待定系数法求一次函数的解

合集下载

用待定系数法求一次函数的解析式

用待定系数法求一次函数的解析式

用待定系数法求一次函数的解析式
用待定系数法求一次函数的解析式
一次函数的解析式可以用待定系数法来求。

待定系数法是指,在未知系数的函数中假定各个未知系数都为一个常数,然后用它们来求解该函数,最后得出最终的解析式。

例如,一次函数为 y=2ax+b,那么可以用待定系数法求解解析式: (1) 先将未知系数 a 和 b 分别假定为常数 K1 和 K2。

即y=K1x + K2
(2) 用实验数据求出 K1 和 K2 的值。

例如,实验数据如下表:
x t1 t2 t3
y t3 t7 t11
由上表可知,当 x=1 时, y=K1*1 + K2=3;
当 x=2 时,y=K1*2 + K2=7;
当 x=3 时,y=K1*3 + K2=11.
设K1=2,代入上式可得K2=1,即K1=2,K2=1。

即K1+K2=2+1=3
(3) 将 K1 和 K2 带入原函数中,得出最终的解析式。

- 1 -。

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程

题目:用待定系数法求一次函数解析式的题目和解析过程在代数学中,待定系数法是一种常用的方法,用来求解未知系数的值。

当我们需要求一次函数的解析式时,待定系数法可以帮助我们找到正确的表达式。

下面,我将和你一起探讨待定系数法在求一次函数解析式中的应用。

1. 确定一次函数的一般形式我们知道一次函数的一般形式是 y = ax + b,其中a和b分别代表斜率和截距。

在使用待定系数法时,我们需要先确定这个一般形式,以便后续进行系数的求解。

2. 根据已知条件列出方程接下来,我们需要根据题目提供的已知条件来列出方程。

如果已知函数过点(1, 2)和斜率为3,我们可以写出方程 y = 3x + b,并代入点(1, 2)来求解b的值。

3. 求解待定系数使用待定系数法,我们将已知的条件代入一般形式中,得到一个包含未知系数a和b的方程。

根据已知条件进行求解,逐步确定待定系数的值。

在已知函数过点(1, 2)和斜率为3的情况下,我们可以设定方程y = 3x + b,代入点(1, 2),得到 2 = 3*1 + b,从而求解出b的值为-1。

4. 得出一次函数的解析式根据求解得到的待定系数,我们可以得出一次函数的解析式。

在本例中,我们已知斜率为3,截距为-1,因此得出的一次函数解析式为 y = 3x - 1。

总结回顾:待定系数法作为一种常用的代数方法,可以帮助我们求解一次函数的解析式。

在使用待定系数法时,我们需要先确定一次函数的一般形式,然后根据已知条件列出方程,逐步求解待定系数的值,最终得出一次函数的解析式。

个人观点与理解:通过使用待定系数法,我们可以更快速、更准确地求解一次函数的解析式,尤其在已知条件复杂或需要精确求解时,待定系数法可以发挥其优势。

掌握待定系数法也有助于我们在代数方程的求解过程中提高效率和准确性。

希望以上内容可以帮助你更全面、深刻地理解待定系数法在求一次函数解析式中的应用。

如果有任何问题或需要进一步探讨,欢迎随时与我联系。

知识卡片-待定系数法求一次函数解析式

知识卡片-待定系数法求一次函数解析式

待定系数法求一次函数解析式能量储备●确定一次函数的表达式y=k x+b(k≠0),只需要求出k,b的值即可,它需要两个独立的条件:这两个条件通常是两个点,或两对x,y的值.●用待定系数法确定一次函数的表达式:先设出一次函数的表达式,如y=k x+b(k≠0),再将两个已知点(通常情况下,其中一个点是与y轴的交点)的横、纵坐标或两对x,y的值分别代入y=kx+b中,建立关于k,b的两个方程,通过解这两个方程求出k和b的值,从而确定其表达式,这种方法即为待定系数法.通关宝典★基础方法点方法点1:用待定系数法确定一次函数的表达式例1在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.一根弹簧不挂物体时长9 cm;当所挂物体的质量为3 kg时,弹簧长12 cm.写出y与x之间的关系式,并求出所挂物体的质量为6 kg时弹簧的长度.分析:因为弹簧的长度y是所挂物体质量x的一次函数,所以可设函数关系式为y=k x+b(k≠0).解:设y=k x+b(k≠0),根据题意,得9=b,①12=3k+b.②所以k=1.所以y=x+9.当x=6时,y=6+9=15,即所挂物体的质量为6 kg时,弹簧的长度为15cm.★★易混易误点易混易误点1: 将正比例函数与一次函数表达式混淆例2已知y是x的一次函数,并且当x=0时,y=1;当x=2时,y=3,求它的表达式.解:设它的表达式为y=k x+b(k≠0),因为当x=0时,y=1,所以b=1.又因为当x=2时,y=3,所以2k+b=3.所以k=1.所以y=x+1.,分析:在利用待定系数法求一次函数表达式时,首先应设一次函数表达式为y=k x+b(k≠0).本题易把一次函数表达式设为y=k x,导致错误.蓄势待发考前攻略考查根据实际问题中的条件或图象确定一次函数(或正比例函数)的表达式.多以选择题或填空题的形式出现,难度较小.完胜关卡。

待定系数法求一次函数解析式步骤一元一次方程中的待定系数

待定系数法求一次函数解析式步骤一元一次方程中的待定系数

一、用待定系数法确定函数解析式的一般步骤
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。

二、一元一次方程中的待定系数的定义
二元一次方程组还可以用来求一个公式中的系数,这种方法叫作待定系数法。

这类问题主要是已知方程的解的情况,求方程的未知系数。

例如:二次函数经过某一点,还知道它的对称轴,和最高点,要我们求这个函数的解析式,我们在求这个解析式时设为y=ax2+bx+c,然后把点坐标和对称轴方程,最高点的表达式代入设的方程,进行求解,这就叫待定系数法。

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程摘要:1.待定系数法简介2.一次函数的概念和形式3.如何使用待定系数法求一次函数解析式4.解析过程示例5.总结正文:1.待定系数法简介待定系数法是一种数学方法,通过给定一些未知数的系数,然后根据已知条件建立方程组,求解这些系数,从而得到未知数的值。

这种方法在求解函数解析式时被广泛应用。

2.一次函数的概念和形式一次函数是指形如y=ax+b 的函数,其中a 和b 是常数,x 是自变量,y 是因变量。

在这个函数中,a 被称为斜率,它表示函数图像的倾斜程度;b 被称为截距,它表示函数图像与y 轴的交点。

3.如何使用待定系数法求一次函数解析式求解一次函数解析式的一般步骤如下:(1)确定函数的形式。

根据已知条件,先假设函数的形式为y=ax+b。

(2)列出方程组。

根据题目所给的条件,列出关于a 和b 的方程组。

(3)解方程组。

通过求解方程组,得到a 和b 的值。

(4)写出解析式。

将求得的a 和b 代入原假设的函数形式中,得到待求函数的解析式。

4.解析过程示例例如,如果已知函数经过点(1,2) 和(2,4),求该函数的解析式。

(1)假设函数形式为y=ax+b。

(2)列出方程组:a +b = 22a + b = 4(3)解方程组:将第一个方程变形为b = 2 - a,代入第二个方程得到2a + (2 - a) = 4,解得a = 2,再代入第一个方程得到b = 0。

(4)写出解析式:y = 2x。

5.总结待定系数法是求解一次函数解析式的有效方法,通过给定系数,建立方程组,求解系数,从而得到函数解析式。

一次函数待定系数法

一次函数待定系数法

一次函数待定系数法一次函数待定系数法是解决一元一次方程组的一种常用方法,通过设定待定系数,将方程转化为未知数为常数的形式,从而求出未知数的值。

一次函数待定系数法也被广泛用于物理学、经济学等领域的实际问题求解。

设一元一次方程为ax+b=0,其中a、b为常数,为求解方程,设未知数为x,待定系数为k,即:x=k将x=k代入原方程,得:ak+b=0此时方程的未知数为常数k,将a、b看作已知量,可以直接求解出k的值,从而得到方程的解。

值得注意的是,待定系数的设定需要根据具体情况来确定,一般应该设定为能够使计算简便、公式简单的值。

例题一:已知一元一次方程2x+3=7,试用待定系数法求解该方程。

2k+3=7将方程移项并合并同类项,得到:2k=4于是得到待求的未知数k为:方程的解为:3k-5=16一次函数待定系数法的优点是计算简便、易于掌握,适用于一些简单的问题求解。

该方法不仅可以用于未知数为常数的一元一次方程,还可以推广到一些更高阶的方程组求解,例如二元一次方程组、二元二次方程组等。

一次函数待定系数法的缺点是其需要设定待定系数,而待定系数的选择对结果有决定性影响。

如果待定系数选择不合适,有可能会导致答案错误。

在一些复杂的问题求解中,一次函数待定系数法可能不太适用,对于这些问题,需要采用其他更加复杂的方法进行求解。

结束语一次函数待定系数法是解决一元一次方程组常用的方法之一。

本文主要介绍了一次函数待定系数法的原理、优点和缺点,并通过例子进行了实际练习。

希望本文对读者掌握一次函数待定系数法有所帮助。

一次函数待定系数法是学习数学时必须掌握的基础内容,适用范围广泛,应用于物理学、经济学等领域的实际问题求解。

在应用中,一次函数待定系数法具有数值计算快捷和解法简单等优点,但同时存在着较为明显的一些不足之处。

一次函数待定系数法的优点之一是计算速度快,能够在较短时间内求得答案。

这是由于该方法以待定系数为中心,旨在通过设定合适的待定系数,将方程转换为未知数为常数的形式,从而使得计算更为简便。

用待定系数法求一次函数解析式

用待定系数法求一次函数解析式

四、画龙点晴
规律1:确定一个待定系数需要一个条件, 规律 :确定一个待定系数需要一个条件, 确定两个待定系数需要2个条件 个条件. 确定两个待定系数需要 个条件. 规律2:确定正比例函数的表达式需要一个条件, 规律 :确定正比例函数的表达式需要一个条件,
确定一次函数的表达式需要2个条件. 确定一次函数的表达式需要 个条件. 个条件
四、画龙点晴
1、列方程解应用题的基本步骤有哪些? 、列方程解应用题的基本步骤有哪些? 2、用待定系数法求一次函数解析式的基本步骤: 、用待定系数法求一次函数解析式的基本步骤 找两点坐标 设 列 解 答
思路: 思路:求一次函数的解析式 求k、b的值 列二元一次方程组 解方程组
五、融会贯通——分类与分层 融会贯通 分类与分层
{
设 列 解 答
{
一次函数的解析式为
y=2x-1

1、已知一次函数y=kx+b ,当x=2时y的值为 ,当x=- 、已知一次函数 = + 的值为4, =-2 = 时 的值为 =- 时, y的值为 ,求k、b的值 (P120/6) 的值为-2, 、 的值.( ) 的值为 的值 2、已知直线 y=kx+b经过点(9,0)和点(24,20),求k、 、 经过点( , )和点( , ), ),求 、 = + 经过点 b的值 ( P118/2) 的值. 的值 ) 3、已知一次函数的图象经过点(-4,9)与(6,3),求这个函数 、已知一次函数的图象经过点 , 与 , 的解析式。( 的解析式。( P120/7) ) 4、 已知直线 y=kx+b经过点(3,6)和点 、 经过点( , ) = + 经过点 这条直线的函数解析式。 这条直线的函数解析式。 ( P137/4) )
5 = 3k + b − 9 = −4k + b 解得 k =2 b = −1

待定系数法求一次函数解析

待定系数法求一次函数解析

感谢您的观看
THANKS
未知参数较多或未知参数之间的关系不明确
待定系数法更为适用,可以通过设立方程组求解。
与其他方法的结合使用
• 在某些情况下,可能需要结合待定系数法和点斜式或两点式来 求解一次函数的解析式。例如,已知一点和斜率,同时还需要 确定其他参数时,可以先使用点斜式得到初步的函数解析式, 再结合待定系数法求解其他参数。
实例二:已知与x轴交点求一次函数解析式
总结词
利用与x轴交点坐标求一次函数解析式
VS
详细描述
给定一次函数与x轴的交点$(x_0, 0)$,通 过待定系数法可以求出一次函数$y = kx + b$的解析式。首先,根据交点坐标计算斜 率$k = frac{0 - b}{x_0 - 0} = frac{b}{x_0}$,然后代入交点坐标$(x_0, 0)$求出截距$b = 0 - kx_0$,最终得到一 次函数解析式。
实例三:已知与y轴交点求一次函数解析式
总结词
利用与y轴交点坐标求一次函数解析式
详细描述
给定一次函数与y轴的交点$(0, y_0)$,通过 待定系数法可以求出一次函数$y = kx + b$ 的解析式。首先,根据交点坐标计算截距 $b = y_0$,然后根据斜率$k$和截距$b$ 的关系计算斜率$k = frac{y_0 - b}{0 - 0} = frac{y_0 - y_0}{0} = 0$,最终得到一次函 数解析式。
03
待定系数பைடு நூலகம்求一次函数解析 步骤
设定一次函数形式
一次函数的一般形式为 $y = kx + b$,其中 $k$ 和 $b$ 是待 求的系数。
根据题目条件,设定一次函数的具体形式,例如 $y = kx + b$。

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程
摘要:
待定系数法求一次函数解析式题目和解析过程
一、题目
1.已知一次函数的图像上有一点(2,3),且过点(-1,1)。

二、解析过程
1.设一次函数的解析式为y = kx + b。

2.代入已知点(2,3)和(-1,1)到解析式,得到方程组。

3.解方程组,得到待定系数k和b的值。

4.将求得的k和b代入解析式,得到一次函数的解析式。

正文:
一次函数的解析式可以通过待定系数法求解。

首先,我们需要设定一个一次函数的解析式,例如y = kx + b。

然后,将已知的点代入这个解析式,得到一个方程组。

接着,我们可以通过解这个方程组得到待定系数k和b的值。

最后,将求得的k和b代入解析式,就可以得到所求一次函数的解析式。

用待定系数法求一次函数解析式(超赞)名师公开课获奖课件百校联赛一等奖课件

用待定系数法求一次函数解析式(超赞)名师公开课获奖课件百校联赛一等奖课件

1
5 2 x
3k 6k b 4
b解得k b
1 3 4
一次函数因 k旳为解正此析负题式,中且为没一有次明函确
数y=kx+b(k≠0)只有 在k>0时,y随x旳
当k30时, 把(3,2),(6,5)分别代入y
得:
2 5
3k 6k b
b解得k b
1 3
3
增 0时k大x,而y增随b中大x旳,,增在大k<而
b=6 4k+b=7.2 解得
k=0.3 b=6
所以一次函数旳解析式为:y=0.3x+6
Page 20
一次函数y=kx+b(k≠0)旳自变量旳取值范围是-
3≤x≤6,相应函数值旳范围是-5≤y≤-2,求这个函数旳解 析式.
解: 当k0时, 把(3,5),(6,2)分别代入y kx b中,
得:
y
解:设过A,B两点旳直线旳体现式为y=kx+b.
由题意可知, 1 3k b,
2 0 b,

k 1, b 2.
∴过A,B两点旳直线旳体现式为y=x-2.
∵当x=4时,y=4-2=2.
∴点C(4,2)在直线y=x-2上.
∴三点A(3,1), B(0,-2),C(4,2)在同一条直线上.
Page 22
请写出 y 与x之间旳关系式,并求当所挂物
体旳质量为4公斤时弹簧旳长度。
Page 18
在某个范围内,某产品旳购置量y(单位:kg)与单价x(单 位:元)之间满足一次函数,若购置1000kg,单价为800元;若 购置2023kg,单价为700元.若一客户购置400kg,单价是多 少?
解:设购置量y与单价x旳函数解析式为y=kx+b

第19章一次函数-待定系数法求一次函数解析式(教案)

第19章一次函数-待定系数法求一次函数解析式(教案)
在学生展示环节,我发现有些同学的表述不够清晰,可能是因为他们对知识的理解还不够深刻。为了提高同学们的表达能力,我计划在接下来的课程中增加一些课堂练习和讨论环节,让大家有更多机会表达自己的观点。
第19章一次函数-待定系数法求一次函数解析式(教案)
一、教学内容
第19章一次函数-待定系数法求一次函数解析式:本节课我们将围绕一次函数的解析式展开学习,运用待定系数法求解一次函数的解析式。教学内容主要包括以下两个方面:
1.理解一次函数的一般形式:y = kx + b,其中k、b为常数,掌握k、b的物理意义及其对函数图像的影响。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y = kx + b的表达式,其中k、b为常数。它描述了两个变量之间的线性关系,是解决实际问题时常用的一种数学模型。
2.案例分析:接下来,我们来看一个具体的案例。通过分析两个点的坐标,运用待定系数法求出一次函数的解析式,并探讨其在实际问题中的应用。
-将实际问题抽象为一次函数模型,找出已知量和未知量之间的关系;
-在求解过程中,注意符号的准确运用,避免运算错误。
举例解释:
(1)待定系数法求解过程中,学生可能会对如何列出方程组、如何选取待定系数感到困惑,需要教师通过具体例子进行详细解释和指导;
(2)对于如何从实际问题中抽象出一次函数模型,学生可能会感到难以入手,教师应引导学生分析问题,找出关键信息,建立数学模型;
五、教学反思
今天我们在课堂上探讨了一次函数的待定系数法求解解析式,整体教学过程还算顺利。我发现同学们对于一次函数的一般形式掌握得比较好,但是在运用待定系数法求解过程中,有些同学对于如何列出方程组、如何选取待定系数还存在一定的困惑。这也提示我在今后的教学中需要更加关注这部分内容的讲解和练习。

201.待定系数法求一次函数解析式(谢)

201.待定系数法求一次函数解析式(谢)

待定系数法求一次函数解析式【要点梳理】确定一次函数解析式的方法主要有两种: 一种是根据公式、基本数量关系确定函数解析式;一种是运用待定系数法来求解. 待定系数法求解析式的步骤:(1)设出一次函数的解析式y =kx +b ; (2)根据条件列出关于k 、b 的二元一次方程组;(3)解二元一次方程组;(4)把k 、b 的值代入y =kx +b 中即得一次函数的解析式.【典型例题】例1 已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式. 答案:设这个一次函数的解析式是 y=kx +b ,则5=3k+b94+b k ⎧⎨-=-⎩,解得k 21b =⎧⎨=-⎩ 所以解析式是y=2x -1.例2 如图所示,直线l 是一次函数的图象. (1) 求这个函数的解析式; (2) 当x =4时,y 的值为多少?答案:设这个函数的解析式是y=kx +b ,则2=2k+02b k b ⎧⎨=-+⎩,解得12b 1k ⎧=⎪⎨⎪=⎩, 所以解析式是y=12x +1; (2)当x =4时,y=3.例3 如果一次函数y =kx +b (k≠0)的自变量的取值范围是-3≤x ≤6,相应的函数值的取值范围是-5≤y ≤-2,求一次函数的解析式.答案:设这个一次函数的解析式是 y=kx +b ,则-2=-3k 56b k b +⎧⎨-=+⎩或-5=-3k+b26k b⎧⎨-=+⎩, 解得1k 31b ⎧=-⎪⎨⎪=-⎩或1k 34b ⎧=⎪⎨⎪=-⎩, 所以解析式是y=-13x -1或y=13x -4.例4 已知直线1l 经过点A (2,3)和B (-1,-3),直线2l 与1l 相交于点C (-2,m ),与y 轴交点的纵坐标为1. (1)试求直线1l 和2l 的解析式;(2)求出1l 、2l 与x 轴围成的三角形面积; (3)x 取什么值时,1l 的函数值大于2l 的函数值.答案:(1)设直线1l 和2l 的解析式分别是 y=k 1x +b 1,y=k 2x +b 2,则由于直线1l 经过点A (2,3)和B (-1,-3),有3=2k 3bk b+⎧⎨-=-+⎩,解得k 21b =⎧⎨=-⎩,直线1l 的解析式是y=2x-1,由于点C (-2,m )在直线1l 上,有m=2×(-2)-1=-5, 于是-5=-2k 1bb+⎧⎨=⎩,解得k 31b =-⎧⎨=⎩,所以直线2l 的解析式是y=-3x +1; (2)2512;例5 直线y =k x +b 经过点(23-,0)且与坐标轴所围成的直角三角形的面积为415,求直线的解析式. 答案:由已知得 0=-32k +b , 12×32×|b |=154, 解得103b 5k ⎧=⎪⎨⎪=⎩,或103b 5k ⎧=-⎪⎨⎪=-⎩, 直线的解析式为y=103x +5,或y=-103x -5【课堂操练】1.如果一次函数y =k x -3k +6的图象经过原点,那么k 的值为_________. 答案:22.一次函数y =-2x +b 图象过点(1,-2),则b 的值为_________. 答案:03.一次函数y =k x +b 的图象过点(1,-2),且与x 轴的交点的横坐标为35,那么k= ,b = .答案:3,-54.一次函数y =k x +b 在x =1时y =-2,且其图象与y 轴交点的纵坐标为-5,其解析式为 . 答案:y=3x -55.直线y =k x +b 经过点A (-2,0)和y 轴正半轴上的一点B ,如果△ABO 的面积为2,则则b 的值为_________. 答案:16.直线y =2x +m 与直线y =3x -4的交点在x 轴上,则m 的值为_________. 答案:-837.已知一次函数的图象与y =-3x 平行,且与y=x+5的图象交于y 轴的同一个点,•则此函数的解析式是 . 答案:y =-3x +58.求下图中直线的函数解析式答案:y=2x9.已知一次函数y =k x +b (k≠0)在x =1时y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式.答案:设这个一次函数的解析式是y=kx +b , 则5=k+b06k b ⎧⎨=+⎩,解得k=-1,b=6,有y=-x +6.10.已知:函数y = (m +1) x +2 m -6 (1)若函数图象过(-1 ,2),求此函数的解析式.(2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y = -3 x +1 的交点,并求这两条直线 与y 轴所围成的三角形面积 答案:(1)由已知有2=(m +1)×(-1)+2 m -6,解得m=9,此函数的解析式为y=10x +12; (2)由已知有m +1=2,即m=1, 函数的解析式y=2x -4; (3)由方程组y 2431x y x =-⎧⎨=-+⎩解得x 12y =⎧⎨=-⎩,即交点是(1,-2), 三角形面积是12(4+1)×1=52【课后练习】 1.一次函数y =k x +b 的图象过点(1,-1),且与直线y =—2x +5平行,则此一次函数的解析式为 . 答案:y =—2x +12.若直线y =3x +a 与两坐标轴围成的三角形的面积为6,则a = . 答案:±63.若点A (6,-1)、B (1,4)、C (2,m )在一条直线上,则m 的值为 . 答案:34.若直线y =-x +a 和直线y = x +b 的交点坐标为(m ,8),则a +b = . 答案:165.已知直线过点(9,10)和(24,20),求直线的解析式.答案:设解析式是y=kx +b ,则10=9k 2024b k b +⎧⎨=+⎩,解得2k 34b ⎧=⎪⎨⎪=⎩, 直线的解析式为y=23x +4.6.如图,在平面直角坐标系中,已知长方形OABC 的两个顶点坐标为A (3,0),B (3,2),对角线AC 所在的直线为l ,求直线l 的解析式.答案:设直线l 的解析式是y=kx +b ,则有 2=k ×0+b 且0=3k +b , 解得b=2,k=-23直线l 的解析式是y=-23x +2.7.如果一次函数y =kx +b 的自变量x 的取值范围是-2≤x ≤6,相应函数的取值范围是-11≤y ≤9,求函数解析式.答案:由已知有-2k 1169b k b +=-⎧⎨+=⎩,或-2k 9611b k b +=⎧⎨+=-⎩,解得5k 26b ⎧=⎪⎨⎪=-⎩,或5k 24b ⎧=-⎪⎨⎪=⎩,故函数解析式为y=52x -6或y=-52x +4.8.已知一次函数y =kx +b 的图象过点(-2,5),并且与y 轴交于P 点,直线y =-12x +3与y 轴交于Q 点,Q 点恰与P 点关于x 轴对称,求这个一次函数解析式.答案:由直线y =-12x +3与y 轴交于Q 点, 知:点Q (0,3),由Q 点恰与P 点关于x 轴对称, 知:点P (0,-3), 故有-2k 53b b +=⎧⎨=-⎩,解得k 43b =-⎧⎨=-⎩,这个一次函数解析式是y=-4x -39.柴油机在工作时油箱中的余油量Q(千克)与工作时间t (小时)成一次函数关系,当工 作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q 与时间t 的函数关系式; (2)画出这个函数的图象. 答案:(1)Q=40-5t (其中0≤t ≤8); (2)(图象略). 10.有两条直线1l :b ax y +=和2l :5+=cx y .学生甲解出它们的交点为(3,-2);学生乙因把c 抄错而解出它们的交点为(4143,),试写出这两条直线的解析式.答案:对于直线1l :3a+b=-23144a b ⎧⎪⎨+=⎪⎩,解得a 11b =-⎧⎨=⎩; 对于直线2l :3c +5=-2,解得c=-73,这两条直线的解析式分别为y=-x +1, y=-73x +5. 11.(2011黑龙江绥化,25,8分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1) 请你直接写出甲厂的近制版费y 甲与x的函数解析式,并求出其证书印刷单价.(2) 当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3) 如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的情况下,每个证书最少降低多少元?答案:(1)制版费1千元,y 甲=112x +,证书单价0.5元.(2)把x=6代入y 甲=112x +中得y=4,当x ≥2时,由图象可设y 乙与x 的函数关系式为y=kx+b, 由已知得2364k b k b +=⎧⎨+=⎩,解得5214b k ⎧=⎪⎪⎨⎪=⎪⎩,所以y 乙=1542x +,当x=8时,y甲18152⨯+=,y 乙=1598422⨯+=,950.52-=(千元),即,当印制8千张证书时,选择乙厂,节省费用500元;(3)设甲厂每个证书的印刷费用应降低a 元,8000a=500,所以a=0.0625.34【拓展延伸】12.(2011浙江丽水,11,10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程S 与时间t 之间的图象,请回答下列问题: (1) 求师生何时回到学校?(2) 如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程S 与时间t 之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3) 如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km 、8km ,现有A 、B 、C 、D 四个植树点与学校的路程分别是13km 、15km 、17km 、19km ,试通过计算说明哪几个植树点符合要求。

一次函数待定系数法求解析式

一次函数待定系数法求解析式

一次函数待定系数法求解析式一次函数待定系数法是一种计算机科学的数值解法,它可以用于求解不可微分的不等式函数中出现的多变量函数未知参数,但不进行拟合和模拟操作。

这一方法能够找到合适的参数使得一次函数结果最小化,以最小代价求解多项式函数参数。

一、原理:一次函数待定系数法的基本原理是求解输入输出函数中出现的未知参数。

该方法最先使用一组特定的输入和输出的误差平方和,然后解出未知参数,最终求得满足条件的参数,使误差平方和最小化。

一次函数待定参数法只能处理一维问题,通常需要多次迭代求解,每次迭代优化。

二、求解准备:1、确定一次函数形式:通常,采用一次函数形式,即y=ax + b,其中a和b分别是一次函数的两个未知参数。

2、准备有效数据:要求拟合的点的坐标,数据要足够精确,能够满足一次函数形式。

3、将输入输出数据记录下来:根据有效的输入数据,将输出结果每组输入记录在表中,让系数法可以有足够的数据做计算,方便求解迭代。

三、求解方法:1、根据有效数据计算误差平方和:首先,根据每组有效的输入数据采用一次函数形式估计一次函数的输出结果,并计算每组估计的误差的平方和E。

2、采用梯度下降法解二元一次方程组:对误差平方和采用梯度下降法求得一次函数的参数a和b,梯度下降法可以使误差平方和迅速降低,实现更小的误差值。

3、迭代进行参数优化:采用梯度下降法求得参数后,实施一次函数进行迭代优化,来找到使误差最小的参数。

四、结果及分析:实施一次函数待定系数法后,可以迅速得到满足一次函数形式的未知参数,使得函数的输出更加精确。

同时,一次函数待定系数法可以节省类似拟合和模拟操作较大的计算量,提高求解效率。

用待定系数法求一次函数解析式精品课件ppt

用待定系数法求一次函数解析式精品课件ppt

从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2、已知直线y=kx+b经过点 (2.5,0),且与坐标轴所围 成的三角形的面积为6.25,求 该直线的解析式。 3、判断点A(3,2)、B(-3,1)、 C(1,1)是否在一直线上?
Page 1
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例1:已知正比例函数 y= kx,(k≠0) 的图象经过点(-2,4).
求这个正比例函数的解析式.
解:设这个一次函数的解析式为y=kx.
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解:
∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b 解得 b=-5 ∴这个一次函数的解析式为y=2x-5
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
变式7:一次函数y=kx+b(k≠0)的自 变量的取值范围是-3≤x≤6,相应函 数值的范围是-5≤y≤-2,求这个函数的 解析式.
2.分段函数 从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。 在一个变化过程中,函数 y 随自变量 x 变化的函数解析式

一次函数的待定系数法,一设二代三解四写

一次函数的待定系数法,一设二代三解四写

一、概述在数学学科中,一次函数是最基本的函数之一,也是学生在初中阶段就开始学习的内容。

待定系数法是解一次函数方程的一种常用方法,通过设定代数式的待定系数,从而解得方程的未知数,通过此方法可以简化计算过程,提高解题效率。

二、一次函数的表达式一次函数的一般表达式为:y = ax + b,其中a和b分别代表函数的系数,x为自变量,y为因变量。

在实际问题中,常常遇到一次函数方程的解的问题,这时可以利用待定系数法进行求解。

三、待定系数法的具体步骤1. 根据一次函数的一般表达式y = ax + b,对于已知的方程式或条件进行列式2. 设定代表未知系数的变量,如设a为待定系数3. 根据方程式或条件列出代数式,并将待定系数代入4. 通过方程式或条件解方程,得到未知系数的值5. 将未知系数的值代入一次函数的一般表达式,得到最终的解四、一设二代三解四写的步骤一设:假设一次函数的表达式为y = ax + b,其中a和b为待定系数二代:根据已知的方程式或条件,列出代数式并将待定系数代入三解:通过解方程得到待定系数的值四写:将待定系数的值代入一次函数的一般表达式,得到最终的解五、待定系数法的实际应用待定系数法不仅可以应用于一次函数的解题中,在物理学、化学等领域也有广泛的应用。

例如在物理学中,通过已知的实验数据可以列出方程式,通过待定系数法可以求出物理方程中的未知参数,从而得到实际的物理意义。

在化学中,化学平衡方程式的平衡常数也可以通过待定系数法进行求解,从而得到化学反应的平衡状态。

六、总结待定系数法作为一种通用的解决问题的方法,在数学以及其它学科的应用中都有着重要的地位。

通过对待定系数法的理解和应用,可以帮助我们更好地解决实际问题,提高问题解决的效率和准确性。

待定系数法也是数学学科中求解问题的重要方法之一,对培养学生的逻辑思维和解题能力具有重要意义。

希望通过学习和实践,更好地掌握待定系数法这一重要的求解方法。

待定系数法是解一次函数方程的一种重要方法,通过设定待定系数,并按照设一代二求三写的步骤逐步求解,可以简化问题,提高解题效率。

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程

一次函数是指一个函数的最高幂次为1的多项式函数,也可以称为线性函数。

它的解析式的一般形式为 y = ax + b,其中 a 和 b 是常数。

本文将介绍通过待定系数法求解一次函数的解析式的方法。

待定系数法的基本原理待定系数法是通过给定的数据点来确定一次函数的解析式。

假设已知两个点(x₁, y₁) 和(x₂, y₂),我们可以通过待定系数法求解一次函数的解析式。

假设一次函数的解析式为 y = ax + b,那么我们可以得到以下两个等式:y₁ = ax₁ + b ...(1) y₂ = ax₂ + b (2)通过解这个方程组,我们可以得到一次函数的解析式。

解析过程假设我们已经知道两个点的坐标为 (3, 5) 和 (7, 9),并且要求解出一次函数的解析式。

我们可以将这两个点的坐标代入方程组 (1) 和 (2):5 = 3a + b ...(3) 9 = 7a + b (4)为了解方程组,我们可以使用消元法或代入法。

在这个例子中,我们将使用消元法。

首先,我们将方程 (3) 乘以 7,方程 (4) 乘以 3,以使得系数 a 的系数相等:35 = 21a + 7b ...(5) 27 = 21a + 3b (6)然后,我们将方程 (6) 从方程 (5) 中减去,消除系数 a:8 = 4b解得 b = 2。

将 b 的解代入方程 (3) 或 (4) 中,我们可以求解 a:5 = 3a + 2 3a = 5 - 2 3a = 3 a = 1所以,我们得到了 a = 1 和 b = 2,代入一次函数的解析式 y = ax + b:y = x + 2因此,通过待定系数法,我们求解出了一次函数的解析式 y = x + 2。

总结待定系数法是一种通过给定的数据点来求解一次函数的解析式的方法。

它的基本原理是通过将数据点代入方程组,然后通过消元法或代入法解方程组,得到一次函数的解析式。

这种方法在实际应用中非常常见,可以用于拟合数据以及预测未知数据点的值。

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程
(原创实用版)
目录
1.待定系数法的概念
2.一次函数的概念
3.如何用待定系数法求一次函数的解析式
4.解析过程的步骤
正文
待定系数法是数学中一种求解问题的方法,它的主要思想是先设定一个函数的形式,然后通过已知条件来确定函数中的待定系数。

一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,x 是自变量。

求一次函数的解析式,就是找到函数中的 a 和 b 的值。

而待定系数法正是用来解决这个问题的。

首先,我们需要设定一次函数的形式,即 y=ax+b。

然后,根据题目给出的条件,我们可以列出方程组。

例如,如果已知函数在点 (1,2) 和点 (2,4) 处的函数值,我们可以列出如下方程组:
2 = a * 1 + b
4 = a * 2 + b
解这个方程组,我们就可以得到 a 和 b 的值,从而得到一次函数的解析式。

这就是待定系数法求一次函数解析式的基本过程。

在具体的解析过程中,我们需要注意以下几点:
1.首先,要正确设定函数的形式,即 y=ax+b。

如果已知函数的形式,那么这一步就很简单。

如果未知,就需要根据题目的条件进行推导。

2.其次,要正确列出方程组。

这需要根据题目的条件,将函数中的 a
和 b 表示成 x 的函数,然后与已知条件进行比较,列出方程组。

3.最后,要正确解方程组。

这需要使用代数方法,如消元、代入等,解出 a 和 b 的值。

以上就是待定系数法求一次函数解析式的基本步骤和注意事项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数(4)
知识技能目标
1.使学生理解待定系数法;
2.能用待定系数法求一次函数,用一次函数表达式解决有关现实问题.
过程性目标
1.感受待定系数法是求函数解析式的基本方法, 体会用“数”和“形”结合的方法求函数式;
2.结合图象寻求一次函数解析式的求法,感受求函数解析式和解方程组间的转化. 教学过程
一、创设情境
一次函数关系式y =kx +b (k ≠0),如果知道了k 与b 的值,函数解析式就确定了,那么有怎样的条件才能求出k 和b 呢?
问题1 已知一个一次函数当自变量x =-2时,函数值y =-1,当x =3时,y =-3.能否写出这个一次函数的解析式呢?
根据一次函数的定义,可以设这个一次函数为:y =kx +b (k ≠0),问题就归结为如何求出k 与b 的值.
由已知条件x =-2时,y =-1,得 -1=-2k +b .
由已知条件x =3时,y =-3, 得 -3=3k +b .
两个条件都要满足,即解关于x 的二元一次方程
⎩⎨⎧+=-+-=-.33,21b k b k 解得⎪⎪⎩
⎪⎪⎨⎧-=-=59
52b k 所以,一次函数解析式为5
952--=x y . 问题2 已知弹簧的长度y (厘米)在一定的限度内是所挂物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.
考虑 这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的长度7.2厘米,与一次函数关系式中的两个x 、y 有什么关系?
二、探究归纳
上题可作如下分析:
已知y 是x 的函数关系式是一次函数,则关系式必是y =kx +b 的形式,所以要求的就是系数k 和b 的值.而两个已知条件就是x 和y 的两组对应值,也就是当x =0时,y =6;当x =4时,y =7.2.可以分别将它们代入函数式,转化为求k 与b 的二元一次方程组,进而求得k 与b 的值.
解 设所求函数的关系式是y =kx +b (k ≠0),由题意,得

⎨⎧+==.42.7,6b k b 解这个方程组,得

⎨⎧==.6,3.0b k 所以所求函数的关系式是y =0.3x +6.(其中自变量有一定的范围)
讨论 1.本题中把两对函数值代入解析式后,求解k 和b 的过程,转化为关于k 和b 的二元一次方程组的问题.
2.这个问题是与实际问题有关的函数,自变量往往有一定的范围.
问题3 若一次函数y =mx -(m -2)过点(0,3),求m 的值.
分析 考虑到直线y =mx -(m -2)过点(0,3),说明点(0,3)在直线上,这里虽然已知条件中没有直接给出x 和y 的对应值,但由于图象上每一点的坐标(x ,y )代表了函数的一对对应值,它的横坐标x 表示自变量的某一个值,纵坐标y 表示与它对应的函数值.所以此题转化为已知x =0时,y =3,求m .即求关于m 的一元一次方程.
解 当x =0时,y =3.即:3=-(m -2).解得m =-1.
这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法(method of undetermined coefficient ).
三、实践应用
例1 已知一次函数y =kx +b 的图象经过点(-1,1)和点(1,-5),求当x =5时,函数y 的值. 分析 1.图象经过点(-1,1)和点(1,-5),即已知当x =-1时,y =1;x =1时,y =-5.代入函数解析式中,求出k 与b .
2.虽然题意并没有要求写出函数的关系式,但因为要求x =5时,函数y 的值,仍需从求函数解析式着手.
解 由题意,得⎩⎨⎧+=-+-=.
5,1b k b k
解这个方程组,得 ⎝
⎛-=-=.2,3b k
这个函数解析式为y =-3x -2.
当x =5时,y =-3×5-2=-17.
例2 已知一次函数的图象如下图,写出它的关系式.
分析 从“形” 看,图象经过x 轴上横坐标为2的点,y 轴上纵坐标是-3的点.从“数”看,坐标(2,0),(0,-3)满足解析式.
解 设:所求的一次函数的解析式为y =kx +b (k ≠0).
直线经过点(2,0),(0,-3),把这两点坐标代入解析式,得
⎩⎨⎧=-+=.3,20b b k 解得 ⎪⎩⎪⎨⎧-==.
3,23b k 所以所求的一次函数的关系式是22
3-=x y .
例3 求直线y =2x 和y =x +3的交点坐标.
分析 两个函数图象的交点处,自变量和对应的函数值同时满足两个函数关系式.而两个函数关系式就是方程组中的两个方程.所以交点坐标就是方程组的解.
解 两个函数关系式组成的方程组为⎩⎨⎧+==.
3,2x y x y
解这个方程组,得⎩
⎨⎧==.6,3y x 所以直线y =2x 和y =x +3的交点坐标为(3,6).
例4 已知两条直线y 1=2x -3和y 2=5-x .
(1)在同一坐标系内作出它们的图象;
(2)求出它们的交点A 坐标;
(3)求出这两条直线与x 轴围成的三角形ABC 的面积;
(4)k 为何值时,直线2k +1=5x +4y 与k =2x +3y 的交点在每四象限.
分析 (1)这两个都是一次函数,所以它们的图象是直线,通过列表,取两点,即可画出这两条直线.
(2)两条直线的交点坐标是两个解析式组成的方程组的解.
(3)求出这两条直线与x 轴的交点坐标B 、C ,结合图形易求出三角形ABC 的面积.
(4)先求出交点坐标,根据第四象限内的点的横坐标为正,纵坐标为负,可求出k 的取值范围. 解
(1)
(2)⎩⎨⎧-=-=.5,3221x y x y 解得⎪⎪⎩
⎪⎪⎨⎧==.37,38y x 所以两条直线的交点坐标A 为⎪⎭
⎫ ⎝⎛37,38. (3)当y 1=0时,x =
23所以直线y 1=2x -3与x 轴的交点坐标为B (2
3,0),当y 2=0时,x =5,所以直线y 2=5-x 与x 轴的交点坐标

C (5,0).过点A 作AE ⊥x 轴于点E ,则12
4937272121=⨯⨯=⨯=∆AE BC S ABC . (4)两个解析式组成的方程组为⎩⎨⎧+=+=+.
32,4512y x k y x k
解这个关于x 、y 的方程组,得⎪⎪⎩
⎪⎪⎨⎧-=+=.72,732k y k x 由于交点在第四象限,所以x >0,y <0. 即⎪⎪⎩⎪⎪⎨⎧<->+.07
2,0732k k 解得223<<-k .
四、交流反思
本节课,我们讨论了一次函数解析式的求法
1.求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y =kx +b (k ≠0)中两个待定系数k 和b 的值;
2.用一次函数解析式解决实际问题时,要注意自变量的取值范围.
3.求两个一次函数图象的交点坐标即以两解析式为方程的方程组的解.
五、检测反馈
1.根据下列条件写出相应的函数关系式.
(1)直线y =kx +5经过点(-2,-1);
(2)一次函数中,当x =1时,y =3;当x =-1时,y =7.
2.写出两个一次函数,使它们的图象都经过点(-2,3).
3.如图是某长途汽车站旅客携带行李费用示意图.试说明收费方法,并写出行李费y (元)与行李重量x (千克)之间的函数关系.
4.一次函数y =kx +b (k ≠0)的图象经过点(3,3)和(1,-1).求它的函数关系式,并画出图象.
5.陈华暑假去某地旅游,导游要大家上山时多带一件衣服,并介绍当地山区海拔每增加100米,气温下降0.6℃.陈华在山脚下看了一下随带的温度计,气温为34℃,乘缆车到山顶发现温度为32.2℃.求山高.。

相关文档
最新文档