)>0解得m 2<3,又由x 1+x 22=2m 3∈√3),∴0<m <√3.由韦达定理得x 1+x 2=4m 3,x 1x 2=2(m 2−1)3,故OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=x 1x 2+(−x 1+m )(−x 2+m ) =2x 1x 2−m (x 1+x 2)+m 2=4(m 2−1)3−4m 23+m 2 =m 2−43.而0<m <√3,所以OA ⃑⃑⃑⃑⃑ ⋅OB⃑⃑⃑⃑⃑ 的取值范围是(−43,53). 【点睛】本小题主要考查椭圆的定义和标准方程,考查直线和椭圆的位置关系,考查点差法,考查向量数量积的坐标运算,考查运算求解能力,属于中档题.19.已知Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(0,−35)的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.【详解】(1)设Q(x 0,y 0),P (x,y),则x 02+y 02=1,由BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,可得{x 0=x2y 0=−y,代入x 02+y 02=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1; (2)假设存在满足条件的定点,由对称性可知该定点必在y 轴上,设定点为H(0,m), 当直线l 的斜率存在时,设直线l 的方程为y =kx −35,联立{y =kx −35x 24+y 2=1得(1+4k 2)x 2−245kx −6425=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=24k5(1+4k 2),x 1x 2=−6425(1+4k 2),所以y 1+y 2=k(x 1+x 2)−65=−65(1+4k 2),y 1y 2=(kx 1−35)(kx 2−35)=k 2x 1x 2−35k(x 1+x 2)+925=9−100k 225(1+4k 2), 因为HM ⃑⃑⃑⃑⃑⃑⃑ =(x 1,y 1−m),HN ⃑⃑⃑⃑⃑⃑ =(x 2,y 2−m),所以HM ⃑⃑⃑⃑⃑⃑⃑ ⋅HN ⃑⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2−m(y 1+y 2)+m 2=100(m 2−1)k 2+25m 2+30m−5525(1+4k 2)=0,对任意的k 恒成立,所以{100(m 2−1)=025m 2+30m −55=0 ,解得m =1,即定点为H(0,1), 当直线l 的斜率不存在时,以MN 为直径的圆也过点(0,1), 故以MN 为直径的圆过定点(0,1).【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,直线bx −y +√2a =0经过椭圆C 的左焦点. (1)求椭圆C 的标准方程;(2)若直线bx −y +4=0与y 轴交于点P ,A 、B 是椭圆C 上的两个动点,且它们在y 轴的两侧,∠APB的平分线在y 轴上,|PA |≠|PB ||,则直线AB 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【详解】(1)在直线方程bx −y +√2a =0中令y =0,则x =−√2ab ,故c =√2ab ,又c a=√22,故b =2,所以a =4,所以椭圆标准方程为:x 28+y 24=1.(2)因为A 、B 在在y 轴的两侧,故AB 的斜率必存在, 设AB 的方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2), 因为P 在y 轴上且P 在直线2x −y +4=0,故P (0,4). 因为∠APB 的平分线在y 轴上,所以y 1−4x 1+y 2−4x 2=0,而y 1=kx 1+b,y 2=kx 2+b ,代入整理得到:2kx 1x 2+(b −4)(x 1+x 2)=0. 由{y =kx +b x 2+2y 2=8可得(1+2k 2)x 2+4kbx +2b 2−8=0,所以x1+x2=−4kb1+2k2,x1x2=2b2−81+2k2,所以2k×2b 2−81+2k2+(b−4)(−4kb1+2k2)=0,化简得到k(b−1)=0,所以对任意的k,总有b=1,故直线AB过定点(0,1).【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等. 直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x或y的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有x1x2,x1+x2或y1y2,y1+y2,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.21.已知椭圆的离心率为√32,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由试题解析:(1)设椭圆的焦半距为c,则由题设,得{a=2ca=√32,解得{a=2c=√3,………2分所以b2=a2−c2=4−3=1,故所求椭圆C的方程为.…………..4分(2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.理由如下:设点A(x1,y1),B(x2,y2),将直线l的方程代入,并整理,得.(*)………………………………….6分则,.………………………………………8分因为以线段AB 为直径的圆恰好经过坐标原点O ,所以OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =0,即.又,于是,…………….10分解得k =±√112,………………………………..11分经检验知:此时(*)式的Δ>0,符合题意.所以当k =±√112时,以线段AB 为直径的圆恰好经过坐标原点O .………………12分考点:直线与圆锥曲线的综合问题;椭圆的标准方程22.设曲线E 是焦点在x 轴上的椭圆,两个焦点分别是是F 1,F 2,且|F 1F 2|=2,M 是曲线上的任意一点,且点M 到两个焦点距离之和为4.(1)求E 的标准方程;(2)设E 的左顶点为D ,若直线l :y =kx +m 与曲线E 交于两点A ,B (A ,B 不是左右顶点),且满足|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB⃑⃑⃑⃑⃑⃑ |,求证:直线l 恒过定点,并求出该定点的坐标. 【详解】(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 由题意{2a =42c =2 ,即{a =2c =1,∴b =√a 2−c 2=√3, ∴椭圆E 的方程是x 24+y 23=1.(2)由(1)可知D (−2,0),设A (x 1,y 1),B (x 2,y 2),联立{y =kx +m x 24+y 23=1 ,得(3+4k 2)x 2+8mkx +4(m 2−3)=0,Δ=(8mk)2−4(3+4k 2)(4m 2−12)=16(12k 2−3m 2+9)>0,即3+4k 2−m 2>0,∴x 1+x 2=−8mk 3+4k 2,x 1x 2=4(m 2−3)3+4k 2,又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2 =3m 2−12k 23+4k 2,∵|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB ⃑⃑⃑⃑⃑⃑ |,∴DA ⃑⃑⃑⃑⃑ ⊥DB ⃑⃑⃑⃑⃑⃑ ,即DA ⃑⃑⃑⃑⃑ ⋅DB⃑⃑⃑⃑⃑⃑ =0, 即(x 1+2,y 1)⋅(x 2+2,y 2)=x 1x 2+2(x 1+x 2)+4+y 1y 2=0, ∴4m 2−123+4k 2+2×−8mk 3+4k 2+4+3m 2−12k 23+4k 2=0,∴7m 2−16mk +4k 2=0, 解得m 1=2k ,m 2=27k ,且均满足即3+4k 2−m 2>0,当m 1=2k 时,l 的方程为y =kx +2k =k (x +2),直线恒过(−2,0),与已知矛盾;当m 2=27k ,l 的方程为y =kx +27k =k (x +27),直线恒过(−27,0).【点睛】考查求椭圆的标准方程,直线与椭圆相交问题、椭圆中直线过定点问题.对直线与椭圆相交问题,一般设交点为A (x 1,y 1),B (x 2,y 2),由直线方程与椭圆方程联立消元用韦达定理得x 1+x 2,x 1x 2,再把这个结论代入题中另一条件可得参数k,m 的关系,求得定点.23.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,M 为椭圆上一动点,当ΔMF 1F 2的面积最大时,其内切圆半径为b 3,设过点F 2的直线l 被椭圆C 截得线段RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)若点A 为椭圆C 的左顶点,P,Q 是椭圆上异于左、右顶点的两点,设直线AP,AQ 的斜率分别为k 1,k 2,若k 1k 2=−14,试问直线PQ 是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由.【详解】解:(1)由题意及三角形内切圆的性质可得12⋅2c ⋅b =12(2a +2c)⋅b 3,得c a =12① 将x =c 代入x 2a 2+y 2b 2=1,结合a 2=b 2+c 2②,得y =±b 2a ,所以2b 2a =3③,由①②③得a =2,b =√3故椭圆C 的标准方程为x 24+y 23=1(2)设点P,Q 的坐标分别为(x 1,y 1),(x 2,y 2).①当直线PQ 的斜率不存在时,由题意得P (1,32),Q (1,−32)或P (1,−32),Q (1,32), 直线PQ 的方程为x =1②当直线PQ的斜率存在时,设直线PQ的方程为y=kx+m,联立得{x24+y23=1y=kx+m,消去y得(4k2+3)x2+8kmx+4m2−12=0,由Δ=64k2m2−4(4k2+3)(4m2−12)=48(4k2−m2+3)>0,得4k2+3>m2x1+x2=−8km4k2+3,x1x2=4m2−124k2+3.(1))由k1k2=y1y2(x1+2)(x2+2)=−14,可得4y1y2+(x1+2)(x2+2)=0,得4(kx1+m)(kx2+m)+(x1+2)(x2+2)=0,整理得(4k2+1)x1x2+(4km+2)(x1+x2)+4m2+4=0,(2)由(1)和(2)得m2−km−2k2=0,解得m=2k或m=−k当m=2k时,直线PQ的方程为y=kx+2k,过定点(−2,0),不合题意;当m=−k时,直线PQ的方程为y=kx−k,过定点(1,0),综上直线PQ过定点,定点坐标为(1,0).【点睛】本题考查求椭圆的标准方程,直线与椭圆的综合问题以及直线过定点问题,属于综合题.。
椭圆专题习题含答案
椭圆专题一.椭圆的定义与性质1.设F 1(﹣4,0)、F 2(4,0)为定点,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( ) A .椭圆 B .直线C .圆D .线段2.如果方程表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .3<m <4B .C .D .3.椭圆C :4x 2+y 2=16的长轴长,短轴长,焦点坐标依次为( ) A . B .C .D .4.已知焦点在y 轴上的椭圆的焦距为,则a=( )A .8B .12C .16D .525.椭圆的焦距是2,则m 的值是( )A .9B .12或4C .9或7D .206.已知焦点在y 轴上的椭圆的离心率为,则实数m 等于( )A .3B .C .5D .7.方程+=1表示椭圆,则k 的取值范围是 .二.椭圆的标准方程(待定系数法):定位(确定焦点的位置),定量(求出a,b )焦点在x 轴 焦点在y 轴 知椭圆过两点求椭圆方程:设 、代点,解方程组。
知焦点(焦距)和椭圆经过某一点求椭圆方程:待定系数法、定义法。
)0(12222>>=+b a by a x )0(12222>>=+b a b x a y )0,0,(122>>≠=+n m n m ny mx1.椭圆(a >b >0)的一个焦点为(3,0),点(﹣3,2)在椭圆上,则该椭圆的方程为( )A .B .C .D .2.已知椭圆C :=1(a >b >0)的离心率为,且椭圆C 的长轴长与焦距之和为6,则椭圆C 的标准方程为( ) A .=1 B .C .=1 D .3.求符合下列条件的椭圆的标准方程:(1)过点的椭圆 (2)过点(-3,2)且与有相同的焦点;(3)焦点在轴上,,且过点;(4)焦距为6,.三.求离心率:直接法,方程法1)c e e a ==<< 1.椭圆的离心率为( )A. B. C.2 D.42.椭圆6x 2+y 2=6的离心率为( )A.B.C.D.3. 过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若 ∠F 1PF 2=60°,则椭圆的离心率为 ( )A.B.C.D.4.已知椭圆+=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若=2,则椭圆的离心率是 ( )A.B.C.D.5.若一个椭圆的长轴长、短轴长、焦距成等比数列,则椭圆的离心率为 .6.已知F 1(-c ,0),F 2(c ,0)为椭圆+=1(a >b >0)的两个焦点,P 为椭圆上一点,且满足·=c 2,则此椭圆的离心率的取值范围是( )A.[,1)B.[,]C.[,]D.(0,]四.焦点三角形:以椭圆上的点、两焦点为顶点的三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的几何性质一、概念及性质1.椭圆的“围、对称性、顶点、轴长、焦距、离心率及围、a ,b ,c 的关系”;2.椭圆的通经:3.椭圆的焦点三角形的概念及面积公式:4.椭圆的焦半径的概念及公式:主要用来求离心率的取值围,对于此问题也可以用下列性质求解:c a PF c a +≤≤-1.5.直线与椭圆的位置关系:6.椭圆的中点弦问题:【注】:椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下三个命题角度:(1)根据椭圆的性质求参数的值或围; (2)由性质写椭圆的标准方程; (3)求离心率的值或围.题型一:根据椭圆的性质求标准方程、参数的值或围、离心率的值或围.【典例1】求适合下列条件的椭圆的标准方程:(1)经过点)2,0(),0,3(--Q P ;(2)长轴长等于20,离心率等于53. 【典例2】求椭圆400251622=+y x 的长轴和短轴长、离心率、焦点坐标和顶点坐标.【典例3】已知A ,P ,Q 为椭圆C :)0(12222>>=+b a b y a x 上三点,若直线PQ 过原点,且直线AP ,AQ 的斜率之积为21-,则椭圆C 的离心率为( )A.22B.21C.42D.41【练习】(1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)(2)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21(3)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.【典例4】已知F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,P 为椭圆上任意一点,且215PF PF =,则该椭圆的离心率的取值围是练习:如图,把椭圆1162522=+y x 的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分与P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则721PF PF PF +++ =【典例5】若 “过椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点F 1,F 2的两条互相垂直的直线l 1,l 2的交点在椭圆的部”,求离心率的取值围.【典例6】已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【方法归纳】:1.在利用椭圆的性质求解椭圆的标准方程时,总体原则是“先定位,再定量”.2.求解与椭圆几何性质有关的问题时,其原则是“数形结合,定义优先,几何性质简化”,一定要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的在联系,充分利用平面几何的性质及有关重要结论来探寻参数a ,b ,c 之间的关系,以减少运算量.3.在求解有关圆锥曲线焦点问题时,结合图形,注意动点到两焦点距离的转化.4. 求椭圆的离心率或其围时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的围;有时也可利用正弦、余弦的有界性求解离心率的围.5.在探寻a ,b ,c 的关系时,若能充分考虑平面几何的性质,则可使问题简化,如典例5. 【本节练习】1.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A .x 216+y 27=1B .x 216+y 27=1或x 27+y 216=1C .x 216+y 225=1D .x 216+y 225=1或x 225+y 216=12.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)3.已知椭圆短轴上的两个顶点分别为B 1,B 2,焦点为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则这个椭圆的离心率e 等于( )A .22B .12C .32D .334.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.5.已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为33,过F 2的直线l 交C 于A,B 两点,若△AF 1B 的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y x C.181222=+y x D.141222=+y x6.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.7.设21,F F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23ax =上一点,12PF F ∆是底角为300的等腰三角形,则E 的离心率为( )A.21B. 32C.43D. 548.过椭圆)0(12222>>=+b a b y a x 的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若02160=∠PF F ,则椭圆的离心率为( )A.25B.33C.21D.319.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,右顶点为A ,上顶点为B ,若BA BF ⊥,则称其为“优美椭圆”,那么“优美椭圆”的离心率为10.已知1F 为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当A F PF 11⊥,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为11.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值围是( )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)12.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 313.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 28+y 24=1D .x 216+y 24=114.如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.15.已知抛物线42x y =与椭圆)0(118222>=+a y ax 在第一象限相交于A 点,F 为抛物线的焦点,AB ⊥y 轴于B 点,当∠BAF =300时,a =16. 设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.17.椭圆x 236+y 29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则EP →·QP →的最小值为( )A .6B .3- 3C .9D .12-6 318.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.19.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是________.20.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( )A .4B .3C .2D .114. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____设F 1(-c , 0), F 2(c , 0)是椭圆12222=+by a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为 (A )316 (B )23 (C )22 (D )32若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是21.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于以椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为( )A .53 B .23 C .22 D .5922. 已知,,A P Q 为椭圆:C 22221(0)x y a b a b+=>>上三点,若直线PQ 过原点,且直线,AP AQ 的斜率之积为12-,则椭圆C 的离心率等于( )A B .12 C D .14题型二:直线与椭圆的位置关系的判定.【典例1】当m 为何值时,直线m x y l +=:与椭圆14416922=+y x 相切、相交、相离?【典例2】已知椭圆192522=+y x ,直线04054:=+-y x l ,椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?反馈:(2012)如图,椭圆E :)0(12222>>=+b a b y a x 的左右焦点分别为F 1、F 2,离心率21=e ,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :m kx y +=与椭圆E 有且只有一个公共点P ,且与直线x =4交于Q ,试探究:在坐标平面,是否存在定点M ,使得以PQ 为直径的圆恒过定点M ,若存在,求出点M 的坐标,若不存在,请说明理由.【方法归纳】:直线与椭圆位置关系判断的步骤: ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.注:对比直线与圆的位置关系的判断,它们之间有何联系与区别?题型三:直线与椭圆相交(及中点弦)问题该问题属高考中对圆锥曲线考查的热点和重点问题,其主要方法是数形结合、判别式、根与系数的关系、整体代换.【典例1】已知斜率为1的直线l 过椭圆1422=+y x 的右焦点,交椭圆于A ,B 两点,求弦AB 的长及1ABF ∆的周长、面积.【典例2】已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.【典例3】已知一直线与椭圆369422=+y x 相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.变式:过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为【典例4】(2015新课标文)已知椭圆()2222:10x y C a b a b+=>> 的离心率为22,点()2,2在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【典例5】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>3F 是椭圆的焦点,直线AF 23O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【典例6】已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :m kx y +=与椭圆C 相交于A ,B 两点(A ,B 均不在左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.【方法归纳】:(1)解决直线与椭圆相交问题的原则有两个:一是数形结合;二是一条主线:“斜率、方程组、判别式、根与系数的关系”.利用根与系数的关系整体代换,以减少运算量.(2)如果题设中没有对直线的斜率的限定,一定要讨论斜率是否存在,以免漏解;这里又有两个问题需要注意:①若已知直线过y 轴上的定点P (0,b ),可将直线设为斜截式,即纵截距式,即y =kx +b ,但要讨论斜率是否存在;②若已知直线过x 轴上的定点P (a ,0),可以直接将直线方程设为横截距式,即x =my +a ,这样可避免讨论斜率是否存在,但此时求弦长时,需将下面弦长公式中的k 用m1替换. (3)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).【本节练习】1.(2014·高考卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.2. (2015·豫西五校联考)已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1、F 2,过F 1的直线l 交椭圆于A 、B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1B . 2C .32 D . 33.(2015·调研)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O为坐标原点,则△OAB 的面积为________.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△PAB 的面积.5.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.5’.已知椭圆)0(12222>>=+b a by a x 的离心率为23,右焦点到直线06=++y x 的距离为32. (1)求椭圆的方程;(2)过点)1,0(-M 作直线l 交椭圆于A ,B 两点,交x 轴于N 点,满足NB NA 57-=,求直线l 的方程.6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,且长轴长为12,过点P(4,2)的直线l 与椭圆交于A,B 两点.(1)求椭圆方程;(2)当直线l 的斜率为21时,求AB 的值;(3)当点P 恰好为线段AB 的中点时,求直线l 的方程.7. 平面直角坐标系xoy 中,过椭圆M :)0(12222>>=+b a b y a x 的右焦点F 作直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为21. (Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.8. 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l与E 相交于,A B 两点,且22,,AF AB BF 成等差数列. (1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程.9. 设F 1 ,F 2分别是椭圆C :12222=+by a x (a >b >0)的左,右焦点,M 是C 上一点且MF 2与x轴垂直,直线MF 1与C 的另一个交点为N . (I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .10. 如图,点F 1(-c ,0),F 2(c ,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b>0)的左,右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.11.已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB , (文)求线段AB 长度的最小值.(理)试判断直线AB 与圆222=+y x 的位置关系.圆锥曲线在高考中的考查主要体现“一条主线,五种题型”,所谓一条主线:是指直线与圆锥曲线的综合.五种题型是指“最值问题;定点问题;定值问题;参数的取值围问题;存在性问题”.一、 最值问题 【规律方法】:(1)最值问题有两大类:距离、面积的最值以及与之有关的一些问题;求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见方法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解题;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法;若是分式函数则可先分离常数,再求最值;若是二次函数,可用配方法;若是更复杂的函数,还可用导数法. (3)圆锥曲线的综合问题要四重视: ①重视定义在解题中的作用;②重视平面几何知识在解题中的作用;③重视根与系数的关系在解题中的作用;④重视曲线的几何特征与方程的代数特征在解题中的作用.如定值中2014文科考题,围中的题6、7.1.已知椭圆C :1222=+y ax (a >0)的焦点在x 轴上,右顶点与上顶点分别为A 、B .顶点在原点,分别以A 、B 为焦点的抛物线C 1、C 2交于点P (不同于O 点),且以BP 为直径的圆经过点A .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若与OP 垂直的动直线l 交椭圆C 于M 、N 不同两点,求△OMN 面积的最大值和此时直线l 的方程.2.已知椭圆C :)0(12222>>=+b a by a x 的上顶点为(0,1),且离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)证明:过椭圆)0(12222>>=+n m ny m x 上一点),(00y x Q 的切线方程为12020=+nyy m x x ; (Ⅲ)从圆1622=+y x 上一点P 向椭圆C 引两条切线,切点分别为A 、B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.3.已知动点P 到定点F (1,0)和到定直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :n mx y +=与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合). (Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆122=+y x 相切时,四边形ACBD 的面积是否有最大值.若有,求出其最大值及相应的直线l 的方程;若没有,请说明理由.4. 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的右焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.5.平面直角坐标系xOy 中,已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,且点)21,3(在椭圆C 上,(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆144:2222=+b y a x E ,P 为椭圆C 上任意一点,过点P 的直线m kx y +=交椭圆E 于B A ,两点,射线PO 交椭圆E 于点Q .(ⅰ)求OPOQ 的值;(ⅱ)求ABQ ∆面积的最大值。