大学物理第3章 刚体力学习题解答
第03章---刚体力学习题汇总
(A)匀角速转动; (B)匀角加速转动;
(D)
(C)角加速度越来越大的变加速运动;
(D)角加速度越来越小的变加速运动。
分析:当棒转到θ角位置时,棒所受 到的外力矩为:
θ
M 1 mgLcos 根据转动定律 M I ,有:
2
mg
1 mgL cos
可见角5
5. (a)(b)两图中的细棒和小球均相同,系统可绕o 轴在竖直面内自由转动系统从水平位置静止释放,转
(D)只有动量守恒
(C)
分析:
(A)错。非弹性碰撞,机械能不守恒。 (B)错。轴上有外力,动量不守恒。
(C)对。外力矩为零,角动量守恒。
2
2.一绕固定水平轴0匀速转动的转盘,沿图示的同一 水平直线从相反方向射入两颗质量相同、速率相等的 子弹并留在盘中,则子弹射入转盘后的角速度
(A)增大 (B)不变 分析:
边缘并粘在上面,则系统的角速度是
3v
。
分析:取如图的细长条面积:
4b
b
I r 2ds r 2adr
1 ab3 1 mb2
0
3
3
合外力矩为零,系统角动量守恒。
mvb (1 mb2 mb2 )
3
3v
4b
9
二、填空题
1.如图,半径为R,质量为M的飞轮,
可绕水平轴o在竖直面内自由转动(飞
R2
2 3
mgR
11
3.一飞轮的转动惯量为I,在t=0时角速度为 0 , 此后
飞轮经历制动过程。阻力矩M的大小与角速度的平方
成正比,比例系数K>0。当 0 / 3 时,飞轮的角加
速度 = k02 9I ,从开始制动到 0 / 3所经过
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
大学物理练习册习题及答案4
习题及参考答案第3章 刚体力学参考答案思考题3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
(C)刚体所受的合外力和合外力矩均为零。
(D)刚体的转动惯量和角速度均保持不变。
答:(B )。
3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。
A 滑轮挂一质量为M 的物体, B 滑轮受拉力F ,而且F =Mg 。
设A 、B 两 滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有(A )βA = βB (B )βA > βB(C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。
3-3关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。
3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统(A)动量守恒; (B)机械能守恒; (C)对转轴的角动量守恒;(D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。
答:(C )。
3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为213mL,起初杆静止,桌面上有两个质量均为m 的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率v 相向 运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为AMF思考题3-2图v思考题3-5图(A)23L v (B)45L v (C)67L v (D)89L v (E)127L v答:(C )。
大学物理学课后3第三章答案
题 3.8(a)图 (1) m1 , m2 和柱体的运动方程如下:
题 3.8(b)图
T2 m2 g m2a2
①
m1g T1 m1a1
②
T1R T2r J
③
式中 T1 T1,T2 T2 , a2 r , a1 R
而 由上式求得
J 1 MR 2 1 mr 2
∵
Fr N
N N
∴ 又∵
∴ ①
Fr
N
l1
l2 l1
F
J 1 mR 2 , 2
Fr R 2(l1 l2 ) F
J
mRl1
以 F 100 N 等代入上式,得
2 0.40 (0.50 0.75) 100 40 rad s2
0.20m, r =0.10m, m =4 kg, M =10 kg, m1 = m2 =2 kg,且开始时 m1 , m2 离地均为 h =2m.求: (1)柱体转动时的角加速度; (2)两侧细绳的张力.
解: 设 a1 , a2 和β分别为 m1 , m2 和柱体的加速度及角加速度,方向如图(如图 b).
习题 3
3.1 选择题
(1) 有两个力作用在一个有固定转轴的刚体上:
① 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;
② 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;
③ 当这两个力的合力为零时,它们对轴的合力矩也一定是零;
④ 当这两个力对轴的合力矩为零时,它们的合力也一定是零.
在
上
述
说
(5) 一圆盘正绕垂直于盘面的水平光滑固定轴 O 转动,如图射来两个质量相同,
大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学
第三章 刚体力学3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。
(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C J t JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。
3-2 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。
其中a ,b 为矩形板的长,宽。
证明一:如图,在板上取一质元dxdy dm σ=,对与板面垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ⎰=2dxdy y x a a b b σ⎰⎰--+=222222)()(1222b a ab +=σ证明二:如图,在板上取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转动惯量为2121b dm ⋅,根据平行轴定理,对与板面垂直的、通过几何中心的轴线的转动惯量为22)2(121x adm b dm dJ -+⋅=dx x ab dx b 23)2(121-+=σσ 33121121ba a b dJ J σσ+==∴⎰)(1222b a ab +=σ3-3 如图3-28所示,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,求重物的加速度和各段绳中的张力。
解:受力分析如图ma T mg 222=- (1) ma mg T =-1 (2) βJ r T T =-)(2 (3) βJ r T T =-)(1 (4)βr a =,221mr J =(5) 联立求出g a 41=, mg T 811=,mg T 451=,mg T 232=3-4 如图3-29所示,一均匀细杆长为L ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过细杆中心的竖直轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
第03章(刚体力学)习题答案
轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 310 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]
大学物理第三章刚体力学基础习题答案
方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma
g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr
大学物理五第三章习题答案
第三章 刚体的转动习题答案1、对于定轴转动刚体上不同的点来说:线速度、法向加速度、切向加速度具有不同的值,角位移、角速度、角加速度具有相同的值。
2、由sin M r F Fr θ=⨯=可知,(1)0,0F M ≠=,当0r =或者sin 0θ=,即力通过转轴或者力与转轴平行; (2)0,0F M =≠,这种情况不存在; (3)0,0F M ==,这种情况任何时候都存在。
3、根据均匀圆盘对中心轴的转动惯量:221122I mr vr ρ==可知,对于相同几何形状的铁盘和铝盘,密度大的转动惯量大。
通常我们取铁的密度为37.9/g cm ,铝的密度32.7/g cm ,因此铁盘对中心轴的转动惯量大;根据刚体动能定理:21222111d 22A M I I θθθωω==-⎰,可知对铁盘的外力矩要做更多的功。
4、轮A 的转动惯量212I mr =,轮B 的转动惯量2I mr =,根据刚体的转动定律M I β=,因为两者所受的阻力矩相等,可知轮A 的转动角加速度大于轮B 的转动角加速度,故轮A 先停止。
5、舞蹈演员在旋转过程中,可以近似地认为角动量守恒,当其把双手靠近身体时,转动惯量减小,故角速度增大;当其把双手伸开,转动惯量增大,故角速度减小。
6、解:2334d a bt ct dtθω==+-, 2612d b t c t dtωβ==-。
7、解:11200240/60rad s πωπ⨯==,22700290/60rad s πωπ⨯==, 2215025/126rad s t ωωππβ-===∆, 2117803902t t n θωβπ=+==。
8、解:根据均匀球体对直径轴的转动惯量225I mr =,得到地球对自转轴的转动惯量3729.810I kg m =⨯⋅,地球自转角速度2/246060rad s πω=⨯⨯,转动动能22813102k E I J ω==⨯。
9、解:已知030/rad s ωπ=,切断电源后的角位移752150θππ=⨯=,根据匀减速运动规律2220023/2rad s ωωβθβπθ=⇒==,由于电扇是匀减速,可知阻力矩为常量,因此根据刚体转动动能定理22101144.422M I I J θωω=-=-, 可得到转动惯量2244.420.01I kg m ω⨯==⋅,以及阻力矩44.40.1150M N m π=≈⋅。
大学物理习题答案03刚体运动学
⼤学物理习题答案03刚体运动学⼤学物理练习题三⼀、选择题1.⼀⼒学系统由两个质点组成,它们之间只有引⼒作⽤。
若两质点所受外⼒的⽮量和为零,则此系统(A) 动量、机械能以及对⼀轴的⾓动量都守恒。
(B) 动量、机械能守恒,但⾓动量是否守恒不能断定。
(C) 动量守恒,但机械能和⾓动量守恒与否不能断定。
(D) 动量和⾓动量守恒,但机械能是否守恒不能断定。
[ C ]解:系统=0合外F,内⼒是引⼒(保守内⼒)。
(1)021 F F,=0合外F ,动量守恒。
(2)2211r F r F A =合。
21F F,但21r r时0A 外,因此E不⼀定守恒。
(3)21F F,2211d F d F M =合。
两⼒对定点的⼒臂21d d 时,0 合外M,故L 不⼀定守恒。
2. 如图所⽰,有⼀个⼩物体,置于⼀个光滑的⽔平桌⾯上,有⼀绳其⼀端连结此物体,另⼀端穿过桌⾯中⼼的⼩孔,该物体原以⾓速度ω在距孔为R 的圆周上转动,今将绳从⼩孔往下拉。
则物体 (A) 动能不变,动量改变。
(B) 动量不变,动能改变。
(C) ⾓动量不变,动量不变。
(D) ⾓动量改变,动量改变。
(E)⾓动量不变,动能、动量都改变。
[ E ]解:合外⼒(拉⼒)对圆⼼的⼒矩为零,⾓动量O Rrmv L 守恒。
r 减⼩,v 增⼤。
因此p 、E k 均变化(m不变)。
3. 有两个半径相同,质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A 和J B ,则(A)A J >B J (B) A J < B J(C) A J =B J (D) 不能确定A J 、B J 哪个⼤。
[ C ]解:2222mR dm R dm R dm r J, J 与m 的分布⽆关。
另问:如果是椭圆环,J 与质量分布有关吗?(是)4. 光滑的⽔平桌⾯上,有⼀长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O ⾃由转动,其转动惯量为31mL 2,起初杆静⽌。
大学物理刚体习题
大学物理刚体习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题第三章 刚体的转动刚体的定轴转动47. 一定滑轮半径为R ,质量为M ,用一质量不计的绳绕在滑轮上,另一端系一质量为m 的物体并由静止释放,这时滑轮的角加速度为1β,若不系物体而用一力F = mg 拉绳子使滑轮转动,这时角加速度为2β,这时有()1β2β()1β2β (C )1β2β(D )无法判断 分析由转动定律M I β=本题中I 不变β的大小完全取决于M 的大小而 M TR =系物体m 时 : T mg <不系物体而用一力F = mg 时: TF mg ==因此力矩变大所以有12ββ<mF选49.一飞轮的转动惯量为J ,t = 0时角速度为0ω,轮子在转动过程中受到一力矩2ωk M-=,则当转动角速度为0/3ω时的角加速度β = 从0ω到0/3ω飞轮转动经过的时间t ∆= 解: (1) 求β当0/3ω时, 20()3M k ω=-由 M J β=, 可得此时 209k MJ J ωβ==-(2) d M J J dt ωβ== 2d k J dt ωω-=分离变量,两边积分32td kdt Jωωωω-=⎰⎰解得: 02J t k ω∆=50.长为l 的均匀直棒可绕其下端与棒垂直的水平光滑轴在竖直平面内转动。
抬起一端使与水平夹角为60=θ,棒对轴的转动惯量为231ml J =,由静止释放直棒,则t = 0时棒的β=?;水平位置时的β=?这时的ω=(1)求β 据转动定律M J β=, MJβ= 0t =时, cos 602lM mg =︒水平位置时, 2lM mg =代入MJβ=,可别解得034glβ= 和 32g l β= (2)求ωd d d d M J J J J dt d dt d ωωθωβωθθ====将cos 2l M mg θ=和213J ml =代入化简并积分得, 0033cos 2g d d l ωπθθωω=⎰⎰ 60可求得332g l ω=(本题还可用动能定律机械能守恒方便求解ω)2211sin 60223l mg ml ω︒=⋅ 332g lω⇒=51.一飞轮以min /600rev 的转速转动,其转动惯量为25.2m kg J ⋅=,以恒定力矩使飞轮在一分钟内停止转动,求该力矩M 。
面向新世纪课程教材大学物理大作业答案——刚体力学作业
L2
−
L1
=
J 2ω2
−
J1ω1
质点的动量定理
dpr
=
r F
⋅
dt
∫ r
I
=
tr F ⋅ dt =
t0
pr − pr0 = mvr − mvr0
三、刚体的角动量守恒定律
1. 角动量守恒定律
∫ 由角动量定理
r M
当
r M外
=
0
时,
外
d
t r
ΔL
= =
Δ 0
r L
r L
=
恒矢量
P.6
1
区分两类冲击摆
(1)
大作业题解
刚体力学
第3章 刚体力学基础
一、对转轴的力矩
r M
=
rr
×
r F
单位:N·m
r M
=
rr
×
r F⊥
r M
=
rr
×
r F
大小: 方向:
M = Frsinϕ
rr
→
r F
右旋前进方向
二、定轴转动定律
M z = Jβ
P.2
转动惯量(moment of inertia)
∑ 1. 定义 J = iri2mi 单位: kg ⋅ m 2
l/4 O
[ A]
mg l = 1 Jω 2 J = 7 ml 2
22
48
⇒ ω = 4 3g 7l
P.11
9.如图所示,一人造卫星到地球中心C的最大距离和
最小距离分别为RA和RB。设人造卫星对应的角动量分
别为LA和LB,动能分别为EkA和EkB,则有
(A) LB > LA,EkB > EkA
【大学物理上册课后答案】第3章 刚体的定轴转动
第3章 刚体的定轴转动习题解答3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200转匀加速地增加到每分钟2700转,求:(1)角加速度;(2)在此时间内,曲轴转了多少转?解:(1))/(401s rad πω= )/(902s rad πω=)/(1.13)/(6251240902212s rad s rad t≈=-=∆-=πππωωβ匀变速转动(2))(78022122rad πβωωθ=-=)(3902圈==πθn3-2 一飞轮的转动惯量为J ,在0=t 时角速度为0ω,此后飞轮经历制动过程。
阻力矩M 的大小与角速度ω的平方成正比,比例系数0>K 。
求:(1)当30ωω=时,飞轮的角加速度;(2)从开始制动到30ωω=所需要的时间。
解:(1)依题意 2ωβK J M -== )/(92202s rad JK JK ωωβ-=-=(2)由JK dtd 2ωωβ-==得⎰⎰-=3200ωωωωK Jd dt tωK J t 2=3-3 如图所示, 发电机的轮A 由蒸汽机的轮B 通过皮带带动。
两轮半径A R =30cm ,=B R 75cm 。
当蒸汽机开动后,其角加速度π8.0=B βrad/s 2,设轮与皮带之间没有滑动。
求(1)经过多少秒后发电机的转速达到A n =600rev/min ?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加速度。
解:(1)t A A βω= t B B βω=因为轮和皮带之间没有滑动,所以A 、B 两轮边缘的线速度相同,即B B A A R R ωω=又)/(20606002s rad A ππω=⨯=联立得)(10s R R t BB A A ==βω(2))/(10603002s rad A ππω=⨯=)/(62s rad tAAA πωωβ=-'=3-4 一个半径为=R 1.0m 的圆盘,可以绕过其盘心且垂直于盘面的转轴转动。
大学基础物理学(韩可芳)习题参考-第3章(刚体力学基础)-0425
第三章 刚体力学基础思考题3-1 一个绕定轴转动着的刚体有非零的角速度和角加速度。
刚体中的质点A 离转轴的距离是质点B 的两倍,对质点A 和质点B ,以下各量的比值是多少?(1)角速率;(2)线速率;(3)角加速度的大小;(4)加速度的切向分量;(5)加速度的法向分量;(6)加速度的大小。
3-2 以下说法是否正确?并加以分析: (1)一个确定的刚体有确定的转动惯量。
(2)定轴转动的刚体,当角速度大时,作用的力矩也大。
(3)使一根均匀的铁棍保持水平,如握住棍子的中点要比握住它的一端容易。
(4)一个有固定轴的刚体,受到两个力的作用。
当这两个力的合力为零时,它们对轴的合力矩也一定为零;当这两个力对轴的合力矩为零时,它们的合力也一定为零。
3-3 指出下弄表达式哪些是正确的,哪些是错误的,并说明理由。
,,,,2122c c ccp cK v M r L MrJ MghE vM E ⨯====E K 、E P 、J 、L分别表示绕定轴转动刚体的动能、重力势能、转动惯量、角动量。
式中:M为刚体的质量,c v为质心速度,h c 为质心距零势能面的高度,r c 为质心到转轴的距离。
3-4 已知银河系中有一天体是均匀球体,现在半径为R ,绕对称轴自转的周期为T ,由于引力凝聚,它的体积不断收缩。
假定一万年后它的半径缩小为r ,试问一万年后此天体绕对称轴自转的周期比现在大还是小?它的动能是增加还是减少?3-5 一圆形平台,可绕中心轴无摩擦地转动,有一辆玩具汽车相对台面由静止启动,绕轴做圆周运动,问平台如何运动?当小车突然刹车,平台又如何运动?运动过程中小车—平台系统的机械能、动量和角动量是否守恒?习题解答3-1 一汽车发动机曲轴的车速在12s 内由每分钟1200转均匀地增加到每分钟2700转,求:(1)角加速度;(2)在此时间内,曲轴转了多少转?3-2 某机器上的飞轮运动学方程程为:θ=at +bt 2-ct 3,求t 时刻的角速度和角加速度。
《大学物理》课后解答题 第三章刚体定轴转动
第三章 刚体定轴转动一、思考讨论题1、刚体转动时,若它的角速度很大,那么作用它上面的力是否一定很大?作用在它上面的力矩是否一定很大?解:刚体转动时,它的角速度很大,作用在它上面的力不一定大,作用在它上面的力矩也不一定大。
ω增大,则增大增大,M , βωI dtd I ==, 又⨯= 更无直接关系。
与无直接关系,则有关,与与ωωβF M 2、质量为m =4kg 的小球,在任一时刻的矢径j t i t r 2)1(2+-=,则t s =3时,小球对原点的角动量=?从t =1s 到t s =3的过程中,小球角动量的增量=?。
解:角动量)22(]2)1[(2t m j t i t dtd m m +⨯+-=⨯=⨯= t s =3j i t m j t i t 80)26(4)68()22(]2)1[(23-=+⨯+=+⨯+-==j t m j t i t 16)22(42)22(]2)1[(21-=+⨯=+⨯+-==64)16(8013-=---==∆==3、如图5.1,一圆形台面可绕中心轴无摩擦地转动,有一辆玩具小汽车相对于台面由静止开始启动,绕作圆周运动,问平台面如何运动?若经过一段时间后小汽车突然刹车,则圆台和小汽车怎样运动?此过程中,对于不同的系统,下列表中的物理哪些是守恒量,受外力,合外力矩情况如何?解:平台绕中心轴转动,方向与小车转动方向相反。
小车突然刹车,圆台和小车同时减速、同时静止。
分别考虑小车和圆台在垂直和水平方向的受力。
图5.1tf n小车圆台4、绕固定轴作匀变速转动的刚体,其中各点都绕轴作圆周运动,试问刚体上任一点是否具有切向加速度?是否具有法向加速度?法向加速度和切向加速度大小是否变化? 解:刚体上的任何一点都有切向加速度。
也有法向加速度。
大小不发生变化。
5、在一物体系中,如果其角动量守恒,动量是否也一定守恒?反之,如果该系统的动量守恒,角动量是否也一定守恒?解:在一物体系中,角动量守恒,动量不一定守恒。
大学物理答案 第三章 刚体的定轴转动
第三章 刚体的定轴转动3-1 (1)铁饼离手时的角速度为(rad/s)250125===.//R v ω(2)铁饼的角加速度为2222539.8(ra d /s )222 1.25ωβ===θ⨯π⨯(3)铁饼在手中加速的时间为t ,则t ω=β(s)628025251222..=⨯⨯==πωθt3-2 (1)初角速度为(rad/s)9206020020./=⨯=πω末角速度为(rad/s)3146030002=⨯=/πω角加速度为231420.941.9(ra d /s )t7.0ω-ω-β===(2)转过的角度为)186(rad 101717231492023圈=⨯=⨯+=+=..t ωωθ(3)切向加速度为2t a R 41.90.28.38(m /s )=β=⨯=法向加速度为)(m /s10971203142422n ⨯=⨯==..R a ω总加速度为)(m/s10971)10971(378242422n 2t ⨯=⨯+=+=...a a a总加速度与切向的夹角为9589378101.97arctanarctan4tn '︒=⨯==.a a θ3-3 (1)对轴I 的转动惯量222219)cos602(])cos60()cos60([2maa a m a a a m J =︒++︒++︒=对轴II 的转动惯量2223)sin60(4maa m J =︒=(2)对垂轴的转动惯量2222312)2()cos30(222maa m a m maJ =+︒+=3-4 (1)设垂直纸面向里的方向为正,反之为负,则该系统对O 点的力矩为mgl l mg l mg l mg l mgM438141418343430=⋅-⋅-⋅+=(2)系统对O 点的总转动惯量等于各部分对O 点的转动惯之和,即22222432104837)43()43)(43(31)4)(4(31)4(mll m l m l m l m J J J J J =+++=+++= (3)由转动定律 βJ M = 可得lg mlmglJ M37364837432===β3-5 (1)摩擦力矩恒定,则转轮作匀角加速度运动,故角加速度为0001201)-(0.8ωωωωβ.-==∆-=t第二秒末的角速度为0000260220ωωωβωω..=⨯-=+=t(2)设摩擦力矩r M 与角速度ω的比例系数为α,据题设可知αωωαω==tJMrd d 即,t Jt Jtαωωαωωωω==⎰⎰0lnd d 0据题设s 1=t 时,0180ωω.=,故可得比例系数80ln .J =α由此s 2=t 时,转轮的角速度2ω为ln0.82ln2=ωω002264080ωωω..==∴3-6 设飞轮与闸瓦间的压力为N ,如图示,则二者间摩擦力N f r μ=,此摩擦力形成阻力矩f r,由转动定律βJ R f r =其中飞轮的转动惯量2mRJ =,角加速度n t520πωωβ-=-=,故得14(N)30.25(1000/60)605252-mnRf r =⨯⨯⨯-=-=ππ见图所示,由制动杆的平衡条件可得0= )(121l N l l F '-+r f N N '==μ得制动力(N)3140.75)(0.54050314)(211=+⨯=+=..l l l f F r μ3-7 如图所示,由牛顿第二定律 对11111:a m g m T m =- 对22222:a m T g m m =- 对整个轮,由转动定律β⎪⎭⎫⎝⎛+=-22221111222121R MR M R T R T 又由运动学关系 1122a /R a /R β== 联立解以上诸式,即可得222221111122)2/()2/()(R m MR m M gR m R m +++-=β3-8 设米尺的总量为m ,则直尺对悬点的转动惯量为习题3-6图习题3-7图2211222211J m l m l 331212m 0.4m 0.635351.4m150.093m=+=⨯⨯+⨯⨯==mg 1.02152mg 522153mg 53=⨯⨯-⨯⨯=M又 1.4M J I m 15=β=2M 0.1m g 1510.5(ra d s)J 1.4m-⨯∴β===从水平位置摆到竖直位置的过程中机械能守恒(以水平位置为O 势能点)221ωJ mghc=即 25.14.1211.0ωm mg ⨯=⨯21=⇒ω3-9 m 视为质点,M 视为刚体(匀质圆盘)。
大学物理第3章刚体和流体试题及答案.docx
第3章刚体和流体一、选择题1. 飞轮绕定轴作匀速转动吋,飞轮边缘上任一点的[](A)切向加速度为零,法向 加速度不为零(B) 切向加速度不为零,法向加速度为零 (C) 切向加速度和法向加速度均为零 (D) 切向加速度和法向加速度均不为零2. 刚体绕一定轴作匀变速转动时,刚体上距转轴为r 的任一点 的[](A)切向加速度和法向加速度均不随时间变化(B) 切向加速度和法向加速度均随时间变化 (C) 切向加速度恒定,法向加速度随时间变化 (D) 切向加速度随时间变化,法向加速度恒定T3-1-2 图3. 一飞轮从静止开始作匀加速转动吋,飞轮边缘上一点的法向加速度禺和切向加速 度a f -的值怎样? [](A) a n 不变,a,为 0(C) a n 增尢a,为04. 当飞轮作加速转动时,飞轮上到轮心距离不等的二点的切向加速度a,和法向加速度偽是否相同?[](A) a,相同,a n 相同(C)e •不同,禺相同(C) 刚体的质量对给定转轴的空间分布(D)转轴的位置6. 关于刚体的转动惯量丿,下列说法中正确的是 [](A)轮子静止时其转动惯量为零(B)若加A >〃B ,则4>J B(C) 只要m 不变,则J 一定不变(D)以上说法都不正确7. 下列各因素中,不影响刚体转动惯量的是 I](A)外力矩(B)刚体的质量(B) a n 不变,a,不变(D) 增大,a,不变(B) a,相同,a n 不同(D) a,不同,a n 不同5.刚体的转动惯量只决定于[](A)刚体的质量(B)刚体的质量的空I'可分布(C) 刚体的质量分布(D)转轴的位置& 关于刚体的转动惯量,以下说法中错误的是[](A)转动惯量是刚体转动惯性大小的量度(B)转动惯量是刚体的固有属性,具有不变的量值(C)转动惯量是标量,对于给定的转轴,刚体顺时针转动和反时针转动时,其转动惯量的数值相同(D)转动惯量是相对量,随转轴的选取不同而不同9.两个质量分布均匀的圆盘A和B的密度分别为厂八和厂B,如果有厂A >金,但两圆盘的总质量和厚度相同.设两圆盘对通过盘心垂直于盘面的轴的转动惯量分别为丿A和儿, 则有:[1(A)丿A>J B(B)J A<J B(C) %=J B(D)不能确定丿A、丿B哪个大10.M个半径相同、质量相等的细圆坏A和B, A环的质量均匀分布,B环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分別为厶和丿B,则有:[ ](A) A>J B(B)J A<J B(C) 几=几(D)不能确定J八、哪个大11.一均匀圆环质量为内半径为R\,外半径为心,圆环绕过12. 一正方形均匀薄板,已知它对通过中心并与板面乖直的轴的转动惯量为J ・如果以1(B) _2 J(C)J(D)不能确定13•地球的质量为g 太阳的质量为地心与太阳中心的距离为&引力常数为G 地球绕太阳转动的轨道角动量的大小为14•冰上芭蕾舞运动员以一只脚为轴旋转吋将两臂收拢,则 [](A)转动惯量减小(B)转动动能不变(C)转动角速度减小(D)角动量增大速度为15. 一滑冰者,开始自转吋其角必,转动惯量为丿°当他将手臂收回时,其转动惯量减少为3 j,则它的角速度将变为11[1 (A) -K4)(B)_ 必 (C) 3144)3V316. 绳的一端系一质量为m 的小球,在光滑的水平桌面上作匀速圆周运动.若从桌面中心孔向下拉绳子,则小球的I ] (A)角动量不变 (B)角动量增加中心且乖直 暈是11](A) 3M R(22- /?!2)(B) 21 122(C) M R( 2 -T3-1-11 图M/?(22+ /?!2) /?! )2 (D) MR (2+ /?! )2其一条对角线为轴,它的转动惯量为2](A) _3 J (D)必丁圆环面的转轴的转动惯 T3-1-12 图T3-1-16 图(D)动量减少(C) 动量不变17. 刚体角动量守恒的充分而必耍的条件是 r 1(A )刚体不受外力矩作用 (B )刚体所受的合外力和合外力矩均为零(C)刚体所受合外力矩为零(D)刚体的转动惯量和角速度均保持不变18. 绕定轴转动的刚体转动时,如果它的角速度很大,则 [](A)作用在刚体上的力一定很大 (B)作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大(D)难以判断外力和力矩的大小19. 一个可绕定轴转动的刚体,若受到两个大小相等、方向相反但不在一条直线上的恒力作用,而且力所在的平面不与转轴平行,刚体将怎样运动? [](A)静止(B)匀速转动(C) 匀加速转动(D)变加速转动20. 儿个力同时作用在一个具有固定转轴的刚体上.如果这儿个力的矢量和为零,则 物体 [](A)必然不会转动 (B)转速必然不变(C) 转速必然改变 (D)转速可能不变,也可能变 21. 两个质量相同、飞行速度相同的球A 和B,其中A 球无转动,B 球转动,假设要 把它们接住,所作的功分别为內和金,则: [1(A) 4>人2 (B)A }<A 2(C)A )= A 2(D)无法判定22. 一个半径为R 的水平圆盘恒以角速度"作匀速转动.一质量为m 的人要从圆盘 边 缘走到圆盘中心,圆盘2 I J (A) _L mR w2T3-1-22 图23. 在外力矩为零的情况下,将一个绕定轴转动的物体的转动惯量减小一半,则物体的 [1(A)角速度将增加三倍(B)角速度不变,转动动能增大二倍(C) 转动动能增大一倍(D)转动动能不变,角速度增大二倍24. 银河系中一均匀球体天体,其半径为R,绕其对称轴自转的周期为T.由于引力凝 聚作用,其体积在不断收缩.则一万年以后应有:对他所作的功为(B)2(C)mR 1 W-(D) -mBrw 2[](A)自转周期变小,动能也变小(B)自转周期变小,动能增大(C)自转周期变大,动能增大(D)自转周期变大,动能减小25. 人造地球卫星绕地球作椭圆轨道运动.卫星轨道近地点和远地点分别为A 和B, 用厶和瓦分别表示卫星对地心的角动量及其动能的瞬时值,则应有 r ] (A) L A > L B , E^A > E RB(B) L A =厶〃,E^A < E 匕B(C) L A = L B ,E U > E RB(D) L A < L B ,Eg < E RB26. 一运动小球与另一质量相等的静止小球发生对心弹性碰撞,则碰撞后两球运动方 向间的夹角 [](A)小于 90° (B)等于 90°(C) 大于90°(D)条件不足无法判定27. 一质量为M 的木块静止在光滑水平面上,质量为M 的子弹射入木块后又穿出來.子弹在射入和穿出的过程中, M[ ](A)子弹的动量守恒o —[(C ) 子弹的角动量守恒(D) 子弹的机械能守恒T3-1-27 图(B)子弹和木块系统的动fi:守恒,机械能不守恒这一过程的分析是 [](A)子弹的动能守恒止于光滑水平面上的木块后随木块一起运动.对于(B) 子弹、木块系统的机械能守恒 (C) 子弹、木块系统水平方向的动量守恒 (D) 子弹动能的减少等于木块动能的增加T3-1-28图29. 一块长方形板可以其一个边为轴自由转动,最初板自由下垂•现有一小团粘土垂 直于板面撞击板,并粘在板上.对粘土和板系统,如果不计空气阻力, 在碰撞过程中守恒的塑是 I ](A)动能(B)绕长方形板转轴的角动量(C) 机械能(D)动量30. 在下列四个实例中,物体机械能不守恒的实例是 I J(A)质点作圆锥摆运动(B) 物体在光滑斜面上自由滑下(C) 抛出的铁饼作斜抛运动(不计空气阻力) (D) 物体在拉力作用下沿光滑斜面匀速运动31. 在系统不受外力作用的非弹性碰撞过程屮 [](A)动能和动量都守恒(B)动能和动量都不守恒(C) 动能不守恒,动量守恒(D)动能守恒,动量不守恒32. 下面说法屮正确的是 [](A)物体的动量不变,动能也不变(B) 物体的动量不变,角动量也不变(C) 物体的动量变化,角动量也一定变化 (D) 物体的动能变化,动量却不一定变化33. 人造地球卫星绕地球作椭圆轨道运动.若忽略空气阻力和其他星球的作用,在卫星 的运行过程中[](A)卫星的动量守恒,动能守恒(B) 卫星的动能守恒,但动量不守恒(C) 卫星的动能不守恒,但卫星对地心的角动量守恒 (D) 卫星的动量守恒,但动能不守恒2& — 子弹以水 M平速度v 射入一静T3-1-29 图34.人站在摩擦可忽略不计的转动平台上,双臂水平地举起二哑铃,当人在把此二哑铃水平地收缩到胸前的过程中,人与哑铃组成的系统有[](A)机械能守恒,角动量守恒(B)机械能守恒,角动量不守恒(C) 机械能不守恒,角动量守恒(D)机械能不守恒,角动量不守恒35.—人手拿两个哑铃,两臂平伸并绕右足尖旋转,转动惯量几角速度为若此人2突然将两臂收冋,转动惯量变为亍丿.如忽略摩擦力,则此人收臂后的动能与收臂前的动能之比为[ ](A) 1 : 9 (B) 1 : 3 (C)9:l (D) 3 : 136.将唱片放在绕定轴转的电唱机转盘上时,若忽略转轴摩擦,则以唱片和转盘为体系的[](A)总动能守恒(B)总动能和角动量都守恒(C) 角动量守恒(D)总动能和角动量都不守恒37.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如T3-1-37图所示.今使棒从水平位置由静止开始白由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?[ ](A)角速度从小到大,角加速度从大到小(B)角速度从小到大,角加速度从小到大(C)角速度从大到小,角加速度从大到小(D)角速度从大到小,角加速度从小到大T3-I-37图38.有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中:J(A)只有⑴是正确的(B)(1)、(2)正确,(3)、(4)错误(C)(1)、(2)、(3)都正确,(4)错误(D)(1)、(2)、(3)、(4)都正确39.一圆盘正绕垂直于盘而的水平光滑固定轴0转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线m上的子弹,子弹射入圆盘并II留在盘内,则子弹射入后的瞬间,圆盘的角速度M/[ ](A)增大(C)减小(B)不变(D)不能确泄T3-1-39 图40. 光滑的水平血上有长为2/、质量为m 的匀质细杆,可绕过其中点O 且垂直]_于桌面的竖直固定轴自由转动,转动惯量为3mZ 2 .起初杆静止.有一质量为m 的小 球沿桌面正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如右图所示.当小球与杆端发生 碰撞后,就与杆粘在一起随杆转动,则这一系统碰撞后的转动角速度是lv 2vT3-2-3 图[](A) I2_ (B) _3/3v(C )一4/T3-1-40图二、填空题3V(D) 一1. 半径为r 的圆环平放在光滑水平面上,环上有一甲虫,环和甲虫的质量相等,并且原先都是静止的.以后甲虫相对于圆环以等速率T3-2-1 图爬行,当甲虫沿圆环爬完一周时,圆环绕其中心转过的角度是 __________ •2. 一质量为60 kg 的人站在一质量为60 kg 、半径为1米的均 匀圆盘的边缘,圆盘可绕与盘面相乖直的中心竖直轴无摩擦地转动.系统 原来是静止的,后来人沿圆盘边缘走动,当他相对于圆盘的走动速 圆盘的角速度大小为 ______________ •度为2m.s"时,T3-2-2 图3. 一匀质杆质量为税、长为I,通过一端并与杆成q 角的轴的转动惯量为 ___________T3-2-5 图T3-2-4 图4. 两个完全一样的飞轮,当用98N 的拉力作用时,产生角加速度5;当挂一重98N的重物时,产生角加速度b 2.则b 、和b 2的关系为 ____________ .5. 两人各持一均匀直棒的一端,棒重w, —人突然放手,在此瞬间,另一人感到手上承受的力变为 __________ •一 一 - 一 =(4L - 3J ) m,则该力对坐标原点的6. 一力F = (3z + 5;) N,其作用点的矢径为r力矩为 ___________ .7. 一质量为m 的质点沿着一条空间曲线运动,该曲线在直角坐标系下的定义式为 F =^zcos wtL + hsinwt^j ,其屮a 、b 、"皆为常数.则此质点所受的对原点的力矩-M= ___________ ;该质点对原点的角动量厶二 ______________8. 一转动惯量为丿的圆盘绕一固定轴转动,起初角速度为必,设它所受阻力矩与转动角速度成正比M 二-kw 伙为正常数).则在它的角速度从%)变为_1 %)过程中阻力矩2所作的功为 __________ .9. 质量为32 kg 、半径为0.25 m 的均质飞轮,其外观为圆盘形状.当飞轮作角速度为12rad.s-'的匀速率转动时,它的转动动能为 ____________ .10. 一「氏为I 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其小心o 且与杆垂直的水平光滑固定轴在铅直平而内 转Im 图所示.释放后,杆绕0轴转动,则当杆转到水平位置时,该系统所受的合外力矩的 大小M 二 ,此吋该系统角加速度的大小b= _________ .11. 在一水平放置的质量为加、长度为I 的均匀细杆上, 套着一个质量也为m 的套管(可看作质点),套管用细线拉住, 它到竖直的光滑固定轴00'的距离为亍/ ,杆和套管所组成的 速度 系统以角 %绕OO'轴转 动,如图所 示.若在转动过程屮细线被拉断,套管将 沿着杆滑1动.在套管滑动过程屮,该系统转动的角3动.开始杆与水平方向成某一角度g,处于静止状态, T3-2-9 图3速度iv 与套管轴的距离x 的函数关系为 ________________ ・(已知杆本身对OO ,轴的转 动惯量为ml 2)12. 长为/、质量为M 的匀质杆可绕通过杆一端0的水平光滑 固定轴转动,转动惯量为3M/2,开始时杆竖直下垂,如右图所示•现 v 有一质量为m 的子弹以水平速度一。
大学物理刚体力学习题讲解
m ,r
m1
6 解:撤去外加力矩后受力分析如图所示
m1g-T = m1a
Tr=J
a=r a = m1gr / ( m1r + J / r) 代入J =
a
T
P
m1 v 0
m, r1 2 mrFra bibliotek2m1 g a= = 6.32 ms2 1 m1 m 2
∵
v 0-at=0
∴
t=v / a=0.095 s
设m1下降,m2 上升 m1g - T1 m1 a T2 m 2 g m 2 a T1 R T2 R I 1 2 I m3 R 2 a R
2(m1 m2 ) a 联立方程得到 g 2(m1 m2 ) m3 2(m1 m2 ) g [2(m1 m2 ) m3 ]R 4m1m2 m1m3 T1 g 2(m1 m2 ) m3 4m1m2 m2 m3 T2 g 2( m m ) m
①物体状态at=rβ (P-atm)r=Jβ ②拉力情况下Pr=Jβ
挂重物时,mg-T= ma =mRβ, TR =J, P=mg 由此解出
mgR 2 mR J
而用拉力时, mgR = Jβ`
mgR J
/
故有 β`>
3. 三个质量均为m的质点,位于边长为a的等边 三角形的三个顶点上.此系统 对通过三角形中心并垂直于三角形平面的轴的转 动惯量J0=ma2 , 对通过三角形中心且平行于其一边的轴的转动惯 量为JA=1/2ma2, 对通过三角形中心和一个顶点的轴的转动惯量为 JB=1/2ma2 .
大学物理第3章 刚体力学习题解答
第3章 刚体力进修 【 1 】题解答3.13 某发念头飞轮在时光距离t 内的角位移为):,:(43s t rad ct bt at θθ-+=.求t 时刻的角速度和角加快度.解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h,车轮滚动半径为,发念头转速与驱动轮转速比为0.909, 问发念头转速为每分若干转?解:设车轮半径为,发念头转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h.显然,汽车进步的速度就是驱动轮边沿的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量平均散布,其表里半径为r 1和r 2,求对经由过程个中间轴的迁移转变惯量. 解:设圆柱体长为h ,则半径为r,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的迁移转变惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对细致杆二端轴的迁移转变惯量.解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆地点平面的轴的迁移转变惯量为mR 2,依据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的迁移转变惯量为12mR 2,由迁移转变惯量的可加性可求得:半圆形细杆对细致杆二端轴的迁移转变惯量为:214AA I mR '=3.18 在质量为M,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中间在半径R 的中点,求残剩部分对过大圆盘中间且与盘面垂直的轴线的迁移转变惯量.解:大圆盘对过圆盘中间o 且与盘面垂直的轴线(以下简称o 轴)的迁移转变惯量为221MR I =.因为对称放置,两个小圆盘对o 轴的迁移转变惯量相等,设为I’,圆盘质量的面密度σ=M/πR 2,依据平行轴定理,2412222222124))(()('rM r r r I Rr M R +=+=πσπσ 设挖去两个小圆盘后,残剩部分对o 轴的迁移转变惯量为I”)/2('2"24222122122124R r r R M Mr MR I I I R r M --=--=-= 一迁移转变体系的迁移转变惯量为2,转速为,两制动闸瓦对轮的压力都为392N,闸瓦与轮缘间的摩擦系数为,轮半径为,问从开端制动到静止需多长时光?解:由迁移转变定理:,M I α=20.43920.415.68/8.0M rad s Iα⨯⨯⨯===制动进程可视为匀减速迁移转变,/t αω=∆∆/41.9/15.68 2.67t s ωα∆=∆==一轻绳绕于的飞轮边沿,以恒力 F=98N 拉绳,如题3-20图(a )所示.已知飞轮的迁移转变惯量 2,轴承无摩擦.求(1)飞轮的角加快度.(2)绳索拉下5m 时,飞轮的角速度和动能.(3)如把重量 P=98N 的物体挂在绳端,如题3-20图(b )所示,再求上面的成果. 解 (1)由迁移转变定理得:20.29839.20.5M r F rad s I I α-⋅⨯====⋅ (2)由定轴迁移转变刚体的动能定理得:212k A E I ω==k E F h =⋅=490J 12249044.270.5kE rad s Iω-⨯===⋅ (3)物体受力如图所示:P T ma rT J a r T T αα⎧-=⎪⎪'=⎨⎪'==⎪⎩解方程组并代入数据得: 222989802217898020598Pr g ...rad s Pr Jg ...α-⨯⨯===⋅+⨯+⨯ 22222111222k P P A E J r J r Ph g g ωωω⎛⎫==+=+= ⎪⎝⎭12222*98*533.150.59.8*0.2Ph rad s P J r g ω-===⋅++ 22110533********k E J *.*..J ω=== 3.21如今用阿特伍德机测滑轮迁移转变惯量.用轻线且尽可能润滑轮轴.两头吊挂重物资量各为m 1,m 2,滑轮半径为.自静止始,释放重物后并测得内m 2降低了.滑轮迁移转变惯量是若干? 解:隔离m 2.m 1及滑轮,受力及活动情形如图所示.对m 2.m 1分离运用牛顿第二定律:)2();1(111222a m g m T a m T g m =-=-对滑轮运用迁移转变定理:R Ia I R T T /)(12==-β (3)质点m 2作匀加快直线活动,由活动学公式:221at y =∆, 222/06.00.5/75.02/2s m t y a =⨯=∆=∴由 ⑴.⑵可求得 a m m g m m T T )()(121212+--=-,代入(3)中,可求得21212)](/)[(R m m a g m m I +--=,代入数据:2221039.105.0)96.006.0/8.904.0(kgm I -⨯=⨯-⨯=3.22质量为m,半径为 的平均圆盘在程度面上绕中间轴迁移转变,如题3-22图所示.盘与程度面的动摩擦因数为,圆盘的初角速度为0ω,问到停滞迁移转变,圆盘共转了若干圈?解: 221mR I =如图所示:rdr dm πσ2= gdm r dM μ-=R mg dr r g gdm r dM M R μπσμμ32202-=-=-==⎰⎰⎰由迁移转变定律:M=d d d d J J J dt d dt d ωωθωωθθ== 得: 00201223mR d mgR d θωωωμθ∆=-⋅⎰⎰ 积分得: 2038R gωθμ∆=所以从角速度为0ω到停滞迁移转变,圆盘共转了20316R gωπμ圈.3.23如图所示,弹簧的顽强系数k=2N/m,可视为圆盘的滑轮半径,质量m 1=80g,设弹簧和绳的质量可不计,绳不成伸长,绳与滑轮间无相对滑动,活动中阻力不计,求1kg 质量的物体从静止开端(这时弹簧不伸长)落下1米时,速度的大小等于若干(g 取10m/s 2)解:以地球.物体.弹簧.滑轮为体系,其能量守恒物体地桌面处为重力势能的零点,弹簧的原长为弹性势能的零点,则有:22212111022212m v J kx m gh v r J mr x hωω⎧++-=⎪⎪⎨⎪===⎪⎩解方程得:21122m gh kh v m m /-=+代入数据盘算得:v=m/s .即物体下落m 的速度为m/s3.24如题3-24图所示,均质矩形薄板绕竖直边迁移转变,初始角速度为0ω,迁移转变时受到空气的阻力.阻力垂直于板面,每一小面积所受阻力的大小与其面积及速度平方的乘积成正比,比例常数为k.试盘算经由若干时光,薄板角速度减为本来的一半,设薄板竖直边长为b,宽为a,薄板质量为m.解;如图所示,取图示的暗影部分为研讨对象v x ω= 222df kv dS kx bdx ω==23dM x df k bx dx ω=⋅=23240014a aM dM k bx dx k ba ωω===⎰⎰d M J dt ω= 244d Jdt J d M k baωωω== 024242004443/J d J mt kba kba kba ωωωωωω===⎰所以经由2043mkba ω的时光,薄板角速度减为本来的一半.3-25一个质量为M ,半径为 R 并以角速度ω扭转的飞轮(可看作匀质圆盘),在某一刹时冲破口然有一片质量为m 的碎片从轮的边沿上飞出,见题3-25图.假定碎片离开飞轮时的瞬时速度偏向正好竖直向上,(1)问它能上升多高?(2)求余下部分的角速度.角动量和迁移转变动能.解:(1)碎片以R ω的初速度竖直向上活动.上升的高度:222022v R h g gω== (2)余下部分的角速度仍为 ω角动量 212L J (M m )R ωω==-迁移转变动能 221122k E (M m )R ω=-3.26两溜冰活动员,在相距m 的两平行线上相向而行.两人质量分离为m A =60kg,m B =70kg,他们的速度分离为v A -1, v A -1,当二者最接近时,便拉起手来,开端绕质心作圆活动,并保持二者的距离为.求该瞬时:(1)体系对经由过程质心的竖直轴的总角动量; (2)体系的角速度;(3)两人拉手前.后的总动能.这一进程中能量是否守恒? 解:如图所示, (1)60159607013A A B m l .x m m m ⨯===++ 921151326l x .m -=-=221607913706212663010A A B B L m v (l x )m v x //.kgm s -=-+=⨯⨯+⨯⨯=⨯⋅(2)L J ω= 22c cc c B A L L J m x m (l x )ω==+-,代入数据求得:1867c .rad s ω-=⋅ (3)以地面为参考系. 拉手前的总动能:2211122k A A B BE m v m v =+,代入数据得12730k E J =, 拉手后的总动能:包含括个部分:(1)体系相对于质心的动能(2)体系随质心平动的动能222222211112222A A B B k c A B c c A B A B m v m v E J (m m )v J (m m )m m ωω⎛⎫+=++=++ ⎪+⎝⎭动能不守恒,总能量守恒.3.27一平均细棒长为 l ,质量为m ,以与棒长偏向相垂直的速度v 0在滑腻程度面内平动时,与前方一固定的滑腻支点 O 产生完整非弹性碰撞,碰撞点位于离棒中间一方l/4处,如题3-27图所示,求棒在碰撞后的瞬时绕过O 点垂直于杆地点平面的轴迁移转变的角速度0ω. 解:如图所示:碰撞前后体系对点O 的角动量守恒. 碰撞前后: 104L mv l /=碰撞前后:2220001124l L J ml m ωω⎡⎤⎛⎫==+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦由12L L =可求得:200127v rad s lω-=⋅3.28如题3-28图所示,一质量为m 的小球由一绳索系着,以角速度ω0 在无摩擦的程度面上,作半径为r 0 的圆周活动.假如在绳的另一端感化一竖直向下的拉力,使小球作半径为r 0/2 的圆周活动.试求:(1) 小球新的角速度;(2) 拉力所作的功. 解:如图所示,小球对桌面上的小孔的角动量守恒(1)初态始角动量 2100L mr ω=;终态始角动量 22014L mr ω=由12L L =求得:04ωω= (2)拉力作功:2222110000113222W J J mr ωωω=-=3.29质量为0.50 kg,长为0.40 m 的平均细棒,可绕垂直于棒的一端的程度轴迁移转变.如将此棒放在程度地位,然后任其落下,如题3-29图所示,求:(1) 当棒转过60°时的角加快度和角速度;(2) 下落到竖直地位时的动能;(3) 下落到竖直地位时的角速度. 解:设杆长为l ,质量为m(1) 由同迁移转变定理有:232123lmg sin g sin MJml lθθα===代入数据可求得:21838.rad s α-=⋅由刚体定轴迁移转变的动能定理得:2211223l mg cos ml θω=3g cos lθω=,代入数据得:17978.rad s ω-=⋅(也可以用迁移转变定理求得角加快度再积分求得角速度)(2)由刚体定轴迁移转变的动能定理得:k W E =∆ 059802098k E mgh ....J ==⨯⨯= (3)12220988573105043kE ..rad s J..ω-⨯===⋅⨯⨯3-30 如题3-30图所示,A 与B 两飞轮的轴杆由摩擦啮合器连接,A 轮的迁移转变惯量J 1 =10.0 kg· m 2 ,开端时B 轮静止,A 轮以n 1 =600 r· min -1 的转速迁移转变,然后使A 与B 连接,因而B 轮得到加快而A 轮减速,直到两轮的转速都等于n =200 r· min -1 为止.求:(1) B 轮的迁移转变惯量;(2) 在啮合进程中损掉的机械能.解:研讨对象:A.B 体系在连接进程中, 对轴无外力矩感化,故有常矢=L()121122J J J J ωωω⇒+=+即: 1122J ()J ωωωω-=-代入数据可求得:2220J kg m =⋅(2)()2221122121122k E (J J )J J ωωω∆=+-+ 代入数据可求得:413210k E .J ∆=-⨯,负号暗示动能损掉(削减).质量为m 长为l 的匀质杆,其B 端放在桌上,A 端用手支住,使杆成程度.忽然释放A 端,在此瞬时,求:⑴杆质心的加快度,⑵杆B 端所受的力.解:⑴以支点B 为转轴,运用迁移转变定理:l glml mg232312=∴=ββ,质心加快度 g a lc 432==β,偏向向下.⑵设杆B 端受的力为N,对杆运用质心活动定理:N y =0,题3-30图题3-31图N x - mg = - m a c , N x = m(g – a c) = mg/4∴ N = mg/4,偏向向上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 刚体力学习题解答
3、13 某发动机飞轮在时间间隔t 内得角位移为 。
求t 时刻得角速度与角加速度。
解:
3、14桑塔纳汽车时速为166km/h,车轮滚动半径为0、26m,发动机转速与驱动轮转速比为0、909, 问发动机转速为每分多少转?
解:设车轮半径为R=0、26m,发动机转速为n 1, 驱动轮转速为n2, 汽车速度为v=166k m/h 。
显然,汽车前进得速度就就是驱动轮边缘得线速度,
,所以:
min /1054.1/1024.93426
.014.3210
166909.02909.013
rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π 3、15 如题3-15图所示,质量为m得空心圆柱体,质量均匀分布,其内外半径为r 1与r 2,求对通过其中心轴得转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 得薄圆筒得质量dm 为:
对其轴线得转动惯量dI z 为
3、17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴得转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面得轴得转动惯量为mR 2,根据垂直轴定理与问题得对称性知:圆形细杆对过
轴得转动惯量为mR 2,由转动惯量得可加性可求得:半圆形细杆对过细杆二端 轴得转动惯量为:
3、18 在质量为M,半径为R 得匀质圆盘上挖出半径为r得两个圆孔,圆孔中心在半径R 得中点,求剩余部分对过大圆盘中心且与盘面垂直得轴线得转动惯量。
解:大圆盘对过圆盘中心o且与盘面垂直得轴线(以下简称o 轴)得转动惯量为
、由于对称放置,两个小圆盘对o轴得转动惯量相等,设为I’,圆盘质量得面密度σ=M/πR 2,根据平行轴定理,
设挖去两个小圆盘后,剩余部分对o 轴得转动惯量为I”
)/2('2"242221
22122124
R r r R M Mr MR I I I R r M --=--=-=
3、19一转动系统得转动惯量为I=8、0kgm 2,转速为ω=41、9r ad/s,两制动闸瓦对轮得压力都为392N,闸瓦与轮缘间得摩擦系数为μ=0、4,轮半径为r=0、4m,问从开始制动到静止需多长时间?
解:由转动定理:
制动过程可视为匀减速转动,
3、20一轻绳绕于r=0、2m得飞轮边缘,以恒力F=98N拉绳,如题3-20图(a)所示。
已知飞轮得转动惯量J=0、5kg、m2,轴承无摩擦。
求
(1)飞轮得角加速度。
(2)绳子拉下5m时,飞轮得角速度与动能。
(3)如把重量P=98N得物体挂在绳端,如题3-20图(b)所示,
再求上面得结果。
解(1)由转动定理得:
(2)由定轴转动刚体得动能定理得: =490J
(3)物体受力如图所示:
解方程组并代入数据得:
3、21现在用阿特伍德机测滑轮转动惯量。
用轻线且尽可能润滑轮轴。
两端悬挂重物质量各为m1=0、46kg,m2=0、5kg,滑轮半径为0、05m。
自静止始,释放重物后并测得0、5s内m2下降了0、75m。
滑轮转动惯量就是多少?
解:
隔离m2、m1及滑轮,受力及运动情况如图所示。
对m2、m1分别应用牛顿第二定律:
对滑轮应用转动定理:
(3)
作匀加速直线运动,由运动学公式:,
质点m
2
由⑴、⑵可求得,代入(3)中,可求得,代入数据:
3、22质量为m,半径为得均匀圆盘在水平面上绕中心轴转动,如题3-22图所示。
盘与水
平面得动摩擦因数为,圆盘得初角速度为,问到停止转动,圆盘共转了多少圈?
解:
如图所示:
由转动定律:M=得:
积分得:
所以从角速度为到停止转动,圆盘共转了圈。
3、23如图所示,弹簧得倔强系数k=2N/m,可视为圆盘得滑轮半径r=0、05m,质量m1=80g,设弹簧与绳得质量可不计,绳不可伸长,绳与滑轮间无相对滑动,运动中阻力不计,求1kg质量得物体从静止开始(这时弹簧不伸长)落下1米时,速度得大小等于多少(g取10m/s2)
解:以地球、物体、弹簧、滑轮为系统,其能量守恒物体地桌面处为重力势能得零点,弹簧得原长为弹性势能得零点,
则有:
解方程得:
代入数据计算得:v=1、48m/s 。
即物体下落0、5m得速度为1、48m/s
3、24如题3-24图所示,均质矩形薄板绕竖直边转动,初始角速度为,
转动时受到空气得阻力。
阻力垂直于板面,每一小面积所受阻力得大小
与其面积及速度平方得乘积成正比,比例常数为k。
试计算经过多少时
间,薄板角速度减为原来得一半,设薄板竖直边长为b,宽为a,薄板质
量为m。
解;如图所示,取图示得阴影部分为研究对象
所以经过得时间,薄板角速度减为原来得一半。
3-25一个质量为M,半径为R并以角速度旋转得飞轮(可瞧作匀质圆盘),在某一瞬间突破口然有一片质量为m得碎片从轮得边缘上飞出,见题3-25图。
假定碎片脱离飞轮时得瞬时速度方向正好竖直向上,
(1)问它能上升多高?
(2)求余下部分得角速度、角动量与转动动能。
解:(1)碎片以得初速度竖直向上运动。
上升得高度:
(2)余下部分得角速度仍为
角动量
转动动能
3、26两滑冰运动员,在相距1、5m得两平行线上相向而行。
两人质量分别为mA
=60kg,m B =70kg,她们得速率分别为v A =7m 、s -1, v A=6m、s-1,当二者最接近时,便拉起手来,开始绕质心作圆运动,并保持二者得距离为1、5m 。
求该瞬时: (1)系统对通过质心得竖直轴得总角动量; (2)系统得角速度;
(3)两人拉手前、后得总动能。
这一过程中能量就是否守恒? 解:如图所示, (1)
221607913706212663010A A B B L m v (l x )m v x //.kgm s -=-+=⨯⨯+⨯⨯=⨯⋅
(2) ,代入数据求得: (3)以地面为参考系。
拉手前得总动能:,代入数据得,
拉手后得总动能:包括括个部分:(1)系统相对于质心得动能(2)系统随质心平动得动能
2
2222221111
2222A A B B k c A B c c A B A B m v m v E J (m m )v J (m m )m m ωω⎛⎫+=++=++ ⎪+⎝⎭
动能不守恒,总能量守恒。
3、27一均匀细棒长为 l ,质量为m ,以与棒长方向相垂直得速度v 0在光滑水平面内平动时,与前方一固定得光滑支点 O 发生完全非弹性碰撞,碰撞点位于离棒中心一方l/4处,如题3-27图所示,求棒在碰撞后得瞬时绕过O 点垂直于杆所在平面得轴转动得角速度。
解:如图所示:碰撞前后系统对点O得角动量守恒。
碰撞前后:
碰撞前后: 由可求得:
3、28如题3-28图所示,一质量为m 得小球由一绳索系着,以角速度ω0 在无摩擦得水平面上,作半径为r 0 得圆周运动、如果在绳得另一端作用一竖直向下得拉力,使小球作半径为r 0/2 得圆周运动、试求:(1) 小球新得角速度;(2) 拉力所作得功、 解:如图所示,小球对桌面上得小孔得角动量守恒 (1)初态始角动量 ;终态始角动量 由求得: (2)拉力作功:
3、29质量为0、50 k g,长为0、40 m 得均匀细棒,可绕垂直于棒得一端得水平轴转动、如将此棒放在水平位置,然后任其落下,如题3-29图所示,求:(1) 当棒转过60°时得角加速度与角速度;(2) 下落到竖直位置时得动能;(3) 下落到竖直位置时得角速度、 解:设杆长为l,质量为m (1) 由同转动定理有:
代入数据可求得:
由刚体定轴转动得动能定理得:
,代入数据得:(也可以用转动定理求得角加速度再积分求得角速度) (2)由刚体定轴转动得动能定理得: (3)
3-30如题3-30图所示,A 与B两飞轮得轴杆由摩擦啮合器连接,A轮得转动惯量J1=10、0 kg· m2,开始时B轮静止,A轮以n1=600r·min-1得转速转动,然后使A 与B 连接,因而B轮得到加速而A 轮减速,直到两轮得转速都等于n =200r· min-1为止、求:(1) B轮得转动惯量;(2) 在啮合过程中损失得机械能、
解:研究对象:A、B系统在衔接过程中,
对轴无外力矩作用,故有
即: 代入数据可求得:
(2)代入数据可求得:
,负号表示动能损失(减少)。
3、31质量为m长为l得匀质杆,其B端放在桌上,A端用手支住,使杆成水平。
突然释放A端,在此瞬时,求:⑴杆质心得加速度,⑵杆B端所受得力。
解:⑴以支点B为转轴,应用转动定理:,质心加速度,方向向下。
⑵设杆B端受得力为N,对杆应用质心运动定理:N y=0, Nx-mg = -m ac,N x=m(g –a c) =mg/4
∴ N =mg/4,方向向上。
题3-30图
题3-31图。