七年级下册数学山东省潍坊市2020年中考数学试题(word版,含答案)
2020学年山东省潍坊市初中学业水平考试数学(含答案)
2020年潍坊市初中学业水平考试一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.实数0.5的算术平方根等于( ).A.2B.2C.22D. 2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.3.2012年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达865.4亿元.数据“865.4亿元”用科学技术法可表示为( )元.A.810865⨯B.91065.8⨯C.101065.8⨯D.1110865.0⨯ 4.如图是常用的一种圆顶螺杆,它的俯视图正确的是( ).5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数 6.设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当<2x <时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).8.如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.549.一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时10.已知关于的方程()0112=--+x k kx ,下列说法正确的是( ).A.当0=k 时,方程无解B.当1=k 时,方程有一个实数解C.当1-=k 时,方程有两个相等的实数解D.当0≠k 时,方程总有两个不相等的实数解11.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为,不吸烟者患肺癌的人数为,根据题意,下面列出的方程组正确的是( ).A.⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB.⎪⎩⎪⎨⎧=+=-10000%5.0%5.222yx y x C.⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D.⎪⎩⎪⎨⎧=-=+22%5.0%5.210000y x y x 12.对于实数,我们规定[]x 表示不大于的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则的取值可以是( ).A.40B.45C.51D.56二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分.)13.方程012=++x xx 的根是_________________. 14.如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)15.分解因式:()()=+-+a a a 322_________________.16.一次函数b x y +-=2中,当1=x 时,<1;当1-=x 时,>0则的取值范围是_____________. 17.当白色小正方形个数等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用表示,是正整数) 18.如图,直角三角形ABC 中,︒=∠90ACB ,10=AB ,6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点落在线段DB 上,对应点记为1A ;AD 的中点的对应点记为1E .若11FA E ∆∽BF E 1∆,则AD =__________.三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.) 19.(本题满分10分)如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙,分别于BC 、AD 相交于点、F . (1)求证四边形BEDF 为矩形.(2)若BC BE BD ⋅=2试判断直线CD 与⊙的位置关系,并说明理由.20.(本题满分10分)为增强市民的节能意识,我市试行阶梯电价.从2020年开始,按照每户每年的用电量分三个档次计费,具体规定见右图.小明统计了自己2020年前5个月的实际用电量为1300度,请帮助小明分析下面问题.(1)若小明家计划2020年全年的用电量不超过2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2020年6月至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2020年应交总电费多少元?21.(本题满分10分)随着我国汽车产业的发展,城市道路拥堵问题日益严峻.某部门对15个城市的交通状况进行了调查,得到的数据如下表所示:(1)根据上班花费时间,将下面的频数分布直方图补充完整; (2)求15个城市的平均上班堵车时间(计算结果保留一位小数); (3)规定: %100⨯-=上班堵车时间上班花费时间上班堵车时间城市堵车率,比如:北京的堵车率=%100145214⨯-=36.8%;沈阳的堵车率=%100123412⨯-=54.5%.某人欲从北京、沈阳、上海、温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.22.(本题满分11分)如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点顺时针旋转至'''D F CE ,旋转角为. (1)当点'D 恰好落在EF 边上时,求旋转角的值;(2)如图2,G 为BC ,且0°<<90°,求证:D E GD ''=;(3)小长方形CEFD 绕点顺时针旋转一周的过程中,'DCD ∆与'CBD ∆能否全等?若能,直接写出旋转角的值;若不能,说明理由.23.(本题满分12分)为了改善市民的生活环境,我是在某河滨空地处修建一个如图所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点E D 、在斜边AB 上,G F 、分别在直角边AC BC 、上;又分别以AC BC AB 、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米324=AB ,︒=∠60BAC .设x EF =米,y DE =米.(1)求与之间的函数解析式;(2)当为何值时,矩形DEFG 的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当为何值时,矩形DEFG 的面积等于两弯新月面积的?24.(本题满分13分)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点是坐标原点. (1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在轴正半轴上是否存在一定点,使得不论取何值,直线PM 与PN 总是关于轴对称?若存在,求出点坐标;若不存在,请说明理由.源:Z_xx_]。
2020年山东省潍坊市中考数学试卷(后附答案及详尽解析)
2020年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(3分)(2020•潍坊)下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b3.(3分)(2020•潍坊)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106 4.(3分)(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.5.(3分)(2020•潍坊)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141144145146学生人数(名) 5 2 1 2则关于这组数据的结论正确的是( )A .平均数是144B .众数是141C .中位数是144.5D .方差是5.46.(3分)(2020•潍坊)若m 2+2m =1,则4m 2+8m ﹣3的值是( )A .4B .3C .2D .17.(3分)(2020•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .428.(3分)(2020•潍坊)关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定9.(3分)(2020•潍坊)如图,函数y =kx +b (k ≠0)与y =m x (m ≠0)的图象相交于点A (﹣2,3),B (1,﹣6)两点,则不等式kx +b >m x 的解集为( )A .x >﹣2B .﹣2<x <0或x >1C .x >1D .x <﹣2或0<x <1 10.(3分)(2020•潍坊)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA上的动点.当PC +PD 最小时,OP 的长为( )A .12B .34C .1D .32 11.(3分)(2020•潍坊)若关于x 的不等式组{3x −5≥12x −a <8有且只有3个整数解,则a 的取值范围是( )A .0≤a ≤2B .0≤a <2C .0<a ≤2D .0<a <212.(3分)(2020•潍坊)若定义一种新运算:a ⊗b ={a −b(a ≥2b)a +b −6(a <2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y =(x +2)⊗(x ﹣1)的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)(2020•潍坊)因式分解:x 2y ﹣9y = .14.(3分)(2020•潍坊)若|a ﹣2|+√b −3=0,则a +b = .15.(3分)(2020•潍坊)如图,在Rt △ABC 中,∠C =90°,∠B =20°,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;③作射线AF .若AF 与PQ 的夹角为α,则α= °.16.(3分)(2020•潍坊)若关于x 的分式方程3x x−2=m+3x−2+1有增根,则m = .17.(3分)(2020•潍坊)如图,矩形ABCD 中,点G ,E 分别在边BC ,DC 上,连接AC ,EG ,AE ,将△ABG 和△ECG 分别沿AG ,EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若CE =3,CG =4,则sin ∠DAE = .18.(3分)(2020•潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:DA 1̂的圆心为点A ,半径为AD ;A 1B 1̂的圆心为点B ,半径为BA 1;B 1C 1̂的圆心为点C ,半径为CB 1;C 1D 1̂的圆心为点D ,半径为DC 1;⋯DA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则A 2020B 2020̂的长是 .三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.(2020•潍坊)先化简,再求值:(1−x+1x 2−2x+1)÷x−3x−1,其中x 是16的算术平方根. 20.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.21.(2020•潍坊)在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.̂的中点,22.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BF过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.23.(2020•潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.(2020•潍坊)如图1,在△ABC中,∠A=90°,AB=AC=√2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.25.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=35S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.2020年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.2.(3分)(2020•潍坊)下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b【解答】解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2+2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.3.(3分)(2020•潍坊)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106【解答】解:∵1109万=11090000,∴11090000=1.109×107.故选:A .4.(3分)(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D .【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D .5.(3分)(2020•潍坊)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141 144 145 146学生人数(名) 5 2 1 2 则关于这组数据的结论正确的是( )A .平均数是144B .众数是141C .中位数是144.5D .方差是5.4【解答】解:根据题目给出的数据,可得:平均数为:x =141×5+144×2+145×1+146×25+2+1+2=143,故A 选项错误; 众数是:141,故B 选项正确;中位数是:141+1442=142.5,故C 选项错误; 方差是:S 2=110[(141−143)2×5+(144−143)2×2+(145−143)2×1+(146−143)2×2]=4.4,故D 选项错误;故选:B .6.(3分)(2020•潍坊)若m 2+2m =1,则4m 2+8m ﹣3的值是( )A .4B .3C .2D .1【解答】解:∵m 2+2m =1,∴4m 2+8m ﹣3=4(m 2+2m )﹣3=4×1﹣3=1.故选:D .7.(3分)(2020•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .42【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴DE AE =FD AB =12, ∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .8.(3分)(2020•潍坊)关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定 【解答】解:△=(k ﹣3)2﹣4(1﹣k )=k 2﹣6k +9﹣4+4k=k 2﹣2k +5 =(k ﹣1)2+4,∴(k ﹣1)2+4>0,即△>0, ∴方程总有两个不相等的实数根. 故选:A .9.(3分)(2020•潍坊)如图,函数y =kx +b (k ≠0)与y =mx(m ≠0)的图象相交于点A (﹣2,3),B (1,﹣6)两点,则不等式kx +b >mx 的解集为( )A .x >﹣2B .﹣2<x <0或x >1C .x >1D .x <﹣2或0<x <1【解答】解:∵函数y =kx +b (k ≠0)与y =mx(m ≠0)的图象相交于点A (﹣2,3),B (1,﹣6)两点,∴不等式kx +b >mx的解集为:x <﹣2或0<x <1, 故选:D .10.(3分)(2020•潍坊)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA 上的动点.当PC +PD 最小时,OP 的长为( )A .12B .34C .1D .32【解答】解:如图,延长CO 交⊙O 于点E ,连接ED ,交AO 于点P ,此时PC +PD 的值最小.∵CD ⊥OB , ∴∠DCB =90°, 又∠AOB =90°, ∴∠DCB =∠AOB , ∴CD ∥AO ∴BC BO=CD AO∵OC =2,OB =4, ∴BC =2, ∴24=CD 3,解得,CD =32;∵CD ∥AO , ∴EO EC=PO DC,即24=PO 3,解得,PO =34故选:B .11.(3分)(2020•潍坊)若关于x 的不等式组{3x −5≥12x −a <8有且只有3个整数解,则a 的取值范围是( ) A .0≤a ≤2B .0≤a <2C .0<a ≤2D .0<a <2【解答】解:解不等式3x ﹣5≥1得:x ≥2, 解不等式2x ﹣a <8得:x <8+a2, ∴不等式组的解集为:2≤x <8+a2, ∵不等式组{3x −5≥12x −a <8有三个整数解,∴三个整数解为:2,3,4, ∴4<8+a2≤5, 解得:0<a ≤2, 故选:C .12.(3分)(2020•潍坊)若定义一种新运算:a⊗b={a−b(a≥2b)a+b−6(a<2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)(2020•潍坊)因式分解:x2y﹣9y=y(x+3)(x﹣3).【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).14.(3分)(2020•潍坊)若|a﹣2|+√b−3=0,则a+b=5.【解答】解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.15.(3分)(2020•潍坊)如图,在Rt △ABC 中,∠C =90°,∠B =20°,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;③作射线AF .若AF 与PQ 的夹角为α,则α= 55 °.【解答】解:如图,∵△ABC 是直角三角形,∠C =90°, ∴∠B +∠BAC =90°, ∵∠B =20°,∴∠BAC =90°﹣∠B =90°﹣20°=70°, ∵AM 是∠BAC 的平分线, ∴∠2=12∠BAC =12×70°=35°, ∵PQ 是AB 的垂直平分线, ∴△AMQ 是直角三角形, ∴∠AMQ +∠2=90°,∴∠AMQ =90°﹣∠2=90°﹣35°=55°, ∵∠α与∠AMQ 是对顶角, ∴∠α=∠AMQ =55°. 故答案为:55°.16.(3分)(2020•潍坊)若关于x 的分式方程3xx−2=m+3x−2+1有增根,则m = 3 .【解答】解:去分母得:3x =m +3+(x ﹣2),整理得:2x =m +1, ∵关于x 的分式方程3x x−2=m+3x−2+1有增根,即x ﹣2=0,∴x =2,把x =2代入到2x =m +1中得:2×2=m +1, 解得:m =3; 故答案为:3.17.(3分)(2020•潍坊)如图,矩形ABCD 中,点G ,E 分别在边BC ,DC 上,连接AC ,EG ,AE ,将△ABG 和△ECG 分别沿AG ,EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若CE =3,CG =4,则sin ∠DAE =725.【解答】解:矩形ABCD 中,GC =4,CE =3,∠C =90°, ∴GE =2+CE 2=√42+32=5,根据折叠的性质:BG =GF ,GF =GC =4,CE =EF =3,∠AGB =∠AGF ,∠EGC =∠EGF ,∠GFE =∠C =90°,∠B =∠AFG =90°, ∴BG =GF =GC =4,∠AFG +∠EFG =90°, ∴BC =AD =8,点A ,点F ,点E 三点共线, ∵∠AGB +∠AGF +∠EGC +∠EGF =180°, ∴∠AGE =90°, ∴Rt △EGF ∽Rt △EAG , ∴EG EA=EF EG ,即5EA=35,∴EA =253,∴DE =√AE 2−AD 2=√(253)2−82=73,∴sin ∠DAE =DE AE =73253=725,故答案为:725.18.(3分)(2020•潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:DA 1̂的圆心为点A ,半径为AD ;A 1B 1̂的圆心为点B ,半径为BA 1;B 1C 1̂的圆心为点C ,半径为CB 1;C 1D 1̂的圆心为点D ,半径为DC 1;⋯DA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则A 2020B 2020̂的长是 4039π .【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故A 2020B 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,A 2020B 2020̂的弧长=90180×8078π=4039π. 故答案为:4039π.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.) 19.(2020•潍坊)先化简,再求值:(1−x+1x 2−2x+1)÷x−3x−1,其中x 是16的算术平方根.【解答】解:原式=(x 2−2x+1x 2−2x+1−x+1x 2−2x+1)÷x−3x−1,=(x 2−3x x 2−2x+1)×x−1x−3,=x(x−3)(x−1)2×x−1x−3,=xx−1.∵x 是16的算术平方根,∴x=4,当x=4时,原式=4 3.20.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD=CDtan60°=120√3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.21.(2020•潍坊)在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.【解答】解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×1640=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)=1012=56.22.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BF̂的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【解答】解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧BF̂的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧BF̂的中点,∴FĈ=BĈ,∴∠FOC=∠BOC=60°,∵AB =4,∴FO =OC =OB =2,∴S 扇形FOC =60⋅π×22360=23π,即阴影部分的面积为:23π.23.(2020•潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)【解答】解:(1)设y 与销售单价x 之间的函数关系式为:y =kx +b , 将点(60,100)、(70,80)代入一次函数表达式得:{100=60k +b80=70k +b ,解得:{k =−2b =220,故函数的表达式为:y =﹣2x +220;(2)设药店每天获得的利润为W 元,由题意得: w =(x ﹣50)(﹣2x +220)=﹣2(x ﹣80)2+1800, ∵﹣2<0,函数有最大值,∴当x =80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.(2020•潍坊)如图1,在△ABC 中,∠A =90°,AB =AC =√2+1,点D ,E 分别在边AB ,AC 上,且AD =AE =1,连接DE .现将△ADE 绕点A 顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE ,BD ,CD .(1)当0°<α<180°时,求证:CE =BD ;(2)如图3,当α=90°时,延长CE 交BD 于点F ,求证:CF 垂直平分BD ;(3)在旋转过程中,求△BCD 的面积的最大值,并写出此时旋转角α的度数.【解答】(1)证明:如图2中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°, ∵∠CAE +∠BAE =∠BAD +∠BAE =90°,∴∠CAE =∠BAD ,在△ACE 和△ABD 中,{AC =AB ∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD (SAS ),∴CE =BD ;(2)证明:如图3中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°, 在△ACE 和△ABD 中,{AC =AB ∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD (SAS ),∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°,∴BC =√2AB =√2+2,CD =AC +AD =√2+2,∴BC =CD ,∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解:△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图4中:∵∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°,DG ⊥BC 于G ,∴AG =12BC =√2+22,∠GAB =45°,∴DG =AG +AD =√2+22+1=√2+42,∠DAB =180°﹣45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12(√2+2)(√2+42)=3√2+52, 旋转角α=135°.25.(2020•潍坊)如图,抛物线y =ax 2+bx +8(a ≠0)与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =35S △ABC 时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与△OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A (﹣2,0)和点B (8,0),∴{4a −2b +8=064a +8b +8=0,解得{a =−12b =3, ∴抛物线解析式为:y =−12x 2+3x +8;(2)当x =0时,y =8,∴C (0,8),∴直线BC 解析式为:y =﹣x +8,∵S △ABC =12⋅AB ⋅OC =12×10×8=40, ∴S △PBC =35S △ABC =24,过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F ,设P(t ,−12t 2+3x +8),∴F (t ,﹣t +8),∴PF =−12t 2+4t ,∴S △PBC =12PF ⋅OB =24,即12×(−12t 2+4t)×8=24, ∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)∵C (0,8),B (8,0),∠COB =90°,∴△OBC 为等腰直角三角形,抛物线y =−12x 2+3x +8的对称轴为x =−b 2a =−32×(−12)=3, ∴点E 的横坐标为3,又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E (3,5),设M(3,m),N(n ,−12n 2+3n +8),①当MN =EM ,∠EMN =90°,当△NME ~△COB 时,则{m −5=n −3−12n 2+3n +8=m, 解得{n =6m =8或{n =−2m =0(舍去), ∴此时点M 的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则{m−5=n−3−12n2+3n+8=5,解得:{m=5+√15n=3+√15或{m=5−√15n=3−√15(舍去),∴此时点M的坐标为(3,5+√15);③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴CM=√32+(m−8)2,CE=√32+(5−8)2=3√2,∴√32+(m−8)2=3√2,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),(3,5+√15)或(3,11).。
2020年山东省潍坊市中考数学试题及参考答案(word解析版)
2020年潍坊市初中学业水平考试数学试题(总分120分,考试时间120分钟)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列图形,既是中心对称图形又是轴对称图形的是()A.B.C D.2.下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×1064.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.5.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141 144 145 146学生人数(名) 5 2 1 2 则关于这组数据的结论正确的是()A.平均数是144 B.众数是141 C.中位数是144.5 D.方差是5.46.若m2+2m=1,则4m2+8m﹣3的值是()A.4 B.3 C.2 D.17.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21 B.28 C.34 D.428.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2 B.﹣2<x<0或x>1C.x>1 D.x<﹣2或0<x<110.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1 D.11.若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2 B.0≤a<2 C.0<a≤2 D.0<a<212.若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.因式分解:x2y﹣9y=.14.若|a﹣2|+=0,则a+b=.15.如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=°.16.若关于x的分式方程+1有增根,则m=.17.如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG和△ECG 分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE=.18.如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD =AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.答案与解析第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列图形,既是中心对称图形又是轴对称图形的是()A.B.C D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.【解题过程】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【总结归纳】本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据合并同类项、幂的乘方,同底数幂乘法以及完全平方公式,逐项判断即可.【解题过程】解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2+2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.【总结归纳】本题考查合并同类项,同底数幂的乘法和积的乘方、以及完全平方公式,解题关键是熟记运算法则和公式.3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故先将1109万换成11090000,再按照科学记数法的表示方法表示即可得出答案.【解题过程】解:∵1109万=11090000,∴11090000=1.109×107.故选:A.【总结归纳】本题考查了科学记数法的简单应用,属于基础知识的考查,比较简单.4.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从左面看所得到的图形即可,注意所有的看到的和看不到的棱都应表现在左视图中.【解题过程】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.【总结归纳】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.5.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141 144 145 146学生人数(名) 5 2 1 2 则关于这组数据的结论正确的是()A.平均数是144 B.众数是141 C.中位数是144.5 D.方差是5.4【知识考点】加权平均数;中位数;众数;方差.【思路分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.【解题过程】解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D选项错误;故选:B.【总结归纳】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.6.若m2+2m=1,则4m2+8m﹣3的值是()A.4 B.3 C.2 D.1【知识考点】代数式求值.【思路分析】把代数式4m2+8m﹣3变形为4(m2+2m)﹣3,再把m2+2m=1代入计算即可求出值.【解题过程】解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.【总结归纳】此题考查了求代数式的值,以及“整体代入”思想.解题的关键是把代数式4m2+8m ﹣3变形为4(m2+2m)﹣3.7.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21 B.28 C.34 D.42【知识考点】平行四边形的性质;相似三角形的判定与性质.【思路分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.【解题过程】解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.【总结归纳】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答8.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【知识考点】根的判别式.【思路分析】先计算判别式,再进行配方得到△=(k﹣1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【解题过程】解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.【总结归纳】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2 B.﹣2<x<0或x>1 C.x>1 D.x<﹣2或0<x<1【知识考点】反比例函数与一次函数的交点问题.【思路分析】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解题过程】解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.【总结归纳】本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.10.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB 交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP 的长为()A.B.C.1 D.【知识考点】轴对称﹣最短路线问题;平行线分线段成比例.【思路分析】延长CO交⊙O于点E,连接EP,交AO于点P,则PC+PD的值最小,利用平行线分线段成比例分别求出CD,PO的长即可.【解题过程】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴=,即=,解得,PO=故选:B.【总结归纳】此题主要考查了轴对称﹣﹣﹣最短距离问题,同时考查了平行线分线段成比例,掌握轴对称性质和平行线分线段成比例定理是解题的关键.11.若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2 B.0≤a<2 C.0<a≤2 D.0<a<2【知识考点】一元一次不等式组的整数解.【思路分析】先求出不等式组的解集(含有字母a),利用不等式组有三个整数解,逆推出a的取值范围即可.【解题过程】解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.【总结归纳】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数求出关于a的不等式组12.若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【知识考点】函数的图象.【思路分析】根据a⊗b=,可得当x+2≥2(x﹣1)时,x≤4,分两种情况:当x≤4时和当x>4时,分别求出一次函数的关系式,然后判断即可得出结论.【解题过程】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象从左向右逐渐上升,y随x的增大而增大,综上所述,A选项符合题意.故选:A.【总结归纳】本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键.第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.因式分解:x2y﹣9y=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解题过程】解:x2y﹣9y=y(x2﹣9)=y(x+3)(x﹣3).【总结归纳】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.若|a﹣2|+=0,则a+b=.【知识考点】非负数的性质:绝对值;非负数的性质:算术平方根.【思路分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解题过程】解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.【总结归纳】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=°.【知识考点】线段垂直平分线的性质;作图—基本作图.【思路分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠BAM=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠AMQ+∠BAM=90°,即可求出α.【解题过程】解:∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴∠BAM=BAC=35°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠BAM=90°,∴∠AMQ=90°﹣∠BAM=90°﹣35°=55°,∴α=∠AMQ=55°.故答案为:55°.【总结归纳】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.若关于x的分式方程+1有增根,则m=.【知识考点】分式方程的增根.【思路分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x的值,代入到转化以后的整式方程中计算即可求出m的值.【解题过程】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.【总结归纳】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.17.如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG和△ECG 分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE=.【知识考点】勾股定理;翻折变换(折叠问题);相似三角形的判定与性质;解直角三角形.【思路分析】根据折叠的性质结合勾股定理求得GE=5,BC=AD=8,证得Rt△EGF∽Rt△EAG,求得,再利用勾股定理得到DE的长,即可求解.【解题过程】解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE=∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=180°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.【总结归纳】本考查了翻折变换,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.18.如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是.【知识考点】正方形的性质;弧长的计算.【思路分析】曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,再计算弧长.【解题过程】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.【总结归纳】此题主要考查了弧长的计算,弧长的计算公式:,找到每段弧的半径变化规律是解题关键.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.【知识考点】分式的化简求值.【思路分析】先将括号里的进行通分运算,然后再计算括号外的除法,把除法运算转化为乘法运算,进行约分,得到最简分式,最后把x值代入运算即可.【解题过程】解:原式=,=,=,=.∵x是16的算术平方根,∴x=4,当x=4时,原式=.【总结归纳】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】过点C作CD⊥AB,垂足为D,根据在C处测得桥两端A,B两点的俯角分别为60°和45°,可得∠CAD=∠MCA=60°,∠CBD=∠NCB=45°,利用特殊角懂得三角函数求解即可.【解题过程】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120(米),在Rt△ACD中,AD===40(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40+120)(米).答:桥AB的长度为(40+120)米.【总结归纳】本题考查了特殊角的三角函数的运算,熟悉特殊角的三角函数值是解题的关键.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.【知识考点】用样本估计总体;扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;(2)先求出B档所占百分比,再乘以1200即可得到结论;(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.【解题过程】解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)==.【总结归纳】本题考查条形统计图以及树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【知识考点】勾股定理;垂径定理;圆周角定理;切线的判定与性质;扇形面积的计算.【思路分析】(1)连接BF,证明BF∥CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.【解题过程】解:(1)连接BF,OC,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,CF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵OF=OC,∴∠OCF=∠COB,∴CF∥AB,∴S△ACF=S△COF,∴阴影部分的面积=S扇形COF,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.【总结归纳】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)【知识考点】二次函数的应用.【思路分析】(1)设y与x之间的函数表达式为y=kx+b,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w关于x的二次函数,根据二次函数的性质即可求解.【解题过程】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为w元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.【总结归纳】本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD =AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【知识考点】几何变换综合题.【思路分析】(1)利用“SAS”证得△ACE≌△ABD即可得到结论;(2)利用“SAS”证得△ACE≌△ABD,推出∠ACE=∠ABD,计算得出CD=BC=,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【解题过程】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EFB=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.【总结归纳】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.。
山东省潍坊市2020年中考数学试题及详解(WORD版)
第一部分山东省潍坊市2020年中考数学试题(1-7)第二部分山东省潍坊市2020年中考数学试题详解(8-20)第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.) 1.下列图形,既是中心对称图形又是轴对称图形的是( ) A. B. C. D.2.下列运算正确的是( )A. 235a b ab +=B. 325a a a ⋅=C. 222()a b a b +=+D. ()326a b a b =3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为( )A. 71.10910⨯B. 61.10910⨯C. 80.110910⨯D. 611.0910⨯4.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A. B. C. D.5.为调动学生参与体育锻炼积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表: 一分钟跳绳个数(个) 141 144 145 146学生人数(名)5 2 1 2则关于这组数据的结论正确的是( )A. 平均数是144B. 众数是141C. 中位数是144.5D. 方差是5.46.若221m m +=,则2483m m +-的值是( )A. 4B. 3C. 2D. 17.如图,点E 是ABCD 的边AD上的一点,且12DE AE =,连接BE 并延长交CD 的延长线于点F ,若3,4DE DF ==,则ABCD 的周长为( )A. 21B. 28C. 34D. 428.关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定 9.如图,函数(0)y kx b k =+≠与m y (m 0)x =≠的图象相交于点(2,3),(1,6)A B --两点,则不等式m kx b x+>的解集为( )A. 2x >-B. 20x -<<或1x >C. 1x >D. 2x <-或01x <<10.如图,在Rt AOB 中,90,3,4AOB OA OB ∠=︒==,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD OB ⊥交AB 于点D ,点P 是边OA 上的动点.当PC PD +最小时,OP 的长为( )A. 12B. 34C. 1D. 3211.若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解,则a 的取值范围是( ) A . 02a ≤≤ B. 02a ≤<C. 02a <≤D. 02a << 12.若定义一种新运算:(2)6(2)a ba b a ba b a b 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( ) A.B. C. D. 第Ⅱ卷(非选择题 共84分) 说明:将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.) 13.因式分解:x 2y ﹣9y =_____.14.若|2|30a b -+-=,则a b +=_________.15.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.16.若关于x 的分式方程33122x m x x +=+--有增根,则m =_________. 17.如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AC EG AE ,将ABG 和ECG 分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠=_______.18.如图,四边形ABCD 是正方形,曲线11112DA B C D A 是由一段段90度的弧组成的.其中:1DA 的圆心为点A ,半径为AD ; 11A B 的圆心为点B ,半径为1BA ;11B C 的圆心为点C ,半径为1CB ;11C D 的圆心为点D ,半径为1DC ;…1111111,,,,DA A B B C C D ⋅⋅⋅的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则20202020A B 的长是_________.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.) 19.先化简,再求值:2131211x x x x x +-⎛⎫-÷ ⎪-+-⎝⎭,其中x 是16的算术平方根.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB 是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB 的上方120米的点C 处悬停,此时测得桥两端A ,B 两点的俯角分别为60°和45°,求桥AB 的长度.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t (单位:小时).把调查结果分为四档,A 档:8t <;B 档:89t ≤<;C 档:910t ≤<;D 档:10t ≥.根据调查情况,给出了部分数据信息:①A 档和D 档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B 档的人数;(3)学校要从D 档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.22.如图,AB 为O 的直径,射线AD 交O 于点F ,点C 为劣弧BF 的中点,过点C 作CE AD ⊥,垂足为E ,连接AC .(1)求证:CE 是O 的切线;(2)若30,4BAC AB ∠=︒=,求阴影部分的面积.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)24.如图1,在ABC 中,90,21A AB AC∠=︒==+,点D ,E 分别在边,AB AC 上,且1AD AE ==,连接DE .现将ADE 绕点A 顺时针方向旋转,旋转角为()0360αα︒︒<<,如图2,连接,,CE BD CD .(1)当0180α︒<<︒时,求证:CE BD =;(2)如图3,当90α=︒时,延长CE 交BD 于点F ,求证:CF 垂直平分BD ;(3)在旋转过程中,求BCD的面积的最大值,并写出此时旋转角α的度数.25.如图,抛物线28(0)y ax bx a =++≠与x 轴交于点()2,0A -和点()8,0B,与y 轴交于点C ,顶点为D ,连接,,AC BC BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接,PB PC ,当35PBC ABC SS =时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.山东省潍坊市2020年中考数学试题详解第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.) 1、A .不是轴对称图形,是中心对称图形,故此选项不符合题意;B .是轴对称图形,不是中心对称图形,故此选项不符合题意;C .是轴对称图形,也是中心对称图形,故此选项符合题意;D .是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .2、A 、不是同类项,不能合并,故选项A 计算错误;B 、325a a a ⋅=,故选项B 计算正确;C 、222()2a b a ab b +=+++,故选项C 计算错误;D 、()3263a b a b =,故选项D 计算错误.故选B .3、∵1109万=11090000,∴11090000=1.109×107.故选:A .4、从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线, 故选:D .5、解:根据题目给出的数据,可得: 平均数为:14151442145114621435212x ,故A 选项错误;众数是:141,故B 选项正确;中位数是:141144142.52,故C 选项错误; 方差是:222221141143514414321451431146143210S 4.4,故D 选项错误;故选:B .6、∵221m m +=,∴2483m m +-=24(2)3m m +-=4×1-3=1.故选:D .7、解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB=CD ,∴△ABE ∽△DFE , ∴12DE FD AE AB ==, ∵3,4DE DF ==,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴ABCD 的周长为:(8+9)×2=34. 故选:C .8、△=(k-3)2-4(1-k)=k 2-6k+9-4+4k=k 2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A .9、解:∵函数()0y kx b k =+≠与()0m y m x =≠的图象相交于点(2,3),(1,6)A B --两点, ∴不等式m kx b x +>的解集为:2x <-或01x <<, 故选:D .10、延长CO 交O 于点E ,连接ED ,交AO 于点P ,如图,∵CD ⊥OB ,∴∠DCB=90°,又90AOB ∠=︒,∴∠DCB=∠AOB ,∴CD//AO ∴BC CD BO AO= ∵OC=2,OB=4,∴BC=2, ∴243CD =,解得,CD=32; ∵CD//AO , ∴EO PO EC DC =,即2=43PO ,解得,PO=34故选:B .11、解:解不等式351x -得:2x ≥,解不等式28x a -<得:82a x +<, ∴不等式组的解集为:822a x +≤<, ∵不等式组35128x x a -⎧⎨-<⎩有三个整数解, ∴三个整数解为:2,3,4, ∴8452a +<≤, 解得:02a <≤,故选:C .12、解:当22(1)x x 时,4x ≤,∴当4x ≤时,(2)(1)(2)(1)213x x x x x x , 即:3y =,当4x >时,(2)(1)(2)(1)621625x x x x x x x , 即:25y x =-,∴20k =>,∴当4x >时,25y x =-,函数图像向上,y 随x 的增大而增大, 综上所述,A 选项符合题意,故选:A .第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.) 13、解:x 2y ﹣9y ,=y (x 2﹣9),=y (x+3)(x ﹣3).14、根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.15、如图,∵△ABC 是直角三角形,∠C=90°,90B BAC ∴∠+∠=︒,20B ︒∠=,90902070BAC B ∴∠=︒-∠=︒-︒=︒,∵AM 是BAC ∠的平分线,112703522BAC ∴∠=∠==︒⨯︒,PQ ∴是AB 的垂直平分线,AMQ ∴是直角三角形,1290∠+∠∴=︒,1902903555∴∠=︒-∠=︒-︒=︒,∵∠α与∠1是对顶角,155α∴∠=∠=︒.故答案为:55°.16、解:去分母得:()332x m x =++-,整理得:21x m =+,∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=, ∴2x =,把2x =代入到21x m =+中得:221m ⨯=+,解得:3m =,故答案为:3.17、矩形ABCD 中,GC=4,CE =3,∠C=90︒,∴GE=2222435GC CE +=+=,根据折叠的性质:BG=GF ,GF=GC=4,CE=EF=3,∠AGB=∠AGF ,∠EGC=∠EGF ,∠GFE =∠C=90︒, ∴BG=GF=GC=4, ∴BC=AD=8,∵∠AGB+∠AGF+∠EGC+∠EGF=180︒,∴∠AGE=90︒,∴Rt △EGF ~Rt △EAG ,∴EG EF EA EG =,即535EA =, ∴253EA =, ∴2222257833AE AD ⎛⎫-=-= ⎪⎝⎭, ∴773sin DAE 25253DE AE ∠===, 故答案为:725. 18、解:由图可知,曲线11112DA B C D A 是由一段段90度的弧组成的,半径每次比前一段弧半径+1,11AD AA ==,112BA BB ==,……,()1411n n AD AA n -==-+,()412n n BA BB n =-+=,故20202020A B 的半径为()2020202042020128078BA BB =-+==,20202020A B 的弧长=9080784039180ππ⨯=. 故答案为:4039π.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.) 19、解:原式=222x 2x+1x+1x 3÷x 2x+1x 2x+1x 1⎛⎫ ⎪⎝⎭------ , =22x 3x x 1×x 2x+1x 3⎛⎫ ⎪⎝⎭---- , =()()2x x 3x 1×x 3x 1---- , =x x 1- . ∵x 是16的算术平方根,∴x=4,当x=4时,原式=43. 20、解:如图示:过C 地点作CD AB ⊥交AB 于D 点,则有:30ACD ∠=,45BCD ∠=,∴3tan tan 30120403ADCD ACD CD , tan tan 451201120BD CD BCD CD ,∴403120AB AD BD .21、(1)由于A 档和D 档共有12个数据,而D 档有4个,因此A 档共有:12-4=8人,8÷20%=40人,补全图形如下:(2)1200×16=48040(人) 答:全校B 档的人数为480人,(3)用A 表示七年级学生,用B 表示八年级学生,用C 和D 分别表示九年级学生,画树状图如下,所以P (2名学生来自不同年级)=105126= 22、(1)连接BF ,AB 是O 的直径,90AFB ∴∠=︒,即BF AD ⊥,CE AD ⊥,//BF CE ∴连接OC ,∵点C 为劣弧BF 的中点,OC BF ∴⊥,∵//BF CE ,OC CE ∴⊥∵OC 是O 的半径, ∴CE 是O 的切线;(2)连接OFOA OC =,30BAC ∠=︒,60BOC ∴∠=︒∵点C 为劣弧BF 的中点,FC BC ∴=,60FOC BOC ∴∠=∠=︒,4AB =,2FO OC OB ∴===,∴S 扇形FOC =260223603ππ⋅⨯=, 即阴影部分的面积为:23π. 23、(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(60,100)、(70,80)代入一次函数表达式得:100608070k b k b⎩+⎨+⎧==, 解得:2220k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+220;(2)设药店每天获得的利润为W 元,由题意得:w=(x-50)(-2x+220)=-2(x-80)2+1800,∵-2<0,函数有最大值,∴当x=80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24、(1)根据题意:AB=AC ,AD=AE ,∠CAB=∠EAD=90︒,∵∠CAE+∠BAE =∠BAD+∠BAE =90︒,∴∠CAE=∠BAD,在△ACE和△ABD中,AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≅△ABD(SAS),∴CE=BD;(2)根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90︒,在△ACE和△ABD中,AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≅△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90︒,且∠AEC=∠FEB,∴∠ABD+∠FEB=90︒,∴∠EFB=90︒,∴CF⊥BD,∵AB=AC=21+,AD=AE=1,∠CAB=∠EAD=90︒,∴BC=2AB =22+,CD= AC+ AD=22+,∴BC= CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)BCD中,边BC的长是定值,则BC边上的高取最大值时BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,BCD的面积取得最大值,如图:∵∵21,AD=AE=1,∠CAB=∠EAD=90︒,DG⊥BC于G,∴AG=12BC=22,∠GAB=45︒, ∴DG=AG+AD=24122+=,∠DAB=180︒-45︒=135︒, ∴BCD的面积的最大值为:)114522222BC DG ⎛⎫⋅== ⎪ ⎪⎝⎭, 旋转角α135=︒.25、(1)抛物线28(0)y ax bx a =++≠过点()2,0A -和点()8,0B428064880a b a b -+=⎧∴⎨++=⎩ 123a b ⎧=-⎪∴⎨⎪=⎩∴抛物线解析式:21382y x x =-++ (2)当0x =时,8y =()0,8C ∴∴直线BC 解析式为:8y x =-+111084022ABC SAB OC =⋅⋅=⨯⨯= 3245PBC ABC S S ∴== 过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F 设21,382P t t x ⎛⎫-++ ⎪⎝⎭(),8F t t ∴-+2142PF t t ∴=-+ 1242PBC S PF OB ∴=⋅= 即211482422t t ⎛⎫⨯-+⨯= ⎪⎝⎭122,6t t ∴==()()1221268P P ∴,,,(3)()()08,80=90C B COB ∠︒,,,OBC ∴为等腰直角三角形 抛物线21382y x x =-++的对称轴为331222b x a =-=-=⎛⎫⨯- ⎪⎝⎭∴点E 的横坐标为3 又点E 在直线BC 上∴点E 的纵坐标为5()35E ∴,设()21,,382M m N n n n ⎛⎫-++ ⎪⎝⎭3, ①当MN=EM ,90EMN ∠=︒,NME COB △△时2531382m n n n m -=-⎧⎪⎨-++=⎪⎩ 解得68n m =⎧⎨=⎩或20n m =-⎧⎨=⎩(舍去) ∴此时点M 的坐标为()3,8②当ME=EN ,90MEN ∠=︒时25313852mn n n -=-⎧⎪⎨-++=⎪⎩ 解得:515315m n ⎧=+⎪⎨=+⎪⎩或515315m n ⎧=-⎪⎨=-⎪⎩(舍去)∴此时点M 的坐标为()3,515+③当MN=EN ,90MNE ∠=︒时 连接CM ,易知当N 为C 关于对称轴l 的对称点时,MNECOB △△,此时四边形CMNE 为正方形 CM CE ∴=()()()0,8,3,5,3,C E M m()()222238,35832CM m CE ∴=+-=+-=()223832m +-=解得:1211,5m m ==(舍去)此时点M 的坐标为()311,在射线ED 上存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC 相似,点M 的坐标为:()3,8,(3,515或()311,.。
2020年山东省潍坊市中考数学试卷-解析版
2020年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.下列图形,既是中心对称图形又是轴对称图形的是()A. B.C. D.2.下列运算正确的是()A. 2a+3b=5abB. a3⋅a2=a5C. (a+b)2=a2+b2D. (a2b)3=a6b3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A. 1.109×107B. 1.109×106C. 0.1109×108D. 11.09×1064.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A. B. C. D.5.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机10一分钟跳绳个数(个)141144145146学生人数(名)5212则关于这组数据的结论正确的是()A. 平均数是144B. 众数是141C. 中位数是144.5D. 方差是5.46.若m2+2m=1,则4m2+8m−3的值是()A. 4B. 3C. 2D. 17.如图,点E是▱ABCD的边AD上的一点,且DEAE =12,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A. 21B. 28C. 34D. 428. 关于x 的一元二次方程x 2+(k −3)x +1−k =0根的情况,下列说法正确的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定9. 如图,函数y =kx +b(k ≠0)与y =m x (m ≠0)的图象相交于点A(−2,3),B(1,−6)两点,则不等式kx +b >m x 的解集为( )A. x >−2B. −2<x <0或x >1C. x >1D. x <−2或0<x <110. 如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA 上的动点.当PC +PD 最小时,OP 的长为( )A. 12B. 34C. 1D. 32 11. 若关于x 的不等式组{3x −5≥12x −a <8有且只有3个整数解,则a 的取值范围是( ) A. 0≤a ≤2 B. 0≤a <2 C. 0<a ≤2 D. 0<a <212. 若定义一种新运算:a ⊗b ={a −b(a ≥2b)a +b −6(a <2b),例如:3⊗1=3−1=2;5⊗4=5+4−6=3.则函数y =(x +2)⊗(x −1)的图象大致是( )A. B.C. D.二、填空题(本大题共6小题,共18.0分)13. 因式分解:x 2y −9y =______.15. 如图,在Rt △ABC 中,∠C =90°,∠B =20°,PQ 垂直平分AB ,垂足为Q ,交BC于点P.按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;③作射线AF.若AF 与PQ 的夹角为α,则α=______°.16. 若关于x 的分式方程3x x−2=m+3x−2+1有增根,则m =______.17. 如图,矩形ABCD 中,点G ,E 分别在边BC ,DC 上,连接AC ,EG ,AE ,将△ABG 和△ECG 分别沿AG ,EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F.若CE =3,CG =4,则sin∠DAE =______.18. 如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:DA ⏜1的圆心为点A ,半径为AD ;A 1B 1⏜的圆心为点B ,半径为BA 1;B 1C 1⏜的圆心为点C ,半径为CB 1;C 1D 1⏜的圆心为点D ,半径为DC 1;…DA ⏜1,A 1B 1⏜,B 1C 1⏜,C 1D 1⏜,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则A 2020B 2020⏜ 的长是______.三、解答题(本大题共7小题,共56.0分)19. 先化简,再求值:(1−x+1x 2−2x+1)÷x−3x−1,其中x 是16的算术平方根.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BF⏜的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价−进价)24.如图1,在△ABC中,∠A=90°,AB=AC=√2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(−2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;S△ABC时,求点(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=35 P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B .是轴对称图形,不是中心对称图形,故此选项不符合题意;C .是轴对称图形,也是中心对称图形,故此选项符合题意;D .是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】B【解析】解:A 、不是同类项,不能合并,故选项A 计算错误;B 、a 3⋅a 2=a 5,故选项B 计算正确;C 、(a +b)2=a 2++2ab +b 2,故选项C 计算错误;D 、(a 2b)3=a 6b 3,故选项D 计算错误.故选:B .根据合并同类项、幂的乘方,同底数幂乘法以及完全平方公式,逐项判断即可.本题考查合了并同类项,同底数幂的乘法和积的乘方、以及完全平方公式,解题关键是熟记运算法则和公式.3.【答案】A【解析】解:∵1109万=11090000,∴11090000=1.109×107.故选:A .科学记数法的表示形式为a ×10n ,其中1≤|a|<10,n 为整数,故先将1109万换成11090000,再按照科学记数法的表示方法表示即可得出答案.本题考查了科学记数法的简单应用,属于基础知识的考查,比较简单.4.【答案】D【解析】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D .找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.5.【答案】B【解析】解:根据题目给出的数据,可得:平均数为:x −=141×5+144×2+145×1+146×2=143,故A 选项错误;中位数是:141+1442=142.5,故C选项错误;方差是:S2=110[(141−143)2×5+(144−143)2×2+(145−143)2×1+(146−143)2×2]=4.4,故D选项错误;故选:B.根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.6.【答案】D【解析】解:∵m2+2m=1,∴4m2+8m−3=4(m2+2m)−3=4×1−3=1.故选:D.把变形为4m2+8m−3=4(m2+2m)−3,再把m2+2m=1代入计算即可求出值.此题考查了求代数式的值,以及“整体代入”思想.解题的关键是把代数式4m2+8m−3变形为4(m2+2m)−3.7.【答案】C【解析】解:∵四边形ABCD是平行四边形,∴AB//CF,AB=CD,∴△ABE∽△DFE,∴DEAE =FDAB=12,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.根据平行四边形的性质得AB//CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答8.【答案】A【解析】解:△=(k−3)2−4(1−k)=k2−6k+9−4+4k=k2−2k+5=(k−1)2+4,∴(k−1)2+4>0,即△>0,∴方程总有两个不相等的实数根.再利用判别式的意义即可得到方程总有两个不相等的实数根.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.【答案】D【解析】解:∵函数y=kx+b(k≠0)与y=mx(m≠0)的图象相交于点A(−2,3),B(1,−6)两点,∴不等式kx+b>mx的解集为:x<−2或0<x<1,故选:D.结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.10.【答案】B【解析】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD//AO∴BCBO=CDAO∵OC=2,OB=4,∴BC=2,∴24=CD3,解得,CD=32;∵CD//AO,∴EOEC =PODC,即24=PO3,解得,PO=34故选:B.延长CO交⊙O于点E,连接EP,交AO于点P,则PC+PD的值最小,利用平行线份线段成比例分别求出CD,PO的长即可.此题主要考查了轴对称---最短距离问题,同时考查了平行线分线段成比例,掌握轴对称性质和平行线分线段成比例定理是解题的关键.【解析】解:解不等式3x −5≥1得:x ≥2,解不等式2x −a <8得:x <8+a 2,∴不等式组的解集为:2≤x <8+a 2, ∵不等式组{3x −5≥12x −a <8有三个整数解, ∴三个整数解为:2,3,4,∴4<8+a 2≤5,解得:0<a ≤2,故选:C .先求出不等式组的解集(含有字母a),利用不等式组有三个整数解,逆推出a 的取值范围即可.本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数求出关于a 的不等式组12.【答案】A【解析】解:∵当x +2≥2(x −1)时,x ≤4,∴当x ≤4时,(x +2)⊗(x −1)=(x +2)−(x −1)=x +2−x +1=3,即:y =3,当x >4时,(x +2)⊗(x −1)=(x +2)+(x −1)−6=x +2+x −1−6=2x −5, 即:y =2x −5,∴k =2>0,∴当x >4时,y =2x −5,函数图象向上,y 随x 的增大而增大,综上所述,A 选项符合题意.故选:A .根据a ⊗b ={a −b(a ≥2b)a +b −6(a <2b),可得当x +2≥2(x −1)时,x ≤4,分两种情况:当x ≤4时和当x >4时,分别求出一次函数的关系式,然后判断即可得出结论. 本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键.13.【答案】y(x +3)(x −3)【解析】【分析】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.先提取公因式y ,再对余下的多项式利用平方差公式继续分解.【解答】解:x 2y −9y ,=y(x 2−9),=y(x +3)(x −3).故答案为y(x +3)(x −3).14.【答案】5【解析】解:根据题意得,a−2=0,b−3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.【答案】55【解析】解:如图,∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°−∠B=90°−20°=70°,∵AM是∠BAC的平分线,∴∠2=12∠BAC=12×70°=35°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠2=90°,∴∠AMQ=90°−∠2=90°−35°=55°,∵∠α与∠AMQ是对顶角,∴∠α=∠AMQ=55°.故答案为:55°.根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出α.此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.【答案】3【解析】解:去分母得:3x=m+3+(x−2),整理得:2x=m+1,∵关于x的分式方程3xx−2=m+3x−2+1有增根,即x−2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x 的值,代入到转化以后的整式方程中计算即可求出m 的值.本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.17.【答案】725【解析】解:矩形ABCD 中,GC =4,CE =3,∠C =90°,∴GE =√GC 2+CE 2=√42+32=5,根据折叠的性质:BG =GF ,GF =GC =4,CE =EF =3,∠AGB =∠AGF ,∠EGC =∠EGF ,∠GFE =∠C =90°,∠B =∠AFG =90°,∴BG =GF =GC =4,∠AFG +∠EFG =90°,∴BC =AD =8,点A ,点F ,点E 三点共线,∵∠AGB +∠AGF +∠EGC +∠EGF =180°,∴∠AGE =90°,∴Rt △EGF∽Rt △EAG ,∴EG EA =EF EG ,即5EA =35, ∴EA =253,∴DE =√AE 2−AD 2=√(253)2−82=73,∴sin∠DAE =DE AE =73253=725, 故答案为:725.根据折叠的性质结合勾股定理求得GE =5,BC =AD =8,证得Rt △EGF∽Rt △EAG ,求得EA =253,再利用勾股定理得到DE 的长,即可求解.本考查了翻折变换,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.18.【答案】4039π【解析】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n−1=AA n =4(n −1)+1,BA n =BB n =4(n −1)+2,故A 2020B 2020⏜ 的半径为BA 2020=BB 2020=4(2020−1)+2=8078,A 2020B 2020⏜ 的弧长=90180×8078π=4039π.故答案为:4039π.曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到AD n−1=AA n =4(n −1)+1,BA n =BB n =4(n −1)+2,再计算弧长.此题主要考查了弧长的计算,弧长的计算公式:l =nπr 180,找到每段弧的半径变化规律是解题关键.19.【答案】解:原式=(x2−2x+1x2−2x+1−x+1x2−2x+1)÷x−3x−1,=(x2−3xx2−2x+1)×x−1x−3,=x(x−3)(x−1)2×x−1x−3,=xx−1.∵x是16的算术平方根,∴x=4,当x=4时,原式=43.【解析】先将括号里的进行通分运算,然后再计算括号外的除法,把除法运算转化为乘法运算,进行约分,得到最简分式,最后把x值代入运算即可.本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.【答案】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD=CDtan60∘=√3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.【解析】过点C作CD⊥AB,垂足为D,根据在C处测得桥两端A,B两点的俯角分别为60°和45°,可得∠CAD=∠MCA=60°,∠CBD=∠NCB=45°,利用特殊角懂得三角函数求解即可.本题考查了特殊角的三角函数的运算,熟悉特殊角的三角函数值是解题的关键.21.【答案】解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12−4=8人,8÷20%=40人,补全图形如下:(2)1200×1640=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)=1012=56.【解析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;(2)先求出B档所占百分比,再乘以1200即可得到结论;(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.本题考查条形统计图以及树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.【答案】解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF//CE,连接OC,∵点C为劣弧BF⏜的中点,∴OC⊥BF,∵BF//CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C 为劣弧BF⏜的中点, ∴FC⏜=BC ⏜, ∴∠FOC =∠BOC =60°,∵AB =4,∴FO =OC =OB =2,∴S 扇形FOC =60⋅π×22360=23π, 即阴影部分的面积为:23π.【解析】(1)连接BF ,证明BF//CE ,连接OC ,证明OC ⊥CE 即可得到结论;(2)连接OF ,求出扇形FOC 的面积即可得到阴影部分的面积.本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23.【答案】解:(1)设y 与销售单价x 之间的函数关系式为:y =kx +b ,将点(60,100)、(70,80)代入一次函数表达式得:{100=60k +b 80=70k +b, 解得:{k =−2b =220, 故函数的表达式为:y =−2x +220;(2)设药店每天获得的利润为W 元,由题意得:w =(x −50)(−2x +220)=−2(x −80)2+1800,∵−2<0,函数有最大值,∴当x =80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.【解析】(1)设y 与x 之间的函数表达式为y =kx +b ,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w 关于x 的二次函数,根据二次函数的性质即可求解.本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.24.【答案】(1)证明:如图2中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°, ∵∠CAE +∠BAE =∠BAD +∠BAE =90°,∴∠CAE =∠BAD ,在△ACE 和△ABD 中,{AC =AB ∠CAE =∠BAD AE =AD,∴△ACE≌△ABD(SAS),∴CE =BD ;(2)证明:如图3中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°, 在△ACE 和△ABD 中,{AC =AB ∠CAE =∠BAD AE =AD,∴△ACE≌△ABD(SAS),∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD , ∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°,∴BC =√2AB =√2+2,CD =AC +AD =√2+2,∴BC =CD ,∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解:△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图4中:∵∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°,DG ⊥BC 于G , ∴AG =12BC =√2+22,∠GAB =45°, ∴DG =AG +AD =√2+22+1=√2+42,∠DAB =180°−45°=135°, ∴△BCD 的面积的最大值为:12BC ⋅DG =12(√2+2)(√2+42)=3√2+52, 旋转角α=135°.【解析】(1)利用“SAS ”证得△ACE≌△ABD 即可得到结论;(2)利用“SAS ”证得△ACE≌△ABD ,推出∠ACE =∠ABD ,计算得出AD =BC =√2+2,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25.【答案】解:(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A(−2,0)和点B(8,0), ∴{4a −2b +8=064a +8b +8=0,解得{a =−12b =3, ∴抛物线解析式为:y =−12x 2+3x +8;(2)当x =0时,y =8,∴C(0,8),∴直线BC 解析式为:y =−x +8,∵S △ABC =12⋅AB ⋅OC =12×10×8=40,∴S △PBC =35S △ABC =24, 过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F ,设P(t,−12t 2+3x +8),∴F(t,−t +8),∴PF =−12t 2+4t , ∴S △PBC =12PF ⋅OB =24, 即12×(−12t 2+4t)×8=24,∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)∵C(0,8),B(8,0),∠COB =90°,∴△OBC 为等腰直角三角形,抛物线y =−12x 2+3x +8的对称轴为x =−b 2a =−32×(−12)=3,∴点E 的横坐标为3,又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E(3,5),设M(3,m),N(n,−12n 2+3n +8),①当MN =EM ,∠EMN =90°,当△NME ~△COB 时,则{m −5=n −3−12n 2+3n +8=m ,解得{n =6m =8或{n =−2m =0(舍去), ∴此时点M 的坐标为(3,8),②当ME =EN ,当∠MEN =90°时,则{m −5=n −3−12n 2+3n +8=5,解得:{m =5+√15n =3+√15或{m =5−√15n =3−√15(舍去), ∴此时点M 的坐标为(3,5+√15);③当MN =EN ,∠MNE =90°时,连接CM ,故当N 为C 关于对称轴l 的对称点时,△MNE ~△COB ,此时四边形CMNE 为正方形,∴CM =CE ,∵C(0,8),E(3,5),M(3,m),∴CM =√32+(m −8)2,CE =√32+(5−8)2=3√2,∴√32+(m −8)2=3√2,解得:m 1=11,m 2=5(舍去),此时点M 的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),(3,5+√15)或(3,11).【解析】(1)直接将A(−2,0)和点B(8,0)代入y=ax2+bx+8(a≠0),解出a,b的值即可得出答案;(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;t2+3x+8),根据三角过点P作PG⊥x轴,交x轴于点G,交BC于点F,设P(t,−12形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM 三种情况讨论结合图形得出边之间的关系,即可得出答案.本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.。
2020年山东省潍坊市中考数学试卷 (解析版)
2020年山东省潍坊市中考数学试卷一、选择题(共12小题).1.下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106 4.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.5.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141144145146学生人数(名)5212则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.46.若m2+2m=1,则4m2+8m﹣3的值是()A.4B.3C.2D.17.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.428.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<110.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD 最小时,OP的长为()A.B.C.1D.11.若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<212.若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.因式分解:x2y﹣9y=.14.若|a﹣2|+=0,则a+b=.15.如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC 于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=°.16.若关于x的分式方程+1有增根,则m=.17.如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG 和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE =3,CG=4,则sin∠DAE=.18.如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD 的边长为1,则的长是.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y 轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P 的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.2.下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b【分析】根据合并同类项、幂的乘方,同底数幂乘法以及完全平方公式,逐项判断即可.解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2++2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106【分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故先将1109万换成11090000,再按照科学记数法的表示方法表示即可得出答案.解:∵1109万=11090000,∴11090000=1.109×107.故选:A.4.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.5.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141144145146学生人数(名)5212则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.4【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D选项错误;故选:B.6.若m2+2m=1,则4m2+8m﹣3的值是()A.4B.3C.2D.1【分析】把变形为4m2+8m﹣3=4(m2+2m)﹣3,再把m2+2m=1代入计算即可求出值.解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.7.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.42【分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.8.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】先计算判别式,再进行配方得到△=(k﹣1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.9.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<1【分析】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.10.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD 最小时,OP的长为()A.B.C.1D.【分析】延长CO交⊙O于点E,连接EP,交AO于点P,则PC+PD的值最小,利用平行线份线段成比例分别求出CD,PO的长即可.解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴,即,解得,PO=故选:B.11.若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<2【分析】先求出不等式组的解集(含有字母a),利用不等式组有三个整数解,逆推出a 的取值范围即可.解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.12.若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【分析】根据a⊗b=,可得当x+2≥2(x﹣1)时,x≤4,分两种情况:当x≤4时和当x>4时,分别求出一次函数的关系式,然后判断即可得出结论.解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.因式分解:x2y﹣9y=y(x+3)(x﹣3).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).14.若|a﹣2|+=0,则a+b=5.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.15.如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC 于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=55°.【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出α.解:如图,∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠2=90°,∴∠AMQ=90°﹣∠2=90°﹣35°=55°,∵∠α与∠AMQ是对顶角,∴∠α=∠AMQ=55°.故答案为:55°.16.若关于x的分式方程+1有增根,则m=3.【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x的值,代入到转化以后的整式方程中计算即可求出m的值.解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.17.如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG 和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE =3,CG=4,则sin∠DAE=.【分析】根据折叠的性质结合勾股定理求得GE=5,BC=AD=8,证得Rt△EGF∽Rt △EAG,求得,再利用勾股定理得到DE的长,即可求解.解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE=∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=90°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.18.如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD 的边长为1,则的长是4039π.【分析】曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,再计算弧长.解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n =4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.【分析】先将括号里的进行通分运算,然后再计算括号外的除法,把除法运算转化为乘法运算,进行约分,得到最简分式,最后把x值代入运算即可.解:原式=,=,=,=.∵x是16的算术平方根,∴x=4,当x=4时,原式=.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【分析】过点C作CD⊥AB,垂足为D,根据在C处测得桥两端A,B两点的俯角分别为60°和45°,可得∠CAD=∠MCA=60°,∠CBD=∠NCB=45°,利用特殊角懂得三角函数求解即可.解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD===40(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40+120)(米).答:桥AB的长度为(40+120)米.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.【分析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;(2)先求出B档所占百分比,再乘以1200即可得到结论;(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)==.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【分析】(1)连接BF,证明BF∥CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)【分析】(1)设y与x之间的函数表达式为y=kx+b,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w关于x的二次函数,根据二次函数的性质即可求解.解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为W元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【分析】(1)利用“SAS”证得△ACE≌△ABD即可得到结论;(2)利用“SAS”证得△ACE≌△ABD,推出∠ACE=∠ABD,计算得出AD=BC=,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【解答】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EFB=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y 轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P 的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)直接将A(﹣2,0)和点B(8,0)代入y=ax2+bx+8(a≠0),解出a,b的值即可得出答案;(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM三种情况讨论结合图形得出边之间的关系,即可得出答案.解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),∴,解得,∴抛物线解析式为:;(2)当x=0时,y=8,∴C(0,8),∴直线BC解析式为:y=﹣x+8,∵,∴,过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,∴F(t,﹣t+8),∴,∴,即,∴t1=2,t2=6,∴P1(2,12),P2(6,8);(3)∵C(0,8),B(8,0),∠COB=90°,∴△OBC为等腰直角三角形,抛物线的对称轴为,∴点E的横坐标为3,又∵点E在直线BC上,∴点E的纵坐标为5,∴E(3,5),设,①当MN=EM,∠EMN=90°,当△NME~△COB时,则,解得或(舍去),∴此时点M的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则,解得:或(舍去),∴此时点M的坐标为;③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴,∴,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),或(3,11).。
2020年山东省潍坊市中考数学试卷(含解析)
2020年山东省廊坊市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题共12小题,共36分.)1.下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×1064.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.5.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:141 144 145 146一分钟跳绳个数(个)学生人数(名) 5 2 1 2则关于这组数据的结论正确的是()A.平均数是144 B.众数是141C.中位数是144.5 D.方差是5.46.若m2+2m=1,则4m2+8m﹣3的值是()A.4 B.3 C.2 D.17.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF =4,则▱ABCD的周长为()A.21 B.28 C.34 D.428.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2 B.﹣2<x<0或x>1C.x>1 D.x<﹣2或0<x<110.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1 D.11.若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2 B.0≤a<2 C.0<a≤2 D.0<a<212.若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.二、填空题(本大题共6小题,共18分)13.因式分解:x2y﹣9y=.14.若|a﹣2|+=0,则a+b=.15.如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=°.16.若关于x的分式方程+1有增根,则m=.17.如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG和△ECG分别沿AG,EG 折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE=.18.如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是.三、解答题(本大题共7小题,共66分)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t <9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.2.【解答】解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2+2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.3.【解答】解:∵1109万=11090000,∴11090000=1.109×107.故选:A.4.【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.5.【解答】解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D 选项错误;故选:B.6.【解答】解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.7.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.8.【解答】解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.9.【解答】解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.10.【解答】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴,即,解得,PO=故选:B.11.【解答】解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.12.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.二、填空题13.【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).14.【解答】解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.15.【解答】解:如图,∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠2=90°,∴∠AMQ=90°﹣∠2=90°﹣35°=55°,∵∠α与∠AMQ是对顶角,∴∠α=∠AMQ=55°.故答案为:55°.16.【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.17.【解答】解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE=∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=90°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.18.【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.三、解答题19.【解答】解:原式=,=,=,=.∵x是16的算术平方根,∴x=4,当x=4时,原式=.20.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD===40(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40+120)(米).答:桥AB的长度为(40+120)米.21.【解答】解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)==.22.【解答】解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.23.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为W元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.【解答】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EFB=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.25.【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),∴,解得,∴抛物线解析式为:;(2)当x=0时,y=8,∴C(0,8),∴直线BC解析式为:y=﹣x+8,∵,∴,过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,∴F(t,﹣t+8),∴,∴,即,∴t1=2,t2=6,∴P1(2,12),P2(6,8);(3)∵C(0,8),B(8,0),∠COB=90°,∴△OBC为等腰直角三角形,抛物线的对称轴为,∴点E的横坐标为3,又∵点E在直线BC上,∴点E的纵坐标为5,∴E(3,5),设,①当MN=EM,∠EMN=90°,当△NME~△COB时,则,解得或(舍去),∴此时点M的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则,解得:或(舍去),∴此时点M的坐标为;③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴,∴,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);(3,8),故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:或(3,11)。
山东省潍坊市2020年中考数学试卷(I)卷
山东省潍坊市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每题3分,共30分.) (共10题;共30分)1. (3分)()的相反数是-3。
A .B . -C . 3D . -32. (3分)(2017·南关模拟) 今年春节我市共接待国内外游客总人数3343200万人次,3343200这个数用科学记数法表示为()A . 0.33432×106B . 3.3432×106C . 3.3432×105D . 33.432×1053. (3分)(2017·仪征模拟) 由6个相同的立方体搭成的几何体如图所示,则它的俯视图是()A .B .C .D .4. (3分)某商场今年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A . 4月份商场的商品销售总额是75万元B . 1月份商场服装部的销售额是22万元C . 5月份商场服装部的销售额比4月份减少了D . 3月份商场服装部的销售额比2月份减少了5. (3分) (2019九上·西城期中) 如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正弦值为()A . 1B .C .D .6. (3分) (2018七上·临沭期末) 如图所示,数轴上点A,B对应的有理数分别为,,下列关系式:① ;② ;③ ;④ .正确的有()A . ①②B . ②③C . ①③④D . ①②③7. (3分)(2019·平房模拟) 如图,CD为⊙O的直径,AB为弦,AB⊥CD,点E在圆上,若OF=DF,则∠AEB 的度数为()A . 135°B . 120°C . 150°D . 110°8. (3分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()A . 20°B . 55°C . 20°或55°D . 75°9. (3分)(2019·朝阳模拟) 在中国有很多吉祥的图案深受大家喜爱,人们会用这些图案来装饰生活,祈求平安.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是轴对称图形,不是中心对称图形的为()A .B .C .D .10. (3分)对于抛物线,下列说法正确的是()A . 开口向下,顶点坐标(5,3)B . 开口向上,顶点坐标(5,3)C . 开口向下,顶点坐标(-5,3)D . 开口向上,顶点坐标(-5,3)二、填空题 (本题有6小题,每题4分,共24分) (共6题;共24分)11. (4分)(2018·杭州模拟) 分解因式:9abc-3ac2=________.12. (4分)(2017·游仙模拟) 某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中个抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是________.13. (4分) (2018七上·镇江月考) 点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点距离AB=|a﹣b|.已知数轴上两点A,B对应的数分别为-1,3.点P为数轴上一动点,其对应的数为x,A,B两点之间的距离是________.设点P在数轴上表示的数为x,则x与-4之间的距离表示为 ________ .若点P到点A、点B的距离相等,则点P对应的数为________.若点P到点A、点B的距离之和为8,则点P对应的数为________.现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向左运动,当点A与点B 之间的距离为3个单位长度时,求点A所对应的数是多少?________14. (4分) (2017八下·栾城期末) 已知点A的坐标为(1,0),点P在直线y=﹣x上运动,则PA的最小值为________.15. (4分) (2017九上·东台期末) 已知关于的一元二次方程有两个不相等的实数根,则k的取值范围是________.16. (4分)如图,矩形ABCD中,AB=2 ,AD=6,P为边AD上一点,且AP=2,在对角线BD上寻找一点M,使AM+PM最小,则AM+PM的最小值为________.三、解答题 (本题有8小题,第 17~19题每题6分,第 (共8题;共66分)17. (6分) (2016八下·宜昌期中) 已知:,,求的值.18. (6分) (2019八下·萝北期末) 已知,如图,在 ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:DE=BF19. (6分)(2020·河南模拟) 已知:△ABC是等边三角形,点D是△ABC(包含边界)平面内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点P.(1)观察填空:当点D在图1所示的位置时,填空:①与△ACD全等的三角形是________.②∠APB的度数为________.(2)猜想证明:在图1中,猜想线段PD,PE,PC之间有什么数量关系?并证明你的猜想.(3)拓展应用:如图2,当△ABC边长为4,AD=2时,请直接写出线段CE的最大值.20. (8分)(2012·南通) 如图△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t秒.(1)若a=2,△BPQ∽△BDA,求t的值;(2)设点M在AC上,四边形PQCM为平行四边形.①若a= ,求PQ的长;②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明理由.21. (8.0分) (2019八下·辉期末) “绿水青山就是金山银山”,市民积极参与义务植树活动,小刚同学为了了解自己小区300户家庭在2019年3月义务植树的数量,进行了抽样调查,随机抽取了其中30户家庭,收集的数据如下:(单位:颗)(1)对以上数据进行整理、描述和分析①绘制如下的统计图,请补充完整②这30户家庭2019年3月份义务植树数量得中位数是▲,众数是▲ .(2)“互联网全民义务植树”是新时代首次全民义务植树组织形式和尽责方式的一大创新,并推出义务植树网上预约服务,小刚同学所调查的这30户家庭有7户家庭采用的网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?22. (10分)(2020·长宁模拟) 如图,已知AB是⊙O的弦,点C在⊙O上,且,联结AO , CO ,并延长CO交弦AB于点D , AB=4 ,CD=6.(1)求∠OAB的大小;(2)若点E在⊙O上,BE∥AO ,求BE的长.23. (10.0分)(2020·泉州模拟) 已知在平面直角坐标系中,点,以线段为直径作圆,圆心为E,直线交于点D,连接 .(1)求证:直线是的切线;(2)点F为x轴上任意一动点,连接交于点G,连接:①当时,求所有F点的坐标________(直接写出);②求的最大值.24. (12分) (2019九上·南关期末) 现有一面12米长的墙,某农户计划用28米长的篱笆靠墙围成一个矩形养鸡场ABCD(篱笆只围AB、BC、CD三边),其示意图如图所示.(1)若矩形养鸡场的面积为92平方米,求所用的墙长AD .(结果精确到0.1米)(参考数据:=1.41,=1.73,=2.24)(2)求此矩形养鸡场的最大面积.参考答案一、选择题(本题有10小题,每题3分,共30分.) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (本题有6小题,每题4分,共24分) (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (本题有8小题,第 17~19题每题6分,第 (共8题;共66分)17-1、18-1、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、。
2020年中考数学试卷(word版,含答案)
2020年初中学业水平考试数学答题注意事项1、本试卷共6页,满分150分,考试试卷150分钟。
2、答案全部写在答题卡上,写在本试卷上无效。
3、答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其它答案,答非选择题必须用0.5毫米黑色墨水签字笔,在答题卡上对应题号的答题区域书写答案,注意不要答错位置,也不要超界。
4、作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2019的相反数是11A. B.-2019 C.- D.-2019201920192.下列运算正确的是A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b63.一组数据:2、4、4、3、7、7,则这组数据的中位数是A.3B. 3.5C.4D.74.一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等A.105°B.100°C.75°D.60°5.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是A.20πB.15πC.12πD.9π6.不等式x一1≤2的非负整数解有A.1个B.2个C.3个D.4个7.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是A.63—πB.63-2πC.63+πD.3+2π( 计算:( )-1 -(π-1)0 + 1 - 3 )÷8. 如图在平面直角坐标系 xoy 中,菱形 ABCD 的顶点 A 与原点 o 重合,顶点 B 落在 x 轴的k正半轴上,对角线 AC 、BD 交于点 M ,点 D 、M 恰好都在反比例函数 y= (x>0)的图像上xAC,则 的值为BDA.2B. 3C. 2D. 5二、填空题, 本大题共 10 小题,每小题 3 分,共 30 分,不需写出解答过程,请把答案直 接填写在答题卡相应位置上)9. 实数 4 的算术平方根为▲ 10. 分解因式 a 2-2a=▲ 11. 宿迁近年来经济快速发展,2018 年 GDP 约达到 275 000 000 000 元。
2020年山东省潍坊市中考数学试题(word版,含解析)
2019年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.2019的倒数的相反数是()A.﹣2019B.﹣C.D.20192.下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a93.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变5.利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.96.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)27.小莹同学10个周综合素质评价成绩统计如下:成绩(分)94959798100周数(个)12241这10个周的综合素质评价成绩的中位数和方差分别是()A.97.5 2.8B.97.5 3C.97 2.8D.97 38.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE9.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.10.关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=211.如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.1612.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6二、填空题(本题共6小题,满分18分。
2020年山东省中考数学试卷(含答案)
山东省中考数学试卷、选择题(本大题共 15 个小题,每小题 3 分,共 45 分.在每小题给出的四个选项中,只有一项是符合 题目要求的. )1.|-3| 的倒数是PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于 2.5 微米的颗粒物, 2.5 微米即 0.0000025 米.用科学记数法表示 0.0000025 为﹣ 55﹣ 66A.2.5 ×10﹣5B.2.5 ×105C. 2.5 × 10﹣6 D.2.5 ×1065. 与如图所示的三视图对应的几何体是6. 从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率是7.为了大力宣传节约用电,某小区随机抽查了 10户家庭的月用电量情况,统计如下表.关于这 10 户家庭的月用电量说法正确的是月用电量(度) 25 30 40 50 60 户数14221A .平均数是 38.5B .众数是 4C .中位数是 40D .极差是 38. 如图,在 □ABCD 中, E 是 AD 边上的中点,连接 BE ,并延长 BE 交CD 延长线于点 F ,则A . -3B 1C . 3 D. 3AB ∥ CD , EF 平分∠ CEG ,∠ 1=80°,则∠ 2的度数为A . 20°B . 40°C .50°D .60°3. 下列运算正确的是A .3 355yy C . a a aD .xx4. 我国新修订的《环境空气质量标准》中增加了A . 0B 2. 如右图所示,已知23 aa6aB . a36aC△ EDF 与△ BCF 的周长之比是A.1:2B.1:3C.1:4D.1:59. 下列函数中,当 0 x 2 时, y 随 x 的增大而增大的是A . yx 1 B.22y x 4x 5 C. y x D.10. 如图,△ ABC 的各个顶点都在正方形的格点上,则 sin A 的值为A. 5B. 2 5C.2 2D.10 555511. 下列命题中,不正确的是B .对角线互相垂直的四边形是菱形 .C .三角形的中位线平行于第三边且等于第三边的一半D .三角形的一条中线能将三角形分成面积相等的两部分12. 分式方程x x1的解是(x 1)(x 2)A. x 1B. x 1 5C. x 2D. 无解n ) (其中 m n )的图象mx n 与反比例函数 y =m+nx14. 如图,菱形 OABC 的顶点 O 在坐标原点,顶点 将菱形 OABC 绕原点顺时针旋转 105°至 A .( 2 , 2 ) B .( 2 , 2 )A .对角线相等的平行四边形是矩形13. 已知函数 y (x m)(x如图所示,则一次函数 y 的图象可能是A 在 x 轴上,∠ B=120°,OA=2, B ′C ′的位置,则点 B ′C.( 3 ,3 )D.(3 ,3 )15. 在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1 的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,⋯,这样依次得到点A1,A2,A3,⋯,A n,⋯.例如:点A1 的坐标为(3,1),则点A2 的坐标为(0,4),⋯⋯若点A1的坐标为(a,b),则点A2015的坐标为B. (﹣a,﹣b+2)C. (b﹣1,﹣a+1)D. (a,b),、填空题(本大题共6 个小题.每小题3 分,共18 分.16.分解因式:3ax23ay217. 计算:2-1 +2cos30 °-tan60 °-( + 3)0 = _________ .18. 如图,已知函数y=x-2 和y=-2x+1 的图象交于点P,根据图象,可得方程组x y 2的解是 ________________ .2x y 119. 如图,AB是⊙O的直径,C、 D 是⊙O上的点,∠CDB=2°0 ,过点C作⊙O 的切线交AB的延长线于点E,则∠E 的度数为20.新定义:[a ,b,c]为函数y=ax2bx c (a ,b,c为实数)的“关联数”.若“关联数”为[m -2,m,1] 的函数为一次函数,则m的值为21. 如图所示,Rt △ABO中,∠ AOB=90°,点A在第一象限、点B在第四象限,且AO: BO= 1:2 ,若点A(x 0,y0)的1坐标(x 0,y0)满足x0 ,则点B(x ,y)的坐标x,y 所满足y0的关系式为三、解答题(本大题共7 个小题.共57分.解答应写出文字说明、证明过程或演算步骤.22. (1)(3 分)化简:1abb22ab b2(2)(4 分)2x解不等式组2xx12xE、G在正方形23.(1)(3 分)如图,正方形AEFG的顶点边AB、AD上,连接BF、DF. 求证:BF=DF;(2)(4分)如图,在□ABCD中,AD=4,AB=8,∠ A=30°点 A 为圆心,AD的长为半径画弧交AB 于点E,连A.(﹣b+1,a+1)1)当 t 为何值时, PQ ∥BC ?2)设 △AQP 的面积为 y (cm 2),求 y 与t 之间的函数关系式;3)是否存在某一时刻 t ,使线段 PQ 恰好把 Rt △ ACB 的周长和面积同时平分?若存在, 求出此时 t 的值; 若不存在,说明理由;(4)如图②,连接 PC ,并把 △PQC 沿QC 翻折,得到四边形 PQP C ,那么是否存在某一时刻 t ,使四 边形 PQP C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.接 CE ,求阴影部分的面积. (结果保留π) 24. ( 8 分)某商店需要购进甲、乙两种商品共 160 件,其进价 和售价如下表: (注:获利 =售价 - 进价),若商店计划 销售完这批商品后能获利 1100 元,问甲、乙两种商品 应分别购进多少件?25.(8 分)我县某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级 14 个班中随机 抽取了 A 、B 、 C 、 D 四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图. (1)王老师所调查的 4 个班共征集到作品多 少件?请把图 2 补充完整; (2)如果全年级参展作品中有 5 件获得一等 奖,其中有 3 名作者是男生, 2 名作者是女 生.现在要在其中抽两人去参加学校总结表 彰座谈会, 求恰好抽中一男一女的概率. (要 求写出用树状图或列表分析过程) k 26.(9分)如图,反比例函数 y k(x 0) x 的图象经过线段 OA 的端点 A , O 为原点,作3 AB ⊥ x 轴于点 B ,点 B 的坐标为 (2,0),tan ∠AOB= . 2 (1)求 k 的值; (2)将线段 AB 沿 x 轴正方向平移到线段 DC 的位置,反比例函数 k y (x 0) 的图象恰好经过 DC 上一点 E ,且 DE :EC=2:1 ,求直 x 线 AE 的函数表达式; (3)若直线 AE 与 x 轴交于点 ,N ,与 y 轴交于点 M ,请你探索线段 AM 与线段 NE 的大小关系,写出你的结论并说明理由 . 27.(9 分)已知:如图①,在 Rt △ ACB 中, 方向向点 A 匀速运动,速度为 设运动的时间为 t (s )( 0tC 90o ,AC 4cm , BC 3cm ,点 P 由B 出发沿 BA1cm/s ;点Q 由A 出发沿 AC 方向向点 C 匀速运动,速度为 2cm/s ;连接PQ .若2),解答下列问题:28. (9 分)如图,在平面直角坐标系中,已知点 A 的坐标是(4,0),并且OA=OC=4O,B动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P 的坐标.∴DF=AD ?sin30 °=2 EB=AB-AE=4数学参考答案及评分标准1 D2 C 3B4C5 B 6D7 A 8 A9 C 10 A 11 B 12 D 13 C14A15D填空题—1x150° 20.-216. 3a(x+y)(x-y)17.18.119. 2 21. y=—2y x选择题三、解答题22.(1)解:原式=(a(a b b))(a(a b b))a2 2b ab b2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分2b (a b)223. 2)解:(a b)(a b)=2(a b)ab2)解:解不等式①得:解不等式②得:3x>—2x≤3∴不等式组的解集是:∴最小整数解是:1)证明:∵四边形∴AB=AD∵BE=AB2分3⋯分⋯33< x≤ 3 ----------2x=— 1 -------------------------ABCD 和AEFG 都是正方形,,AE=AG=EF=FG ,∠BEF=∠ ﹣AE ,DG=AD ﹣AG,∴BE=DG在△ BEF 和△ DGF中,DGF=90 °,∴△ BEF≌△DGF( SAS),∴BF=DF ;------------过D点作DF⊥AB于点F.∵AD=4 ,AB=8,∠A=30分230 42 ∴阴影部分的面积=8 ×2- 43601-4 ×2 × =16-24π-4 =12-34π.324.解:(1)设甲种商品应购进 x 件,乙种商品应购进 y 件 ------------- 1 分根据题意,得x 5xy 160 10y 1100---------------------------------------------------------------------------------------------------------------------------------- 4 分x 100解得:---------------- 7 分y60答:甲种商品购进 100 件,乙种商品购进 60 件 .------------------------------------------------------------------------- 8 分25.解:(1)所调查的 4 个班征集到作品数为:--------------4 分3)画树状图如下:8分5150 360=12 件 B 作品的件数为: ---------------------------- 2 分12﹣ 2﹣5﹣ 2=3 件----------- 3 分 把图 2 补充完整如下:列表如下: ---- 6 分 共有 20 种机会均等的 结果,其中一男一女占12 种所以, P (一男一女)== 即恰好抽中一男一女的概率是326.解:1)由已知条件得,在 Rt △OAB 中, OB=2 ,tan ∠AOB=2∴ ∴ AB=3 ----------------------------------------------------- 1 分∴ A 点的坐标为( 2, 3)∴ k=xy=6 ---------------------------------------------------------------------------- 2 分2)∵ DC 由 AB 平移得到, DE :EC=2:1∴点 E 的纵坐标为 1------------------------- 5 分在表达式 y=- x 4 中,令 y=0 可得 x=8,令 x=0 可得 y=42∴点 M (0,4 ),N (8,0 ) ------------- 7 分延长 DA 交 y 轴于点 F ,则 AF ⊥OM ,且 AF=2 ,OF=3 , ∴ MF=OM - OF=1∴由勾股定理得 AM= 5 ---------------------------- ---------------- 8 分 ∵CN=8 -6=2,EC=1 , ∴根据勾股定理可得 EN= 5∴ AM=NE ------------------------------------------------------------------- 9 分27. 解:( 1)在 Rt △ABC 中, AB BC 2 AC 2 5 ,由题意知: AP = 5-t ,AQ = 2t ,上,∴点 E 的坐标为( 6, 1 ) ------------------- 3 分设直线 AE 的函数表达式为 y=kx+b2kb 3则6k b 11解得k2b 4直 线 AE 的 函 数 表 达 式 为1y= - x 423 )结论: AM=NE. 理由:------------------------------------------- 6 分又∵点 E 在双曲线AQ AP 若PQ ∥BC ,则△ APQ ∽△ABC ,∴ AQ AP ,AC AB10 ∴t 73)若 PQ 把△ ABC 周长平分,则 AP+AQ=BP+BC+C .Q即- 3t 2+3t =3. t=1代入上面方程不成立,54)过点 P 作 PM ⊥AC 于M,PN⊥BC 于 N , 若四边形 PQP ′C 是菱形,那么 PQ= PC .∴菱形 PQP ′C 边长为 505 .928.解:(1)由 A (4, 0),可知 OA=4∵OA=OC=4OB∴ (5 t) 2t t 3 (42t),解得: t 1.6分∴不存在这一时刻 t ,使线段 PQ 把 Rt △ACB 的周长和面积同时平分. 7分∵PM ⊥AC 于M ,∴QM=C .M∵PN ⊥BC 于 N ,易知△ PBN ∽△ ABC .PNBPAC AB4t PN5QMCM 4 4t t 5 5 2t 4,4t 5解得:10 t 9∴当 t 10时,9在 Rt △PMC 中,PN 4 t , 5,四边形 PQP ′ C 是菱形,此时PMPC PM 2 CM 2499 68413 3t5505,9,图②P ′ 8分73,CM 4t 5 8 9,2t 5 t 4 5 ,2分2)过点 P 作 PH ⊥ AC 于 H . PH BCAP, AB,PH 35t 5∴ PH 3t 5∴yAQ PH12 2t若 PQ 把△ ABC 面积平分,则 SAPQ 2SABC,9分5分精品资料∴ OA=OC=4 , OB=12)存在.第一种情况,当以 C 为直角顶点时,过点 C 作 CP 1⊥AC ,交抛物线于点 P 1.过点 P 1作y 轴的垂线, 垂足是 M . ∵∠ ACP 1=90 °, ∴∠ MCP 1+∠ ACO=90°. ∵∠ ACO+ ∠OAC=9°0 , ∴∠ MCP 1=∠ OAC . ∵OA=OC ,∴∠ MCP 1=∠ OAC=45°, ∴∠ MCP 1=∠ MP 1C ,∴MC=MP1, --------------------------------------------------- 4 分设 P (m ,﹣ m 2+3m+4),则 m=﹣ m 2+3m+4 ﹣ 4,解得:m1=0 (舍去), m 2=2.∴﹣ m 2+3m+4=6 ,即 P (2, 6). --------------------------------------------- 5 分第二种情况,当点 A 为直角顶点时,过 A 作AP 2,AC 交抛物线于点 P 2,过点 P 2作 y 轴的垂线,垂足 是 N ,AP 交 y 轴于点 F .∴P2N ∥ x 轴,由∠ CAO=4°5 , ∴∠ OAP=4°5 ,∴∠ FP 2N=45°, AO=OF .∴P 2N=NF , -------------------------------------------------- 6 分设P2( n ,﹣ n 2+3n+4 ),则-n=-(﹣ n 2+3n+4)﹣ 4,设抛物线的解析式是 y=ax 2+bx+c则 ,解得:∴抛物线的解析式是: 2y=﹣---------------------------------------- 1 分---------------------------------------- 2 分-------------------------------------- 3 分∴C (0,4),B (﹣ 1,0).精品资料解得:n1=﹣2,n2=4(舍去),∴﹣n2+3n+4= ﹣6,则P2的坐标是(﹣2,﹣6).OD=EF.根据垂线段最短,可得当OD ⊥ AC 时,OD 最短,即EF 最短.由(1)可知,在直角△ AOC 中,OC = OA=4,则AC= =4 ,根据等腰三角形的性质, D 是AC 的中点.又∵ DF ∥ OC,∴DF = OC=2,∴点P 的纵坐标是2. ------------------------------------------- 8 分则﹣x2+3x+4=2 ,解得:x= ,∴当EF最短时,点P 的坐标是:(,2)或(,2).------ 9 分。
山东省潍坊市2020年中考数学试题(可编辑PDF版)
0&% 7"("
1&% 7" 7"
{" 5### "#'"#
("3若定义一种新运算 ")#-
例如 ))( -) 5( -"
" ,#5*# " 7"# !
.) $ -. ,$ 5* -)!则函数 -- +," ) +5( 的图象大致是 ##
.&为调动学生参与体育锻炼的积极性 某校组织了一分钟跳绳比赛活动 体育组随机 抽取了 (% 名参赛学生的成绩 将这组数据整பைடு நூலகம்后制成统计表
"!下列运算正确的是 ## !&"" ,)#-."# #/&") "" -".
0& " ,# " -"" ,#" ##1& "" # ) -"* #
)!今年的政府工作报告中指出 去年脱贫攻坚取得决定性成就 农村贫困人口减少
((%2 万!数字 ((%2 万用科学记数法可表示为 ##
'# (恰好落在 &%上的同一点# 记为点 *!若 (%-)# (2-$#
则 <=>%)&%-
!
(+!如图# 四边形 &'()是正方形# 曲线 )&( '( (( )( &" '是由一段
)
段 2% 度的弧组成的!其中& )&( 的圆心为点 &# 半径为 &)$
&( '( 的圆心为点 '# 半径为 '&( $
2020年山东省潍坊市中考数学试题和答案
2020年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b3.(3分)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106 4.(3分)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A .B .C .D .5.(3分)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳141144145146个数(个)学生人数5212(名)则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.46.(3分)若m2+2m=1,则4m2+8m﹣3的值是()A.4B.3C.2D.17.(3分)如图,点E是▱ABCD的边AD 上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD 的周长为()A.21B.28C.34D.428.(3分)关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.(3分)如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<110.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1D.11.(3分)若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<2 12.(3分)若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)因式分解:x2y﹣9y=.14.(3分)若|a﹣2|+=0,则a+b=.15.(3分)如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=°.16.(3分)若关于x的分式方程+1有增根,则m=.17.(3分)如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG =4,则sin∠DAE=.18.(3分)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA 1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC 1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t <8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC 与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC =S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.答案一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.参考答案:解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.2.参考答案:解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2+2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.3.参考答案:解:∵1109万=11090000,∴11090000=1.109×107.故选:A.4.参考答案:解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.5.参考答案:解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D选项错误;故选:B.6.参考答案:解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.7.参考答案:解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.8.参考答案:解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.9.参考答案:解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.10.参考答案:解:如图,延长CO交⊙O于点E,连接ED,交AO 于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴=,即=,解得,PO=故选:B.11.参考答案:解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.12.参考答案:解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象从左向右逐渐上升,y随x的增大而增大,综上所述,A选项符合题意.故选:A.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.参考答案:解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).14.参考答案:解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.15.参考答案:解:如图,∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴∠BAM=BAC=35°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠BAM=90°,∴∠AMQ=90°﹣∠BAM=90°﹣35°=55°,∴α=∠AMQ=55°.故答案为:55°.16.参考答案:解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.17.参考答案:解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB =∠AGF,∠EGC=∠EGF,∠GFE=∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=180°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.18.参考答案:解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n ﹣1)+2,故的半径为BA 2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.参考答案:解:原式=,=,=,=.∵x是16的算术平方根,∴x=4,当x=4时,原式=.20.参考答案:解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120(米),在Rt△ACD中,AD===40(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40+120)(米).答:桥AB的长度为(40+120)米.21.参考答案:解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)==.22.参考答案:解:(1)连接BF,OC,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,CF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵OF=OC,∴∠OCF=∠COB,∴CF∥AB,∴S△ACF=S△COF,∴阴影部分的面积=S扇形COF,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.23.参考答案:解:(1)设y与销售单价x之间的函数关系式为:y =kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为w元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.参考答案:(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EFB=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC 于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.25.参考答案:解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),∴,解得,∴抛物线解析式为:;(2)当x=0时,y=8,∴C(0,8),∴直线BC解析式为:y=﹣x+8,∵,∴,过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,∴F(t,﹣t+8),∴,∴,即,∴t1=2,t2=6,∴P1(2,12),P2(6,8);(3)∵C(0,8),B(8,0),∠COB=90°,∴△OBC为等腰直角三角形,抛物线的对称轴为,∴点E的横坐标为3,又∵点E在直线BC上,∴点E的纵坐标为5,∴E(3,5),设,①当MN=EM,∠EMN=90°,△NME~△COB,则,解得或(舍去),∴此时点M的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则,解得:或(舍去),∴此时点M的坐标为;③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴,∴,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),或(3,11).。
山东省潍坊市2020年数学中考试题及答案
∵∠CAE+∠BAE =∠BAD+∠BAE =90 ,
∴∠CAE=∠BAD,
在△ACE和△ABD中, ,
∴△ACE △ABD(SAS),
∴CE=BD;
(2)根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90 ,在△ACE和△ NhomakorabeaBD中, ,
一分钟跳绳个数(个)
141
144
145
146
学生人数(名)
5
2
1
2
则关于这组数据的结论正确的是()
A.平均数是144B.众数是141C.中位数是144.5D.方差是5.4
6.若 ,则 的值是()
A. 4B. 3C. 2D. 1
7.如图,点E是 的边 上的一点,且 ,连接 并延长交 的延长线于点F,若 ,则 的周长为()
22.如图, 为 的直径,射线 交 于点F,点C为劣弧 的中点,过点C作 ,垂足为E,连接 .
(1)求证: 是 的切线;
(2)若 ,求阴影部分的面积.
23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
∴△ACE △ABD(SAS),
∴∠ACE=∠ABD,
∵∠ACE+∠AEC=90 ,且∠AEC=∠FEB,
∴∠ABD+∠FEB=90 ,
∴∠EFB=90 ,
∴CF⊥BD,
∵AB=AC= ,AD=AE=1,∠CAB=∠EAD=90 ,
∴BC= AB = ,CD= AC+ AD= ,
∴BC= CD,
【2020年中考真题系列】2020年山东省潍坊市中考数学真题试卷含答案(解析版)
2019年山东省潍坊市中考数学试卷(解析版)一、选择题(本大题共12小题,共36分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.(3分)2019的倒数的相反数是()A.﹣2019 B.﹣C.D.2019【分析】先求2019的倒数,再求倒数的相反数即可;【解答】解:2019的倒数是,再求的相反数为﹣;故选:B.【点评】本题考查倒数和相反数;熟练掌握倒数和相反数的求法是解题的关键.2.(3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a9【分析】根据单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、3a×2a=6a2,故本选项错误;B、a8÷a4=a4,故本选项错误;C、﹣3(a﹣1)=3﹣3a,正确;D、(a3)2=a6,故本选项错误.故选:C.【点评】本题考查了单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质.熟练掌握法则是解题的关键.3.(3分)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资 1.002×1011元.数据 1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿【分析】利用科学记数法的表示形式展开即可【解答】解:1.002×1011=1 002 000 000 00=1002亿故选:C.【点评】本题主要考查科学记数法的展开,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)4.(3分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【分析】利用结合体的形状,结合三视图可得出俯视图和左视图没有发生变化;【解答】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A.【点评】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.5.(3分)利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9【分析】利用计算器得到的近似值即可作出判断.【解答】解:∵≈2.646,∴与最接近的是 2.6,故选:B.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序.6.(3分)下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.7.(3分)小莹同学10个周综合素质评价成绩统计如下:成绩(分)94 95 97 98 100周数(个) 1 2 2 4 1这10个周的综合素质评价成绩的中位数和方差分别是()A.97.5 2.8 B.97.5 3C.97 2.8 D.97 3【分析】根据中位数和方差的定义计算可得.【解答】解:这10个周的综合素质评价成绩的中位数是=97.5(分),平均成绩为×(94+95×2+97×2+98×4+100)=97(分),∴这组数据的方差为×[(94﹣97)2+(95﹣97)2×2+(97﹣97)2×2+(98﹣97)2×4+(100﹣97)2]=3(分2),故选:B.【点评】本题主要考查中位数和方差,解题的关键是掌握中位数和方差的定义.8.(3分)如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD?OE【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S四边形OCED=CD?OE,但不能得出∠OCD=∠ECD,故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).9.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【分析】由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.由此即可判断.【解答】解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.【点评】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题,属于中考常考题型.10.(3分)关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2 B.m=3 C.m=3或m=﹣2 D.m=﹣3或m=2 【分析】设x1,x2是x2+2mx+m2+m=0的两个实数根,由根与系数的关系得x1+x2=﹣2m,x1?x2=m2+m,再由x12+x22=(x1+x2)2﹣2x1?x2代入即可;【解答】解:设x1,x2是x2+2mx+m2+m=0的两个实数根,∴△=﹣4m≥0,∴m≤0,∴x1+x2=﹣2m,x1?x2=m2+m,∴x12+x22=(x1+x2)2﹣2x1?x2=4m2﹣2m2﹣2m=2m2﹣2m=12,∴m=3或m=﹣2;∴m=﹣2;故选:A.【点评】本题考查一元二次方程根与系数的关系;牢记韦达定理,灵活运用完全平方公式是解题的关键.11.(3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB 于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8 B.10 C.12 D.16【分析】连接BD,如图,先利用圆周角定理证明∠ADE=∠DAC得到FD=FA=5,再根据正弦的定义计算出EF=3,则AE=4,DE=8,接着证明△ADE∽△DBE,利用相似比得到BE=16,所以AB=20,然后在Rt△ABC中利用正弦定义计算出BC的长.【解答】解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵∠AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=FA=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.12.(3分)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()<6 <11 B.t≥2C.6<t<11 D.2≤tA.2≤t【分析】根据给出的对称轴求出函数解析式为y=x2﹣2x+3,将一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,再由﹣1<x<4的范围确定y 的取值范围即可求解;【解答】解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<6;故选:D.【点评】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键.二、填空题(本题共6小题,满分18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秘密★启用前 试卷类型:
A
2020年潍坊市初中学业水平考试
数 学 试 题 2020.06
注意事项:
1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第I 卷为选择题,36分;第Ⅱ卷为非选择题,84分;共4页,120分.考试时间为120分钟.
2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答 题卡相应位置,答在本试卷上一律无效.
第Ⅰ卷(选择题 共36分)
一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分) 1.下列计算,正确的是( ).
A.623a a a =⨯
B.33a a a =÷
C.422a a a =+
D.
42
2a a =)( 2.如图所示的几何体,其俯视图是( ).
3.可燃冰,学名叫“天
然气水合物”,是一种高效清洁、储量巨大的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为( ). A.3101⨯ B.8101000⨯ C.11101⨯ D.14101⨯
4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用
()0,1-表示,右下角方子的位置用()1,0-表示.小莹将第4枚圆子放入棋盘后,所
有棋子构成一个轴对称图形.她放的位置是( ). A.()1,2- B.()1,1- C.()2,1- D.()2,1--
5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.
A.B 与C
B.C 与D C 、E 与F D 、A 与B 6.如图,︒=∠90BCD ,DE AB //,则α∠与β∠满足( ) A. ︒=∠+∠180βα B.︒=∠-∠90αβ
C.αβ∠=∠3
D.︒=∠+∠90βα
7.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一 ).
甲 乙 平均数 9 8 方差
1
1
丙 D. 丁
8.一次函数b ax y +=与反比例函数x
b
a y -=,其中0<a
b ,b a 、为常数,它们在同一坐标系
中的图象可以是( ).
9.若代数式
1
2
--x x 有意义,则实数x 的取值范围是( ). A.1≥x B.2≥x C.1>x D.2>x
10.如图,四边形ABCD 为⊙O 的内接四边形.延长AB 与DC 相交于点
G ,CD AO ⊥,垂足为E ,连接BD ,︒=∠50GBC ,则DBC ∠的度数为( ). A.50° B.60° C.80° D.85°
11.定义[]x 表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所示,则方程[]2
2
1x x =的解为( ). A.0或2 B.0或2 C.1或2- D.2或2-
12.点C A 、为半径是3的圆周上两点,点B 为C A )
)的中点,以线段BA 、BC 为邻边作菱形
ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为( ).
A.5或22
B.5或32
C.6或22
D.6或32
第Ⅱ卷(非选择题 共84分)
说明:
将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上. 二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)
13.计算:=--÷--12
)111(2x x x .
14.因式分解:=-+-)2(22x x x .
15.如图,在ABC ∆中,AC AB ≠,E D 、分别为边AB 、AC 上的点,AD AC 3=,AE AB 3=,点F 为BC 边上一点,添加一个条
件: ,可以使得FDB ∆与ADE ∆相似.(只需写出一个)
16.已知关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是 . 17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为 个.
18.如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在D 上,记为B ',折痕为CE ;再将CD 边斜向下对折,使点D 落在C
B '上,记为D ',折痕为CG ,2=''D B ,B
C BE 3
1
=.则矩形纸片ABCD 的
面积为 .
三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)
某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.
(1)根据给出的信息,补全两幅统计图;
(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?
(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛,预赛分为A 、B 、C 三组进
行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?
20.(本题满分8分)
如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为︒60,在B 处测得四楼顶部点E 的仰角为︒30,14=AB 米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73).
21.(本题满分8分)
某蔬菜加工公司先后两批次收购蒜薹(tai )共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨,这两批蒜薹共用去16万元. (1)求两批次购进蒜薹各多少吨?
(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少? 22.(本题满分8分)
如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为C B )
)的中点,作AC DE ⊥,交B 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线;
(2)若36==DF DA ,求阴影区域的面积.(结果保留根号和π) 23.(本题满分9分)
工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形,(厚度不计) (1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为212dm 时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容
器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少? 24.(本题满分12分)
边长为6的等边ABC ∆中,点D 、E 分别在AC 、BC 边上, AB DE //, 32=EC .
(l )如图1,将DEC ∆沿射线EC 方向平移,得到C E D '''∆,边E D ''与AC 的交点为M ,边D C ''与C AC '∠的角平分线交于点N .当C C '多大时,四边形D MCN '为菱形?并说明理由.
(2)如图2,将DEC ∆绕点C 旋转α(︒<<︒3600α),得到
C E
D ''∆,连接D A '、
E B ',边E D ''的中点为P .
①在旋转过程中,D A '和E B '有怎样的数量关系?并说明理由. ②连接AP ,当AP 最大时,求D A '的值.(结果保留根号) 25.(本题满分13分)
如图1,抛物线c bx ax y ++=2经过平行四边形ABCD 的顶点)30(,A 、)01(,-B 、)32(,D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点P .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的解析式;
(2)当t 何值时,PFE ∆的面积最大?并求最大值的立方根;
(3)是否存在点P 使PAE ∆为直角三角形?若存在,求出t 的值;若不存在,说明理由.。