广东省廉江市中考数学总复习:二次函数
初中数学中考复习二次函数知识点总结归纳整理
初中数学中考复习二次函数知识点总结归纳整理二次函数是中学数学中非常重要的一个内容,也是中考数学中的重点。
下面是对初中数学中考复习二次函数知识点的总结和归纳整理。
一、二次函数的定义1. 二次函数的一般形式:y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
2.二次函数的图像为抛物线,开口方向与a的正负有关。
-当a>0时,抛物线开口向上。
-当a<0时,抛物线开口向下。
二、二次函数的性质1.对称轴:二次函数的对称轴与抛物线的开口方向垂直,其方程为x=-b/2a。
2.顶点:二次函数的顶点位于对称轴上,其坐标为(-b/2a,f(-b/2a))。
-当a>0时,顶点是抛物线的最低点。
-当a<0时,顶点是抛物线的最高点。
3. 判别式:对于二次函数y = ax² + bx + c,其判别式Δ = b² -4ac表示方程ax² + bx + c = 0的根的情况。
-当Δ>0时,方程有两个不相等的实根。
-当Δ=0时,方程有两个相等的实根。
-当Δ<0时,方程没有实根。
4.单调性:-当a>0时,二次函数在对称轴左侧单调递增,右侧单调递减。
-当a<0时,二次函数在对称轴左侧单调递减,右侧单调递增。
三、二次函数的图像特征1.a的正负决定了抛物线的开口方向。
2.,a,的大小决定了抛物线的陡峭程度,a,越大抛物线越陡峭。
3.当b=0时,抛物线经过原点。
4.当c=0时,抛物线经过x轴。
5.当a>0时,函数值在顶点处取得最小值。
6.当a<0时,函数值在顶点处取得最大值。
四、二次函数的方程求解1. 解二次方程ax² + bx + c = 0的一般步骤:- 利用判别式Δ = b² - 4ac判断方程的根的情况。
-若Δ>0,方程有两个不相等的实根,可以用求根公式x₁=(-b+√Δ)/2a和x₂=(-b-√Δ)/2a求解。
2020年广东省中考数学基础过关:二次函数的综合 课件(共36张PPT)
②当△BPC∽△CDO时,CBOC=CBDP,即 3 3 2= BP2,解得BP=2.∴OP=5.∴P(5,0).
综上,当P的横坐标为5或12时,△BCP与△ OCD相似.
课堂检测
(2)如答图1,过点P作PH⊥x轴于点H,交AB于
点F.当x=0时,y=3,∴A(0,3).设直线AB的解析
式为y=kx+m.将A(0,3),B(-3,0)代入y=kx+m,
得-m=3k3+,m=0. 解得mk==13,. ∴直线AB的解析式为y=x+3.∵点
P在线段AB上方抛物线上,∴可设
P(t,-t2-2t+3)(-3<t<0),则 F(t,t+3).
得a+b+53=2, 4a+2b+53=1.
解得a=-23, b=1.
∴该抛物线的解析式为 y=-23x2+x+53. ∴对称轴方程为 x=--143=34. ·········· 9 分
3.(2019衢州)某宾馆有若干间标准房,当标准 房的价格为200元时,每天入住的房间数为60
间.经市场调查表明,该馆每间标准房的价格 在170~240元之间(含170元,240元)浮动时, 每天入住的房间数y(间)与每间标准房的价格 x(元)的数据如下表:
2020 全新版
第三单元 函数
课时13 二次函数的综合
CONTEN TS
目 录
知识梳理 知识过关
课堂检测
知识梳理
一、二次函数与一次函数图象的交点 1.二次函数y1=ax2+bx+c与一次函数y2=kx
+m的图象有两个交点,即方程ax2+(b-k)x+ c-m=0有两个不等的实数根⇔Δ=(b-k)2- 4a(c-m)>0; 2.二次函数y1=ax2+bx+c与一次函数y2=kx +m的图象有一个交点,即方程ax2+(b-k)x+ c-m=0有两个相等的实数根⇔Δ=(b-k)2- 4a(c-m)=0;
2024年中考数学总复习:二次函数(附答案解析)
2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。
广东省中考数学二次函数复习PPT42页
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
42
中考备考数学总复习第12讲二次函数(含解析)
第12讲 二次函数[锁定目标考试]考标要求考查角度1.理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质. 3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解. 二次函数是中考考查的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.[导学必备知识]知识梳理一、二次函数的概念一般地,形如y =______________(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 二次函数的两种形式:(1)一般形式:____________________________;(2)顶点式:y =a (x -h )2+k (a ≠0),其中二次函数的顶点坐标是________.二、二次函数的图象及性质二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0) 图象(a >0)(a <0) 开口方向 开口向上 开口向下对称轴 直线x =-b 2a 直线x =-b 2a顶点坐标 ⎝⎛⎭⎫-b 2a ,4ac -b 24a ⎝⎛⎭⎫-b 2a ,4ac -b 24a增减性 当x <-b 2a 时,y 随x 的增大而减小;当x >-b 2a 时,y 随x 的增大而增大 当x <-b 2a时,y 随x 的增大而增大;当x >-b 2a时,y 随x 的增大而减小最值 当x =-b 2a 时,y 有最______值4ac -b 24a 当x =-b 2a 时,y 有最______值4ac -b 24a三、二次函数图象的特征与a ,b ,c 及b 2-4ac 的符号之间的关系四、二次函数图象的平移抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的________和大小都相同,只是位置不同.它们之间的平移关系如下:五、二次函数关系式的确定1.设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将关系式化为一般式.3.设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h )2+k (a ≠0),将已知条件代入,求出待定系数化为一般式.六、二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0).2.ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的________.3.当Δ=b 2-4ac >0时,抛物线与x 轴有两个不同的交点;当Δ=b 2-4ac =0时,抛物线与x 轴有一个交点;当Δ=b 2-4ac <0时,抛物线与x 轴没有交点.4.设抛物线y =ax 2+bx +c 与x 轴两交点坐标分别为A (x 1,0),B (x 2,0),则x 1+x 2=________,x 1·x 2=________.自主测试1.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( )A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-3D .y =(x +2)2-32. 如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四个结论:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( )A .2个B .3个C .4个D .1个3.当m =__________时,函数y =(m -3)xm 2-7+4是二次函数.4.(上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________.5.(广东珠海)如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.[探究重难方法]考点一、二次函数的图象及性质【例1】 (1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b 2a=--62×(-3)=-1, 4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A .(2)点(-1,y1),(2,y2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y1,y2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y3),∵抛物线对称轴为直线x=1,∴点(0,y3)与点(2,y2)关于直线x=1对称.∴y3=y2.∵a>0,∴当x<1时,y随x的增大而减小.∴y1>y3.∴y1>y2.答案:(1)A(2)>方法总结1.将抛物线解析式写成y=a(x-h)2+k的形式,则顶点坐标为(h,k),对称轴为直线x=h,也可应用对称轴公式x=-b2a ,顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a来求对称轴及顶点坐标.2.比较两个二次函数值大小的方法:(1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断;(3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0 B.当x>1时,y随x的增大而增大C.c<0 D.3是方程ax2+bx+c=0的一个根考点二、利用二次函数图象判断a,b,c的符号【例2】如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a +b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a+b+c=0;根据-b2a=-1,推出b=2a;根据图象关于对称轴对称,得出与x轴的交点是(-3,0),(1,0);由a-2b+c=a-2b-a-b=-3b<0,根据结论判断即可.答案:①③方法总结根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a决定抛物线的开口方向,c决定抛物线与y轴的交点,抛物线的对称轴由a,b共同决定,b2-4ac决定抛物线与x轴的交点情况.当x=1时,决定a+b+c的符号,当x=-1时,决定a-b+c的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2小明从如图的二次函数y=ax2+bx+c的图象中,观察得出了下面五个结论:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确的结论有()A.2个 B.3个C.4个 D.5个考点三、二次函数图象的平移【例3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象()A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y=-2x2+4x+1=-2(x-1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y=-2x2的图象.答案:C方法总结二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2考点四、确定二次函数的解析式【例4】如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.解:(1)由抛物线的对称性可知AE=BE.∴△AOD≌△BEC.∴OA=EB=EA.设菱形的边长为2m,在Rt△AOD中,m2+(3)2=(2m)2,解得m=1.∴DC=2,OA=1,OB=3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3). (2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧ a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧ a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标.考点五、二次函数的实际应用【例5】 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元). (1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少;(3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元).(2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值. 触类旁通5一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.[品鉴经典考题]1.(湖南株洲)如图,已知抛物线与x 轴的一个交点为A (1,0),对称轴是x =-1,则抛物线与x 轴的另一个交点坐标是( )A .(-3,0)B .(-2,0)C .x =-3D .x =-2 2.(湖南郴州)抛物线y =(x -1)2+2的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)3. (湖南娄底)已知二次函数y =x 2-(m 2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足1x 1+1x 2=12.(1)求这个二次函数的解析式;(2)探究:在直线y =x +3上是否存在一点P ,使四边形P ACB 为平行四边形?如果有,求出点P 的坐标;如果没有,请说明理由.4.(湖南长沙)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为y =⎩⎪⎨⎪⎧40-x ,25≤x ≤30,25-0.5x ,30<x ≤35(年获利=年销售收入-生产成本-成本).(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.5. (湖南湘潭)如图,抛物线y =ax 2-32x -2(a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.[研习预测试题]1.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( )A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标;(2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由. 参考答案【知识梳理】一、ax 2+bx +c (1)y =ax 2+bx +c (a ,b ,c 是常数,a ≠0) (2)(h ,k )二、小 大三、y 轴 左 右四、形状六、2.横坐标 4.-b a c a导学必备知识自主测试1.C2.D ∵抛物线与x 轴有两个交点,∴b 2-4ac >0;与y 轴交点在(0,0)与(0,1)之间,∴0<c <1,∴(2)错;∵-b 2a >-1,∴b 2a<1,∵a <0,∴2a <b ,∴2a -b <0; 当x =1时,y =a +b +c <0,故选D.3.-3 由题意,得m 2-7=2且m -3≠0,解得m =-3.4.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3).∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎪⎨⎪⎧ 0=k +b ,3=4k +b ,解得⎩⎪⎨⎪⎧ k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.探究考点方法触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0;∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0.由题图知当x =-1时,y >0,即a -b +c >0.对称轴是直线x =13, ∴-b 2a =13,即2a +3b =0; 由⎩⎪⎨⎪⎧a -b +c >0,2a +3b =0,得c -52b >0. 又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0. ∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3. ∴m =6.(2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3). 触类旁通5.解:(1)(10+7x ) (12+6x )(2)y =(12+6x )-(10+7x )=2-x .(3)∵w =2(1+x )(2-x )=-2x 2+2x +4,∴w =-2(x -0.5)2+4.5.∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元. 品鉴经典考题1.A 点A 到对称轴的距离为2,由抛物线的对称性知,另一个交点的横坐标为-3,所以另一个交点坐标为(-3,0).2.D3.解:(1)由已知得x 1+x 2=m 2-2,x 1x 2=-2m .∵1x 1+1x 2=12,即x 1+x 2x 1x 2=12, ∴m 2-2-2m =12, 解得m =1或m =-2.当m =1时,y =x 2+x -2,得A (-2,0),B (1,0);当m =-2时,y =x 2-2x +4,与x 轴无交点,舍去.∴这个二次函数的解析式为y =x 2+x -2.(2)由(1)得A (-2,0),B (1,0),C (0,-2).假设存在一点P ,使四边形P ACB 是平行四边形,则PB ∥AC 且PB =AC ,根据平移知识可得P (-1,2),经验证P (-1,2)在直线y =x +3上,故在直线y =x +3上存在一点P (-1,2),使四边形P ACB 为平行四边形.4.解:(1)当x =28时,y =40-28=12.所以,产品的年销售量为12万件.(2)①当25≤x ≤30时,W =(40-x )(x -20)-25-100=-x 2+60x -925=-(x -30)2-25,故当x =30时,W 最大为-25,即公司最少亏损25万元;②当30<x ≤35时,W =(25-0.5x )(x -20)-25-100=-12x 2+35x -625=-12(x -35)2-12.5,故当x =35时,W 最大为-12.5,及公司最少亏损12.5万元,综上所述,的第一年,公司亏损,最少亏损是12.5万元;(3)①当25≤x ≤30时,W =(40-x )(x -20-1)-12.5-10=-x 2+61x -862.5, 令W =67.5,则-x 2+61x -862.5=67.5,化简得x 2-61x +930=0,x 1=30,x 2=31,此时,当两年的总盈利不低于6.75万元时,x =30.②当30<x ≤35时,W =(25-0.5x )(x -20-1)-12.5-10=-12x 2+35.5x -547.5, 令W =67.5,则-12x 2+35.5x -547.5=67.5, 化简得x 2-71x +1 230=0,x 1=30,x 2=41,此时,当两年的总盈利不低于67.5万元时,30<x ≤35.所以,到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x ≤35.5.解:(1)将点B (4,0)代入y =ax 2-32x -2(a ≠0)中,得a =12.∴抛物线的解析式为y =12x 2-32x -2. (2)∵当12x 2-32x -2=0时,解得x 1=4,x 2=-1, ∴A 点坐标为(-1,0),则OA =1.∵当x =0时,y =12x 2-32x -2=-2,∴C 点坐标为(0,-2),则OC =2.在Rt △AOC 与Rt △COB 中,OA OC =OC OB =12, ∴Rt △AOC ∽Rt △COB .∴∠ACO =∠CBO .∴∠ACB =∠ACO +∠OCB =∠CBO +∠OCB =90°.∴△ABC 为直角三角形.∴△ABC 的外接圆的圆心为AB 中点,其坐标为⎝⎛⎭⎫32,0.(3)连接OM .设M 点坐标为⎝⎛⎭⎫x ,12x 2-32x -2,则S △MBC =S △OBM +S △OCM -S △OBC =12×4×⎝⎛⎭⎫-12x 2+32x +2+12×2×x -12×2×4 =-(x -2)2+4.∴当x =2时,△MBC 的面积有最大值为4,点M 的坐标为(2,-3).研习预测试题1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D.4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎪⎨⎪⎧1-b +c =0,1+b +c =-2,解得⎩⎪⎨⎪⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2, ∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y 取得最大值,②错误. 7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b -2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎪⎨⎪⎧ 4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧ a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t . ∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295. ∴10-t =7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L 2与L 1有关图象的两条相同的性质:对称轴为直线x =2或顶点的横坐标为2;都经过A (1,0),B (3,0)两点.②线段EF 的长度不会发生变化.∵直线y =8k 与抛物线L 2交于E ,F 两点,∴kx 2-4kx +3k =8k ,∵k ≠0,∴x 2-4x +3=8,解得x 1=-1,x 2=5.∴EF =x 2-x 1=6,∴线段EF 的长度不会发生变化.。
初中数学中考复习二次函数知识点总结归纳整理
初中数学中考复习二次函数知识点总结归纳整理二次函数是指形如y=ax²+bx+c的函数,其中a、b、c为常数且a ≠ 0。
二次函数是初中数学中的重要内容,掌握了二次函数的知识,能够帮助我们理解函数的基本概念、图像和性质,同时也是后续学习函数、解析几何和微积分等内容的基础。
一、二次函数的定义和基本性质1.二次函数是一个以抛物线形状为特征的函数,其图像在平面直角坐标系中呈现出对称轴和顶点。
2.对于任意的a、b、c,二次函数的图像都存在对称轴,并且过对称轴的顶点。
3.当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
4. 当Δ=b²-4ac>0时,二次函数的图像与x轴有两个不同的交点,即该二次函数的解存在两个不同的实根;当Δ=0时,二次函数的图像与x轴有一个交点,即该二次函数的解存在一个实根;当Δ<0时,二次函数的图像与x轴没有交点,即该二次函数无实根。
5. 二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x) =ax²+bx+c。
二、二次函数的图像与平移1. 对于y=ax²+bx+c,当a>0时,整个二次函数图像上移a个单位;当a<0时,整个二次函数图像下移a个单位。
2. 对于y=ax²+bx+c,当c>0时,整个二次函数图像上移c个单位;当c<0时,整个二次函数图像下移c个单位。
3. 对于y=ax²+bx+c,当b>0时,整个二次函数图像向左平移b个单位;当b<0时,整个二次函数图像向右平移b个单位。
三、二次函数的解和性质1.根据二次函数的定义,可以用求根公式计算二次函数的解,即x=(-b±√Δ)/(2a)。
2.根据二次函数的判别式Δ的大小,可以判断二次函数的解的情况,进而判断图像的开口方向和顶点的位置。
3.根据二次函数的顶点坐标和开口方向,可以确定二次函数的整个图像。
2023年广东省中考数学复习二次函数含参问题
二次函数含参问题1. 含参函数过定点含参项相加=0,约去参数求解x例1. 函数23y mx m =-+经过定点例2. 二次函数22(1)2y x m x m =-++,无论m 取何值,始终经过点A ,求A例3. 函数2(23)33y mx m x m =-+--与坐标轴的一个交点为定点,求该定点。
2. 含参二次方程求解含参十字相乘或者求根公式法例1. 经过点(4,5)的直线,一次项系数为k ,求该直线与抛物线223y x x =--的另一个交点,用含k 的式子表示。
例2. 抛物线22y x mx m =+-与44y x =-交于A ,B 两点,其中A 不随m 变化,求A3. 动点所在轨迹函数动点坐标含参数,横坐标为x ,纵坐标为y ,消去参数用x 表示y ,则为动点所在函数解析式 例1. 抛物线21212y x x m =++-向右移m 个单位后得到抛物线2y ,则2y 的顶点始终在一条直线上运动,求该直线解析式。
例2. 抛物线2221y x ax a a =-+-+的顶点P 随a 的变化而变化,Q (5,0)求线段PQ 长度最小值。
例3.(2021广州一模)如图矩形ABCD 中,26AB AD ==,点E 为AB 的中点,点F 为EC 上一个动点,点P 为DF 的中点,连接PB ,求PB 的最小值 (建系设元后表示动点坐标)考题综合练习1.(2021·广东广州·中考真题)已知抛物线()2123y x m x m =-+++(1)当0m =时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m 的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,求该抛物线顶点横坐标的取值范围.2.(2019·广东广州·中考真题)已知抛物线G :2y 23mx mx =--有最低点.(1)求二次函数2y 23mx mx =--的最小值(用含m 的式子表示);(2)将抛物线G 向右平移m 个单位得到抛物线G 1.经过探究发现,随着m 的变化,抛物线G 1顶点的纵坐标y 与横坐标x 之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H ,抛物线G 与函数H 的图像交于点P ,结合图像,求点P 的纵坐标的取值范围.3.(2018·广东广州·中考真题)已知抛物线y =x 2+mx ﹣2m ﹣4(m >0).(1)证明:该抛物线与x 轴总有两个不同的交点;(2)设该抛物线与x 轴的两个交点分别为A ,B (点A 在点B 的右侧),与y 轴交于点C ,A ,B ,C 三点都在⊙P 上.①试判断:不论m 取任何正数,⊙P 是否经过y 轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C 关于直线x 2m =-的对称点为点E ,点D (0,1),连接BE ,BD ,DE ,△BDE 的周长记为l ,⊙P 的半径记为r ,求l r的值.4.(2016·广东广州·中考真题)已知抛物线2y=mx+(1-2m)x+1-3m与x轴相交于不同的两点A B、.(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当1<m≤84时,由(2)求出的点P和点A B、构成的ABP的面积是否有最值,若有,求出最值及相对应的m值;若没有,请说明理由.过定点A,直线l:y=kx+b经过点A和抛物线G的顶点B.(1)求点A的坐标;(2)求直线l的解析式;(3)已知点P为抛物线G上的一点,且△PAB的面积为2.若满足条件的点P有且只有3个,求抛物线的顶点B的坐标.y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线'G,试结合图象探究:若在抛物线G 与直线h,抛物线'G与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.。
二次函数-2023年中考数学第一轮总复习课件(全国通用)
A.x1=1,x2=-1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3
(2)如图,二次函数y=ax2+bx+c的图象则不等式的ax2+bx+c<0解集是( C )
A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>3 y
-1 O 3 x
课堂小结
二次函数
知识梳理
强化 训练
二次函数图象与性质
查漏补缺
5.抛物线y=(x+3)(x-1)的对称轴是直线_x_=_-_1___. 6.若抛物线y=x2-8x+c的顶点在x轴上,则c=_-_1____.
7.若抛物线y=x2-4x+k的顶点在x轴下方,则k的取值范围是_k_<__4__.
8.若抛物线yy==xk2x-22-x6+xm+-34与x轴有交点,则m的取值范围是_k_m≤_≤_3_5且__k_≠__0__. 9.若抛物线y=x2+2x+c与坐标轴只有两个交点,则c的值为__0_或__1_.
1.下列关于抛物线的y=ax2-2ax-3a(a≠0)性质中不一定成立的是( C )
A.该图象的顶点为(1,-4a); B.该图象与x轴的交点为(-1,0),(3,0);
C.当x>1时,y随x的增大而增大;D.若该图象经过(-2,5),一定经过(4,5).
2.抛物线y=(x-t)(x-t-2)(t为常数)与x轴交于A,B两点(点A在点B的左边),
当堂训练
二次函数的基本性质
查漏补缺
1.抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为( B )
A.m>1
B.m>0
2022年广东省湛江市中考数学总复习:二次函数
2022年广东省湛江市中考数学总复习:二次函数1.如果抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限,那么a的取值范围是a<1.【解答】解:∵抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限,且该抛物线与y 轴交于负半轴,∴a﹣1<0,解得:a<1.故答案为:a<1.2.某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是1800元.【解答】解:设日销售量y与销售天数t之间的函数关系式为y=kx,30k=60,得k=2,即日销售量y与销售天数t之间的函数关系式为y=2t,当0<t≤20时,设单件的利润w与t之间的函数关系式为w=at,20a=30,得a=1.5,即当0<t≤20时,单件的利润w与t之间的函数关系式为w=1.5t,当20<t≤30时,单件的利润w与t之间的函数关系式为w=30,设日销售利润为W元,当0<t≤20时,W=1.5t×2t=3t2,故当t=20时,W取得最大值,此时W=1200,当20<t≤30时,W=30×2t=60t,故当t=30时,W取得最大值,此时W=1800,综上所述,最大日销售利润为1800元,3.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为 70 元.【解答】解:设每顶头盔的售价为x 元,获得的利润为w 元,w =(x ﹣50)[200+(80﹣x )×20]=﹣20(x ﹣70)2+8000,∴当x =70时,w 取得最大值,此时w =8000,故答案为:70.4.已知二次函数y =ax 2+bx +c 的图象与y 轴的正半轴交于点A ,其顶点B 在x 轴的负半轴上,且OA =OB ,对于下列结论:①a ﹣b +c ≥0;②2ac ﹣b =0;③关于x 的方程ax 2+bx +c +3=0无实数根;④a+b+c b−c 的最小值为3.其中正确结论的个数为 ①②③【解答】解:二次函数y =ax 2+bx +c 的图象与y 轴的正半轴交于点A ,其顶点B 在x 轴的负半轴上,∴图象开口向上,当x =﹣1时,y ≥0,即a ﹣b +c ≥0,故①正确;∵OA =OB ,∴b 2a =c ,∴2ac ﹣b =0,故②正确;∵抛物线y =ax 2+bx +c ≥0,∴抛物线y =ax 2+bx +c 与直线y =﹣3无交点,∴方程ax 2+bx +c +3=0无实数根,故③正确;当x =﹣2时,4a ﹣2b +c ≥0a +b +c ≥3b ﹣3aa +b +c ≥3(b ﹣a )若b ﹣a >0时,才有a+b+c a−b ≥3,即a+b+c a−b 的最小值为3.故④错误;综上可知正确的结论有①②③.5.已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1<y2.(填“>”,“<”或“=”)【解答】解:当x=﹣2时,y1=(﹣2+1)2﹣2=﹣1;当x=2时,y2=(2+1)2﹣2=7.∵﹣1<7,∴y1<y2.故答案为<.6.抛物线y=﹣3(x﹣1)2+2的开口向下,对称轴为直线x=1,顶点坐标为(1,2).【解答】解:∵抛物线y=﹣3(x﹣1)2+2,∴该抛物线的开口向下,对称轴是直线x=1,顶点坐标为(1,2),故答案为:下,直线x=1,(1,2).7.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x012y434若一次函数y=bx﹣ac的图象不经过第m象限,则m=1.【解答】解:由表中的数据可知抛物线开口向上,二次函数的顶点为(1,3),与y轴的交点为(0,4),∴a>0,−b2a=1,c=4>0,∴b<0,∴ac>0,∴一次函数y=bx﹣ac的图象经过二、三、四象限,不经过第一象限,则m=1,故答案为:1.8.已知函数y=kx2+(2k+1)x+1(k为实数).(1)对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点(0,1);(2)对于任意正实数k,当x>m时,y随着x的增大而增大,写出一个满足题意的m的值为0.【解答】解:(1)∵y=kx2+(2k+1)x+1(k为实数).∴当x=﹣2时,y=4k+(2k+1)×(﹣2)+1=﹣1,当x=0时,y=0+0+1=1,∴对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点(0,1),故答案为:(0,1);(2)∵k为任意正实数,∴k>0,∴函数图象开口向上,∵函数y=kx2+(2k+1)x+1的对称轴为x=−2k+12k=−1−12k<−1,∴在对称轴右侧,y随x的增大而增大,∵x>m时,y随x的增大而增大,∴m≥﹣1−12k,故m=0时符合题意.(答案不唯一,m≥﹣1即可).故答案为:0.9.二次函数y=(x﹣1)2﹣5的顶点坐标是(1,﹣5).【解答】解:因为y=(x﹣1)2﹣5是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(1,﹣5).故答案为:(1,﹣5).10.写出一个二次函数的解析式,使它的图象满足如下2个条件:(1)开口向下;(2)对称轴是y轴.那么这个二次函数的解析式可以是y=﹣x2(答案不唯一).(只要写出一个)【解答】解:∵抛物线开口向下,∴a<0,则a可取﹣1,∵对称轴是y轴,∴抛物线的对称轴为直线x=,∴满足条件的抛物线解析式可为y=﹣x2.故答案为y=﹣x2(答案不唯一).。
中考数学复习专题二次函数知识点归纳
二次函数知识点归纳一、二次函数概念1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:oo结论:a 的绝对值越大,抛物线的开口越小。
总结:2. 2y ax c =+的性质:结论:上加下减。
a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.总结:3. ()2y a x h =-的性质:结论:左加右减。
总结:4. ()2y a x h k =-+的性质:总结: a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
中考复习二次函数知识点总结
中考复习二次函数知识点总结二次函数是中考数学中的重要知识点之一、下面我将从函数的定义、图像特征、解析式以及一些常见题型进行总结,希望对中考复习有所帮助。
一、函数的定义:函数是数学中最基本的概念之一,它是描述两个集合之间对应关系的规则。
在二次函数中,我们通常用y来表示函数的值,用x表示自变量。
二、图像特征:1.开口方向:二次函数的图像在x轴上开口的方向可以通过二次项的系数(即a的正负性)来判断。
当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2.对称轴:二次函数的图像总是关于一个垂直于x轴的直线对称。
这条直线称为二次函数的对称轴,它的方程为x=-b/(2a)。
3.顶点坐标:对称轴与二次函数图像的交点称为顶点,它的坐标为:(-b/(2a),f(-b/(2a)))4.单调性:当a>0时,二次函数图像在对称轴左侧递减,在对称轴右侧递增;当a<0时,二次函数图像在对称轴左侧递增,在对称轴右侧递减。
注意:二次函数的图像开口向上时,在对称轴上有一个最小值,反之开口向下时,在对称轴上有一个最大值。
三、解析式:一般情况下,二次函数的解析式可以写成:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
特殊情况下,二次函数的解析式还有以下两种形式:1.完全平方式:y=a(x-p)^2+q,其中p、q为常数。
此时,二次函数的对称轴的方程为x=p,顶点的坐标为(p,q)。
2.二次项因式可能性:y=a(x-h)(x-k),其中h、k为常数。
此时,二次函数的对称轴的方程为x=(h+k)/2,顶点的坐标为((h+k)/2,a(h+k)/4)。
四、常见题型:1.求顶点坐标:根据二次函数的解析式,可以直接读出顶点的坐标。
2.求对称轴方程:根据二次函数的解析式,可以直接读出对称轴的方程。
3.求图像开口方向:判断二次项的系数a的正负性即可。
4.求单调性:根据图像特征可以判断。
5. 求零点:令y=0,解方程ax^2+bx+c=0即可。
中考专题复习二次函数知识点总结
中考专题复习二次函数知识点总结知识点一:二次函数的定义1.二次函数的定义:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数.其中a是二次项系数,b是一次项系数,c是常数项.知识点二:二次函数的图象与性质⇒⇒⇒抛物线的三要素:开口、对称轴、顶点2. 二次函数()2=-+的图象与性质y a x h k(1)二次函数基本形式2=的图象与性质:a的绝对值越大,抛物线的开口越小y ax(2)2=+的图象与性质:上加下减y ax c(3)()2y a x h =-的图象与性质:左加右减(4)二次函数()2y a x h k =-+的图象与性质3. 二次函数c bx ax y ++=2的图像与性质(1)当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. (2)当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.4. 二次函数常见方法指导(1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 可以由抛物线2ax 经过适当的平移得到具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:,已知图象上三点或三对、的值,通常选择一般式.②顶点式:,已知图象的顶点或对称轴,通常选择顶点式.③交点式:,已知图象与轴的交点坐标、.(4)求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. (5)抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样. ②b 和a 共同决定抛物线对称轴的位置由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故 如果0=b 时,对称轴为y 轴;如果0>a b(即a 、b 同号)时,对称轴在y 轴左侧; 如果0<ab(即a 、b 异号)时,对称轴在y 轴右侧.③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置当0=x 时,c y =,所以抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ),故 如果0=c ,抛物线经过原点; 如果0>c ,与y 轴交于正半轴; 如果0<c ,与y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数c bx ax y ++=2,当0y =时,得到一元二次方程20ax bx c ++=,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解6.拓展:关于直线与抛物线的交点知识(1)y 轴与抛物线c bx ax y ++=2得交点为(0,)c .(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx n y ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题。
2024年中考数学总复习考点梳理第三章第六节二次函数的图象与性质
第六节 二次函数的图象与性质
返回目录
命题点2 二次函数图象与系数a,b,c的关系(2020.10) 课标要求 1.通过图象了解二次函数的性质,知道二次函数系数与图象形状和对称 轴的关系;(2022年版课标新增) 2.知道二次函数和一元二次方程之间的关系.(2022年版课标新增)
第六节 二次函数的图象与性质
考情及趋势分析
年份 2020
题号 10
题型 选择题
分值 3
考情分析 已知条件
函数图象、对称轴x=1
返回目录
考查设问 下列结论正确的是
第六节 二次函数的图象与性质
返回目录
命题点3 二次函数解析式的确定(6年4考,均在二次函数综合题考查)
考情及趋势分析
年份 题号 题型 分值 2022 23(1) 解答题(三) 5 2021 25(1) 解答题(三) 3
y=ax2+b
①C(0,-3),②y=x+m
【考情总结】考查特点:除2021年考查三个系数未知外,其余年份均考查两个系数未知.
第六节 二次函数的图象与性质
返回目录
命题点4 二次函数图象的平移(6年2考) 考情及趋势分析
考情分析
年份 题号 题型 分值 平移次数 平移方式 设问
溯源教材
教材改编维度
2021 12 填空题 4
第六节 二次函数的图象与性质
返回目录
3. [人教九上P47习题改编]如图,抛物线y=ax2+bx+c(a≠0)与x
轴的一个交点坐标为(-1,0),对称轴为直线x=1.下列结论正
确的有____②__③__⑥______.(填序号)
①bc<0;②2a+b=0;③9a+3b+c=0;
④4a+2b+c>0;⑤2c-3b<0;
2022年广东省湛江市中考数学总复习:二次函数
2022年广东省湛江市中考数学总复习:二次函数1.关于x 的不等式组{x −a >01−x >0只有3个整数解,则a 的取值范围是( ) A .﹣3≤a ≤﹣2B .﹣3≤a <﹣2C .﹣3<a ≤﹣2D .﹣3<a <﹣22.若2x =5,2y =3,则22x﹣y 的值为( ) A .25B .253C .9D .753.在下列四个图案中,不是中心对称图形的是( ) A . B .C .D .4.下列命题中,逆命题为真命题的是( )A .对顶角相等B .邻补角互补C .两直线平行,同位角相等D .互余的两个角都小于90°5.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元;(2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A .1个B .2个C .3个D .4个6.在﹣112,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有( ) A .2个B .3个C .4个D .5 个7.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣18.在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数5 7 8 9 10 人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是( )A .3.9,7B .6.4,7.5C .7.4,8D .7.4,7.59.下列说法正确的是( )A .平行四边形对角线相等B .矩形的对角线互相垂直C .菱形的四个角都相等D .正方形的对角线互相平分。
2024年中考数学二次函数知识点
数学中的二次函数是指形式为y=ax^2+bx+c的函数,其中a、b、c是常数且a不等于0。
二次函数在中考数学中占有重要的地位,下面将介绍一些与二次函数相关的重要知识点。
一、二次函数的图象:1. 定义:二次函数的图象是平面直角坐标系中所有满足函数的方程y=ax^2+bx+c的点的集合。
2.图象的开口方向:若a>0,则图象开口向上;若a<0,则图象开口向下。
3.对称轴:二次函数的图象关于直线x=-b/2a对称。
4.最值点:若a>0,则二次函数图象的最值点为最低点;若a<0,则二次函数图象的最值点为最高点。
二、二次函数的标准型:1. 定义:形式为y=ax^2+bx+c的二次函数可以化为标准型y=a(x-p)^2+q。
2.a的取值规律:若a>0,则a决定图象开口的方向及函数图象的最小值;若a<0,则a决定图象开口的方向及函数图象的最大值。
3.p的取值规律:p=a/24.q的取值规律:若a>0,则q为函数图象的最小值;若a<0,则q 为函数图象的最大值。
三、二次函数的零点:1. 定义:对于二次函数y=ax^2+bx+c,使得y=0的x的值称为二次函数的零点。
2.求解方法:可以使用因式分解、配方法或求根公式等方式来求解二次函数的零点。
四、二次函数的图象和系数之间的关系:1.a与图象的关系:a的绝对值决定了图象的开口大小,a越大时图象越瘦长。
2.b与图象的关系:b的绝对值决定了图象关于y轴的位置,b越大时图象向左或向右移动得越多。
3.c与图象的关系:c的取值决定了图象关于y轴的上下平移。
五、二次函数图象的平移:1.向上或向下平移:将函数图象向上或向下平移k个单位,可通过在函数中加上或减去k来实现。
2.向左或向右平移:将函数图象向左或向右平移h个单位,可通过将自变量x替换为x-h来实现。
六、二次函数的性质:1. 零点的性质:若二次函数y=ax^2+bx+c有两个不同零点,则对应方程ax^2+bx+c=0有两个不同实数根;若有一个重根,则对应方程ax^2+bx+c=0有一个唯一实数根;若无根,则对应方程ax^2+bx+c=0无实数根。
2022年广东省湛江市中考数学总复习:二次函数
2022年广东省湛江市中考数学总复习:二次函数1.某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w 元,问:x为何值时,w最大?最大值是多少?2.在平面直角坐标系中,二次函数y x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;t ,求点P的坐标;(2)如图(甲),连接AC,PA,PC,若S△P AC(3)如图(乙),过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.3.如图,以D为顶点的抛物线y x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+6.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.4.如图,直线y=﹣x+3与x轴、y轴分别交于点B,点C,经过B,C两点的抛物线y=x2+bx+c 与x轴的另一个交点为A,顶点为P,点M为抛物线的对称轴上的一个动点.(1)求该抛物线的解析式;(2)当点M在x轴的上方时,求四边形COAM周长的最小值;(3)在平面直角坐标系内是否存在点N,使以C,P,M,N为顶点的四边形为菱形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx+3(a≠0)与x轴分别交于点A(﹣1,0),B(3,0),与y轴交于点C.(I)求抛物线的解析式:(II)设点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P的坐标;如果不存在,请明理由;(III)存在正实数m,n(m<n),当m≤x≤n时,恰好满足 th t th,求m,n的值.。
中考数学复习二次函数知识点
中考数学复习二次函数知识点二次函数是数学中的重要概念,它在高中数学以及各类数学竞赛中都有广泛的应用。
了解和掌握二次函数的知识点对于中考数学复习非常重要。
以下是关于二次函数的知识点的详细介绍:一、二次函数的定义和基本形式二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c是实数且a ≠ 0。
其中,a 称为二次函数的二次项系数,b 称为一次项系数,c 称为常数项。
二次函数的图像是一个拱形,开口的方向由二次项系数a的正负决定,当a>0时,图像开口朝上;当a<0时,图像开口朝下。
二、二次函数的顶点二次函数的顶点是图像的最高点或最低点,它的横坐标为x=-b/2a,纵坐标为y=f(-b/2a)。
顶点是对称轴x=-b/2a上的一个点,它将图像分为两部分。
三、二次函数的轴对称性二次函数的图像关于对称轴x=-b/2a对称,即对称轴左侧和右侧的部分是相同的。
四、二次函数的平移与伸缩在二次函数的基本形式上,通过变换可以得到平移和伸缩后的二次函数。
(1) 平移:将二次函数的图像沿着 x 轴或 y 轴平移。
在标准的二次函数 f(x) = ax^2 + bx + c 上平移 h 个单位,得到 f(x-h) = a(x-h)^2 + b(x-h) + c。
(2) 伸缩:将二次函数的图像横向或纵向拉长或缩短。
在标准的二次函数 f(x) = ax^2 + bx + c 上横向伸缩为 y = a(x-h)^2 + k。
五、二次函数的解析式二次函数的解析式是对二次函数 y = ax^2 + bx + c 进行化简得到的表达式。
(1) 一般形式:y = ax^2 + bx + c(2)顶点式:y=a(x-h)^2+k,其中(h,k)是函数的顶点坐标。
(3)因式分解式:y=a(x-x1)(x-x2),其中x1和x2是函数的零点或根。
(4)标准式:y=a(x-p)(x-q),其中p和q是函数的零点或根。
廉江市第四中学九年级数学上册 第二十二章 二次函数 22.3 实际问题与二次函数 第2课时 商品利润
第2课时商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x档的产品一天的总利润为y元,则有y=[10+2(x-1)][76-4(x -1)]=-8x2+128x+640=-8(x-8)2+1152.当x=8时,y最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12).(2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.21.2 解一元二次方程——因式分解法一、选择题1.方程0)8)(16(=+-x x 的解是( ). A. 8,1621=-=x x B .8,1621-==x x C .8,1621==x x D .8,1621-=-=x x 考查目的:考查直接利用因式分解法的求解. 答案:B .解析:两项一次项乘积为0,两个一次项分别为零. 2.方程1)1(2+=+x x 的正确解法是( ). A .化为01=+x B .11=+xC .化为0)11)(1(=-++x xD .化为0232=++x x 考查目的:考查提取公因式法的求解. 答案:C .解析:以1+x 为整体提取公因式.3.方程0)1(4)1(922=--+x x 正确解法是( ). A .直接开方得)1(2)1(3-=+x x B .化为一般形式05132=+xC .分解因式得0)]1(2)1(3)][1(2)1(3[=--+-++x x x xD .直接得01=+x 或01=-x 考查目的:考查平方差公式求解. 答案:C .解析:将9和4分别看作3和2的平方,利用平方差公式进行因式分解求方程解 二、填空题4.方程)2(2)2(+=+x x x 的解是____________________. 考查目的:考查提取公因式法的求解. 答案: 21-=x 或22=x . 解析:以2+x 为整体提取公因式.5.方程256)2(2=-x 的解是___________________. 考查目的:考查平方差公式求解. 答案:181=x 或142-=x .解析:将256看作16的平方,利用平方差进行因式分解求方程解. 三、解答题用适当的方法解下列方程. 6.)32(3)32(2+=+t t .考查目的:考查提取公因式法的求解. 答案: 231-=t 或02=t . 解析:以32+t 为整体提取公因式.7.把小圆形场地的半径增加5m 得到大圆形场地,场地面积增加了4倍,求小圆形场地的半径.考查目的:考查平方差公式求解的实际问题. 答案:0)2()5(22=-+r r ,51=r 或352-=r (舍).解析:能根据实际问题列方程,利用平方差进行因式分解求方程解,会对解进行取舍.22.1 比例线段第4课时平行线分线段成比例及其推论教学目标【知识与技能】1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.2.使学生掌握三角形一边的平行线的判定定理.【过程与方法】通过学习定理再次锻炼类比的数学思想,能把一个稍复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.【情感、态度与价值观】通过定理的学习知道认识事物的一般规律是从特殊到一般,并能欣赏数学表达式的对称美,提高学习数学的兴趣.重点难点【重点】平行线分线段成比例定理和推论及其应用.【难点】平行线分线段成比例定理的正确性的说明及推论应用.教学过程一、复习引入教师多媒体课件出示:1.求下列各式中x∶y的值.(1)3x=7y; (2)y=x;(3)y∶x=4∶7.2.已知x∶2=y∶3=z∶6,求(x+y-z)∶(4x+6y+z).教师找两位学生分别板演1、2题,其余同学在下面做,教师巡视,然后集体订正.二、共同探究,获取新知师:平行于三角形一边的直线,在另外两边上截得的线段是怎样的呢?生:……教师多媒体课件出示:已知:如图,过△ABC的AB边上任意一点D作直线DE平行于BC,交AC于点E,求证:=.师:你能证明这个问题吗?学生思考、讨论.教师边操作边讲解:我们可以作辅助线,连接BE、CD,再过点E作AB上的垂线段h.师:现在你能猜出可以转化为哪两个三角形的面积之比吗?学生思考后回答:能,可以转化为△ADE和△BDE的面积之比.师:你是怎样得到的呢?生:△ADE的面积等于AD与h乘积的一半,△BDE的面积等于BD与h乘积一半,所以==.师:你回答得太好了!我们要证的是=,我们把AD与DB的比转化为了两个三角形的面积之比.再证出什么就能得到结论了?学生思考后回答:再证出=.师:对,你们太聪明了!你怎么证明这个相等关系呢?生:过点D向AC边作垂线,与前面同理可证出这个相等关系.师:很好!这样我们就证出=.由这个比例式,你能推出哪些线段也是成比例的?还有哪些比例式也是成立的呢?学生思考,教师提示.生甲:=.生乙:=.师:对!上面的图形,也可看作是直线BC平行于△ADE的一边与另外两边的延长线相交而得到的.于是我们能得到一个定理.教师提示大家读出书上的推论,并板书:定理平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.师:这个定理可推广成一般的形式.教师多媒体课件出示:已知:如图,直线l1∥l2∥l3,直线AC、DF被这三条直线分别截于点A、B、C和D、E、F,求证:=.师:直线AC、DF被这三条直线所截,不止一种结果.因为不同情况下的证明方法不同,所以我们要对截得的结果分类,被截的情形有哪几种呢?学生思考、讨论.生甲:AC与DF平行.生乙:AC与DF不平行,但它们在l1与l2间不相交.生丙:AC与DF相交在l1或l3上.生丁:AC与DF相交在两条平行线间.师:下面我们分别就这几种情况进行讨论.先看平行时,怎么证明这个结论呢?生:根据夹在两条平行线间的平行线段相等得到AB=DE,BC=EF,所以AB∶BC=DE∶EF.师:很好!如果AC与DF不平行且在l1与l2间不相交时,又该如何证明呢?学生思考,讨论后教师找一生板演,其余同学在下面做,然后集体订正.证明:过点A作DF的平行线,分别交l2、l3于点E'、F'.这时有=,而四边形AE'ED和四边形E'F'FE都是平行四边形,所以AE'=DE,E'F'=EF,因而可得=.其余两种情况类似可证.师:于是我们得到如下定理:(教师板书)平行线分线段成比例定理两条直线被一组平行线所截,所得的对应线段成比例.三、继续探究,层层推进师:在这个定理中,当=1时,有=1,即当AB=BC时,有DE=EF,由此你能得到什么结论?学生口述,教师板书:平行线等分线段定理两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等.四、例题讲解【例】如图,在△ABC中,E、F分别是AB和AC上的点,且EF∥BC.(1)如果AE=7,EB=5,FC=4,那么AF的长是多少?(2)如果AB=10,AE=6,AF=5,那么FC的长是多少?解:(1)∵EF∥BC,∴=,∵AE=7,EB=5,FC=4,∴AF===.(2)∵EF∥BC,∴=.∵AB=10,AE=6,AF=5,∴AC===,∴FC=AC-AF=-5=.五、巩固练习师:同学们,我们今天学习了不少知识,你们都掌握了吗?现在我来出几道题目帮助大家消化一下.1.如图,已知AB∥CD∥EF,那么下列结论正确的是( )A.=B.=C.=D.=【答案】A2.如图,DE∥BC,AB∶DB=3∶1,则AE∶AC= .【答案】2∶3第2题图第3题图3.如图,DE∥BC,若AB=8,AE∶EC=2∶3,则AD= .【答案】4.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则AH∶HE= . 【答案】2∶1第4题图第5题图5.如图,在△ABC中,DE∥BC,AD=4,DB=8,AE=3.(1)求的值;(2)求AC的长.【答案】(1)===;(2)∵DE∥BC,∴==.又∵AE=3,∴AC=9.六、课堂小结师:今天你学习了哪些定理?学生口述定理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年广东省廉江市中考数学总复习:二次函数解析版
一.选择题(共50小题)
1.已知抛物线y =ax 2+bx +c (其中a ,b ,c 是常数,a >0)的顶点坐标为(12,m ).有下列结论:
①若m >0,则a +2b +6c >0;
②若点(n ,y 1)与(32−2n ,y 2)在该抛物线上,当n <12时,则y 1<y 2; ③关于x 的一元二次方程ax 2﹣bx +c ﹣m +1=0有实数解.
其中正确结论的个数是( )
A .0
B .1
C .2
D .3
【解答】解:①∵抛物线y =ax 2+bx +c (其中a ,b ,c 是常数,a >0)顶点坐标为(12,
m ),
∴−b 2a =12,
∴b =﹣a ,
∴a +2b +6c =﹣a +6c
m =4ac−b 24a =4c−a 4 ∵m >0,∴4c ﹣a >0,∴4c >a >0,∴c >0,
∴6c ﹣a =2c +4c ﹣a >0,
∴a +2b +6c >0.
故此小题结论正确;
②∵顶点坐标为(12,m ),n <12
, ∴点(n ,y 1)关于抛物线的对称轴x =12的对称点为(1﹣n ,y 1)
∴点(1﹣n ,y 1)与(32−2n ,y 2)在该抛物线上, ∵1﹣n ﹣(32−2n )=n −12<0, ∴1﹣n <32−2n ,
∵a >0,
∴当x >12时,y 随x 的增大而增大,
∴y 1<y 2
故此小题结论正确;
③把顶点坐标(12,m )代入抛物线y =ax 2+bx +c 中,得m =14a +12
b +
c , ∴一元二次方程ax 2﹣bx +c ﹣m +1=0中,
△=b 2﹣4ac +4am ﹣4a
=b 2﹣4ac +4a (14a +12
b +
c )﹣4a =(a +b )2﹣4a
∵b =﹣a
∴△=﹣4a <0,
∴关于x 的一元二次方程ax 2﹣bx +c ﹣m +1=0无实数解.
故此小题错误.
故选:C .
2.抛物线y =ax 2+bx +c 交x 轴于A (﹣1,0),B (3,0),交y 轴的负半轴于C ,顶点为D .下
列结论:①2a +b =0;②2c <3b ;③当m ≠1时,a +b <am 2+bm ;④当△ABD 是等腰直角三角形时,则a ═12;⑤当△ABC 是等腰三角形时,a 的值有3个.其中正确的有( )个.
A .5
B .4
C .3
D .2
【解答】解:①∵二次函数与x 轴交于点A (﹣1,0)、B (3,0).
∴二次函数的对称轴为x =
(−1)+32=1,即−b 2a
=1, ∴2a +b =0.
故①正确;
②∵二次函数y =ax 2+bx +c 与x 轴交于点A (﹣1,0)、B (3,0).
∴a﹣b+c=0,9a+3b+c=0.
又∵b=﹣2a.
∴3b=﹣6a,a﹣(﹣2a)+c=0.
∴3b=﹣6a,2c=﹣6a.
∴2c=3b.
故②错误;
③∵抛物线开口向上,对称轴是x=1.
∴x=1时,二次函数有最小值.
∴m≠1时,a+b+c<am2+bm+c.
即a+b<am2+bm.
故③正确;
④∵AD=BD,AB=4,△ABD是等腰直角三角形.
∴AD2+BD2=42.
解得,AD2=8.
设点D坐标为(1,y).
则[1﹣(﹣1)]2+y2=AD2.
解得y=±2.
∵点D在x轴下方.
∴点D为(1,﹣2).
∵二次函数的顶点D为(1,﹣2),过点A(﹣1,0).设二次函数解析式为y=a(x﹣1)2﹣2.
∴0=a(﹣1﹣1)2﹣2.
解得a=1 2.
故④正确;
⑤由图象可得,AC≠BC.
故△ABC是等腰三角形时,a的值有2个.(故⑤错误)。