卡尔曼滤波器综述

合集下载

卡尔曼滤波简述

卡尔曼滤波简述

Kalman FilterXianling WangJuly23,2016v1.0目录一、简介2二、线性卡尔曼滤波方法22.1滤波方法描述 (2)2.2滤波过程的其他细节 (3)三、后记4一、简介卡尔曼滤波器(Kalman Filter)的核心功能是对观测值进行优化,尽可能降低误差的影响,使其更加贴近系统的实际值。

二、线性卡尔曼滤波方法2.1滤波方法描述假设系统在t时刻的状态由x t描述,x t包含了若干个变量,因此以向量的形式出现。

同时假设系统状态相对于时间变化的机理是可知的,由式(1)描述,即x t+1=F t x t+B t u t+w t(1)其中,F t为状态转移矩阵,描述t时刻状态对t+1时刻状态的影响程度;u t表示外界控制因素;B t为控制矩阵,描述外界控制因素对t+1时刻状态的影响程度;w t表示不可控的过程噪声,假设其协方差矩阵为Q t。

式(1)所描述的关系是线性的,因此对其误差消除的滤波方法称为线性卡尔曼滤波方法。

假设对系统状态的观测是间接的,而且存在一定误差,即z t=H t x t+v t(2)其中,z t为所用观测工具可以观测到的直接变量,不一定等同于系统状态中的变量,但却是和系统状态中的变量存在一定线性关系的变量;H t描述直接观测变量和系统状态变量之间的线性关系;v t表示观测误差,假设其协方差矩阵为R t。

虽然t时刻的观测值都是带有误差的,但由于系统状态相对于时间变化的机理是可知的,因此结合t−1时刻的某些信息可以削减该误差,提升t时刻观测值的精确度,得到t时刻的最优估计值,该估计值相对实际值的误差协方差为P t。

为了获得t时刻系统状态的最优估计值,线性卡尔曼滤波器需要以下3个方面的信息:1.t−1时刻的最优估计值ˆx t−1;2.t−1时刻最优估计值相对于实际值的误差协方差P t−1;3.t时刻的观测值z t;在获知这些信息的条件下,t时刻系统状态的最优估计值可以依据以下5个公式逐步获得:1.由t−1时刻的最优估计值ˆx t−1,结合式(1)系统状态相对时间变化的机理,预测t时刻的系统状态ˆx t|t−1,即ˆx t|t−1=F t−1ˆx t−1+B t−1u t−1(3)2.由t−1时刻最优估计值相对实际值的误差协方差P t−1,结合式(1)获得t时刻预测状态相对于实际状态的误差协方差P t|t−1,即P t|t−1=F t−1P t−1F Tt−1+Q t−1(4)该式可以根据定义展开P t|t−1,并且结合最优估计误差x t−1−ˆx t−1与过程噪声w t之间的非相关性获得。

卡尔曼滤波器总结

卡尔曼滤波器总结

1. 卡尔曼全名Rudolf Emil Kalman ,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。

1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。

1957年于哥伦比亚大学获得博士学位。

我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems 》(线性滤波与预测问题的新方法)。

基于状态空间描述对混有噪声的信号进行滤波的方法,简称卡尔曼滤波。

这种方法是R.E.卡尔曼和R.S.布什于1960和1961年提出的。

卡尔曼滤波是一种切实可行和便于应用的滤波方法,其计算过程通常需要在计算机上实现。

实现卡尔曼滤波的装置或软件称为卡尔曼滤波器。

卡尔曼滤波器(Kalman Filter )是在克服以往滤波方法局限性的基础上提出来的,是一个最优化自回归数据处理算法(optimal recursive data processing algorithm )。

它是针对系统的部分状态或是部分状态的线性组合,且量测值中有随机误差(常称为量测噪声)。

将仅与部分状态有关的测量进行处理,得出从某种统计意义上讲误差最小的更多状态的估值,从而将混有噪声(干扰)的信号中噪声滤除、提取有用信号。

卡尔曼滤波是一种递推线性最小方差估计,以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。

现设线性时变系统的离散状态方程和观测方程为:()()()()()X k+1F k X k G k u k ()w k =•++()()()()k+1H k+1X k+1k+1Y v =•+其中()k X 和()k Y 分别是k 时刻的状态矩阵和测量矩阵()k F 为状态转移矩阵()k G 为系统控制项矩阵()k u 为k 时刻对系统的控制量()k w 为k 时刻动态噪声,其协方差()Q k()k H 为k 时刻观测矩阵()k v 为k 时刻测量噪声, 其协方差()R k则卡尔曼滤波的算法流程为:状态的一步预估计()()()()()ˆˆXk+1k F k X k k G k u k |=•|+ 一步预估计协方差矩阵()()()()()C k+1k F k C k k F k Q k '|=•|+'计算卡尔曼增益矩阵()()()()()S k+1H k+1C k+1k H k+1k 1R ''=|•++()()()()1K k+1C k+1k H k+1k 1S-'=|•+状态更新方程 ()()()()ˆX k+1k+1Xk+1k+1K k+1V k+1|=|+ ()()()ˆV k+1Z k+1Zk+1k =-| ()()()ˆˆZk+1k H k 1X k+1k |=+| 计算更新后估计协方差矩阵()()()()C k+1k+1I K k+1H k+1C k+1k |=-|⎡⎤⎣⎦或是()()()()()C k+1k+1C k+1k K k+1H k+1C k+1k |=|-|离散时间线性系统卡尔曼滤波算法流程2.卡尔曼滤波器(Kalman Filter)是一个最优化自回归数据处理算法(optimal recursive data processing algorithm)。

卡尔曼滤波器介绍 --- 最容易理解

卡尔曼滤波器介绍 --- 最容易理解

10.6 卡尔曼滤波器简介本节讨论如何从带噪声的测量数据把有用信号提取出来的问题。

通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内。

如前所述,为了消除噪声,可以把 FIR滤波器或IIR滤波器设计成合适的频带滤波器,进行频域滤波。

但在许多应用场合,需要进行时域滤波,从带噪声的信号中提取有用信号。

虽然这样的过程其实也算是对信号的滤波,但所依据的理论,即针对随机信号的估计理论,是自成体系的。

人们对随机信号干扰下的有用信号不能“确知”,只能“估计”。

为了“估计”,要事先确定某种准则以评定估计的好坏程度。

最小均方误差是一种常用的比较简单的经典准则。

典型的线性估计器是离散时间维纳滤波器与卡尔曼滤波器。

对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的。

当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作。

这项研究是用于防空火力控制系统的。

维纳滤波器是基于最小均方误差准则的估计器。

为了寻求维纳滤波器的冲激响应,需要求解著名的维纳-霍夫方程。

这种滤波理论所追求的是使均方误差最小的系统最佳冲激响应的明确表达式。

这与卡尔曼滤波(Kalman filtering)是很不相同的。

卡尔曼滤波所追求的则是使均方误差最小的递推算法。

在维纳进行滤波理论研究并导出维纳-霍夫方程的十年以前,在1931年,维纳和霍夫在数学上就已经得到了这个方程的解。

对于维纳-霍夫方程的研究,20世纪五十年代涌现了大量文章,特别是将维纳滤波推广到非平稳过程的文章甚多,但实用结果却很少。

这时正处于卡尔曼滤波问世的前夜。

维纳滤波的困难问题,首先在上世纪五十年代中期确定卫星轨道的问题上遇到了。

1958年斯韦尔林(Swerling)首先提出了处理这个问题的递推算法,并且立刻被承认和应用。

1960年卡尔曼进行了比斯韦尔林更有意义的工作。

他严格地把状态变量的概念引入到最小均方误差估计中来,建立了卡尔曼滤波理论。

卡尔曼滤波器原理详解课件

卡尔曼滤波器原理详解课件
利用卡尔曼滤波器对机器人进行路径规 划,通过传感器数据和运动模型对机器 人进行最优路径规划。
VS
机器人避障
通过卡尔曼滤波器对机器人进行避障控制, 实现机器人在复杂环境中的安全导航。
06
卡尔曼滤词
详细描述
无迹卡尔曼滤波器
总结词 详细描述
自适应卡尔曼滤波器
缺点分析
假设限制
01
初值问题
02
计算复杂度
03
改进方向
扩展到非线性系统 优化算法 融合其他方法
05
卡尔曼滤波器的应用实例
无人机定位与控制
无人机定位
无人机控制
通过卡尔曼滤波器对无人机进行控制, 实现无人机的稳定飞行和精确控制。
航天器轨道确定
航天器轨道估计
航天器导航
机器人导航与避障
机器人路径规划
状态方程和观测方程
状态方程 观测方程
卡尔曼滤波器的递推算法
预测步骤
根据当前状态和输入预测下一个状态。
更新步骤
根据观测值和预测值更新状态估计。
递推算法
通过重复执行预测步骤和更新步骤,逐步更新状态估计。
卡尔曼滤波器的最优估计
最优估计
在给定观测数据和模型的情况下,使用某种准则(如最小方差)找到的最佳估计。
卡尔曼滤波器的基本原理
01
02
数学模型
递归估计
03 最优估计
02
卡尔曼滤波器的数学模型
线性动态系统
线性系统
如果系统的状态变量可以表示为输入和输出的 线性组合,则该系统是线性的。
动态系统
如果系统的状态随时间变化,则该系统是动态的。
线性动态系统
如果一个系统既是线性的又是动态的,则该系统被称为线性动态系统。

卡尔曼滤波器介绍

卡尔曼滤波器介绍

卡尔曼滤波器介绍摘要在1960年,R.E.Kalman发表了关于递归解决线性离散数据滤波器的著名论文,从那时间起,由于在数字计算的大部分提高,Kalman滤波器已成为广泛研究和应用的学科,尤其是自动或辅助导航系统。

Kalman滤波器是一套数学等式,它提供了一种有效的以最小均方误差来估计系统状态的计算(递归的)方法。

它在以下几方面是非常强大的:它支持过去、现在、甚至将来估计,甚至在系统准确模型也未知的情况下。

本文的目的是提供一种对离散的Kalman滤波器的实用介绍。

这些介绍包括对基本离散kalman滤波器、起源和与之相关的简单(有形)的带有真实数字和结果的描述和讨论。

1、离散的kalman滤波器在1960年,R.E.Kalman发表了关于递归解决线性离散数据滤波器的著名论文,从那时间起,由于在数字计算的大部分提高,Kalman滤波器已成为广泛研究和应用的学科,尤其是自动或辅助导航系统。

关于kalman滤波器一般方法的友好介绍可以在〔maybeck79〕的Chapter.1中找到,但是更完整部分的讨论能在〔Sorenson70〕中发现,它还包括许多有趣的历史解释。

在〔Gelb74;Grewal93;Maybeck79;Lewis86;Brown92;jacobs93〕中有更多参考。

估值过程Kalman滤波器解决估计离散时间控制过程的状态X∈R n的一般性问题,定义线性随机差分方程其中,测量值Z∈R m,定义为随机变量W K和V K各自表示系统噪声和测量噪声,我们假定它们为相互独立的、白噪声且为正常概率分布在实际中,系统噪声协方差矩阵Q和测量噪声协方差矩阵R可能随过程和测量时间而改变,无论怎样,我们在这里假定它们是常量。

在差分方程(1.1)中,n×n阶矩阵A与前一时刻(K-1)和当前时刻K相关,这里缺少传递函数或系统噪声。

注意的是,在实际中,A可能随各自时刻改变,但这里我们假定其为常量,n×l阶矩阵R与非强制性输入U∈R l和状态x有关,在测量公式(1.2)中,m×n阶矩阵H 与状态及测量值Z K有关,在实际中,H可能随各自过程或测量时刻而改变,这里假定它们是常数。

卡尔曼滤波

卡尔曼滤波

卡尔曼滤波卡尔曼滤波(Kalman filtering ) 一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。

由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。

关于这种滤波器的论文由Swerli ng (1958), Kalman (I960) 与Kalma n and Bucy (1961) 发表。

数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态•由于,它便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,Kalman滤波是目前应用最为广泛的滤波方法,在通信,导航,制导与控制等多领域得到了较好的应用•中文名卡尔曼滤波器,Kalman滤波,卡曼滤波外文名KALMAN FILTER表达式X(k)=A X(k-1)+B U(k)+W(k)提岀者斯坦利施密特提岀时间1958应用学科天文,宇航,气象适用领域范围雷达跟踪去噪声适用领域范围控制、制导、导航、通讯等现代工程斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导—航电脑使用了这种滤波器。

关于这种滤波器的论文由Swerling (1958), Kalman (1960)与Kalma n and Bucy (1961) 发表。

2定义传统的滤波方法,只能是在有用信号与噪声具有不同频带的条件下才能实现. 20世纪40年代,N .维纳和A. H .柯尔莫哥罗夫把信号和噪声的统计性质引进了滤波理论,在假设信号和噪声都是平稳过程的条件下,利用最优化方法对信号真值进行估计,达到滤波目的,从而在概念上与传统的滤波方法联系起来,被称为维纳滤波。

卡尔曼滤波文献综述

卡尔曼滤波文献综述

华北电力大学毕业设计(论文)文献综述所在院系电力工程系专业班号电自0804学生姓名崔海荣指导教师签名黄家栋审批人签字毕业设计(论文)题目基于卡尔曼滤波原理的电网频率综合检测和预测方法的研究基于卡尔曼滤波原理的电网频率综合检测和预测方法的研究一、前言“频率”概念源于针对周期性变化的事物的经典物理学定义,由于电力系统中许多物理变量具有(准)周期性特征,故这一概念得到广泛应用【1】。

电网频率是电力系统运行的主要指标之一,也是检测电力系统工作状态的重要依据,频率质量直接影响着电力系统安全、优质、稳定运行。

因此,频率检测和预测在电网建设中起着至关重要的作用。

随着大容量、超高压、分布式电力网网络的形成以及现代电力电子设备的应用,基于传统概念的电力系统频率和测量技术在解决现代电网频率问题上遇到了诸多挑战。

目前,用于频率检测和预测的方法很多,主要有傅里叶变换法、卡尔曼滤波法、最小均方误差法、正交滤波器法、小波变换法、自适应陷波滤波器以及它们和一些算法相结合来解决电网频率检测和预测问题。

本文着重讲述卡尔曼滤波原理、分类以及它在电力系统频率检测中的应用历程进行系统性分析,并对今后的研究方向做出展望。

二、主题1 常规卡尔曼滤波常规卡尔曼滤波是卡尔曼等人为了克服维纳滤波的不足,于60年代初提出的一种递推算法。

卡尔曼滤波不要求保留用过的观测数据,当测得新的数据后,可按照一套递推公式算出新的估计量,不必重新计算【2】。

下面对其进行简单介绍: 假设线性离散方程为1k k k k x A x ω+=+(1) k k k k z H x ν=+ (2)式子中:k x n R ∈为状态向量;m k z R ∈为测量向量;k ωp R ∈为系统噪声或过程噪声向量;k νm R ∈为量测噪声向量;k A 为状态转移矩阵;k H 为量测转移转移矩阵。

假设系统噪声和量测噪声是互不相关的高斯白噪声,方差阵为k Q 、k R ,定义/1k k x ∧-=1(|)k k E x y - 其他递推,则卡尔曼滤波递推方程如下: 状态1步预测为/1k k x ∧-=k A 1k x ∧-(3)1步预测误差方差阵为/1k k P -=1k A -1k P -1T k A -+1k Q -(4)状态估计为k x ∧=/1k k x ∧-+k K (k z -k H /1k k x ∧-)(5)估计误差方差阵为k P =(I-k K k H )/1k k P -(6)滤波增益矩阵为k K =/1k k P -T k H (k H /1k k P -T k H +k R )1-(7)式中I 为单位阵。

卡尔曼滤波器分类及基本公式概要课件

卡尔曼滤波器分类及基本公式概要课件

精确地描述系统的非线性特性。
无迹卡尔曼滤波器的计算较为复杂,但具有更高的估计精度和
03
稳定性,适用于一些高精度要求的非线性系统状态估计。
03
卡尔曼滤波器的基本公 式
状态方程
描述系统状态变化的数学表达式。
状态方程是描述系统状态变化的数学表达式,它基于系统的动态模型和当前状态 ,计算未来状态。在卡尔曼滤波器中,状态方程用于预测系统的下一个状态。
详细描述
卡尔曼增益矩阵的计算基于状态向量和误差 协方差矩阵,通过一系列数学运算得到。它 反映了新获取的测量值对状态估计的贡献程 度,以及旧信息的保留程度。在计算过程中 ,通常采用递推或迭代的方式进行计算,以 降低计算复杂度。
更新状态向量和误差协方差矩阵
总结词
在得到卡尔曼增益矩阵后,需要利用它来更 新状态向量和误差协方差矩阵,以完成一次 滤波过程。0203 Nhomakorabea改进
针对不同应用场景和需求,卡尔曼滤 波器不断有新的改进和优化算法出现 。
滤波器的应用领域
航空航天
卡尔曼滤波器在航空航天领域 中用于导航、姿态估计和卫星
轨道计算等。
无人驾驶
卡尔曼滤波器在无人驾驶汽车 中用于传感器数据处理、路径 规划和障碍物检测等。
机器人
卡尔曼滤波器在机器人领域中 用于定位、地图构建和姿态控 制等。
02
扩展卡尔曼滤波器通过将非线性函数进行线性化处 理,将非线性问题转化为线性问题进行解决。
03
扩展卡尔曼滤波器的计算相对复杂,但适用范围较 广,适用于大多数非线性系统的状态估计。
无迹卡尔曼滤波器
01
无迹卡尔曼滤波器是另一种针对非线性系统的改进型卡尔曼滤 波器。
02
无迹卡尔曼滤波器采用无迹变换方法处理非线性函数,能够更

卡尔曼滤波器介绍

卡尔曼滤波器介绍

卡尔曼滤波器介绍摘要在1960年,卡尔曼出版了他最著名的论文,描述了一个对离散数据线性滤波问题的递归解决方法。

从那以后,由于数字计算的进步,卡尔曼滤波器已经成为广泛研究和应用的主题,特别在自动化或协助导航领域。

卡尔曼滤波器是一系列方程式,提供了有效的计算(递归)方法去估计过程的状态,是一种以平方误差的均值达到最小的方式。

滤波器在很多方面都很强大:它支持过去,现在,甚至将来状态的估计,而且当系统的确切性质未知时也可以做。

这篇论文的目的是对离散卡尔曼滤波器提供一个实际介绍。

这次介绍包括对基本离散卡尔曼滤波器推导的描述和一些讨论,扩展卡尔曼滤波器的描述和一些讨论和一个相对简单的(切实的)实际例子。

1 离散卡尔曼滤波器在1960年,卡尔曼出版了他最著名的论文,描述了一个对离散数据线性滤波问题的递归解决方法[Kalman60]。

从那以后,由于数字计算的进步,卡尔曼滤波器已经成为广泛研究和应用的主题,特别在自动化或协助导航领域。

第一章讲述了对卡尔曼滤波器非常“友好的”介绍[Maybeck79],而一个完整的介绍可以在[Sorenson70]找到,也包含了一些有趣的历史叙事。

更加广泛的参考包括Gelb74;Grewal93;Maybeck79;Lewis86;Brown92;Jacobs93]. 被估计的过程卡尔曼滤波器卡用于估计离散时间控制过程的状态变量n x ∈ℜ。

这个离散时间过程由以下离散随机差分方程描述: 111k k k k x Ax bu w ---=++ (1.1)测量值m z ∈ℜ,k k k z Hx v =+ (1.2) 随机变量k w 和k v 分别表示过程和测量噪声。

他们之间假设是独立的,正态分布的高斯白噪: ()~(0)p w N Q, (1.3) ()~(0)p v N R , (1.4)在实际系统中,过程噪声协方差矩阵Q 和观测噪声协方差矩阵R 可能会随每次迭代计算而变化。

但在这儿我们假设它们是常数。

(完整)卡尔曼滤波介绍

(完整)卡尔曼滤波介绍

卡尔曼滤波一、卡尔曼滤波的起源谈到信号的分析与处理,就离不开滤波两个字。

通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以把FIR滤波器或者IIR滤波器设计成合适的频带滤波器,进行频域滤波。

但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。

虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的.人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”.为了“估计",要事先确定某种准则以评定估计的好坏程度.最小均方误差是一种常用的比较简单的经典准则。

对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的.当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作,这项研究是用于防空火力控制系统的.维纳滤波器是基于最小均方误差准则的估计器。

为了寻求维纳滤波器的冲激响应,需要求解著名的维纳–霍夫方程。

这种滤波理论所求的是使均方误差最小的系统最佳冲激响应的明确表达式。

从维纳–霍夫方程来看,维纳滤波算法是十分低效的。

这种算法要求设置大量的存储器来保存过去的测量数据,一个新的数据到来后,要进行刷新,重新计算自相关和互相关序列。

再者,求解这个方程需要耗费大量时间对高阶矩阵求逆。

因此,维纳滤波算法难以运用于实时处理中,尤其是无法用于军事、航空航天等领域。

为此,许多科技工作者进行了多方探索,但在解决非平稳过程的滤波问题时,能给出的方法很少。

到20世纪50年代中期,随着空间技术的发展,要求对卫星轨道进行精确地测量,这种方法越来越不能满足实际应用的需要。

为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精炼算法。

1960年和1961年,卡尔曼(R. E. Kalman)和布西(R. S。

Bucy)提出了递推滤波算法,成功的将状态变量引入到滤波理论中来,用消息与干扰的状态空间模型代替了通常用来描述它们的协方差函数,将状态空间描述与离散数间刷新联系起来,适于计算机直接进行计算,而不是去寻求滤波器冲激响应的明确公式。

卡尔曼滤波讲解

卡尔曼滤波讲解
EKF算法是一种近似方法,它将非线性模型在状 态估计值附近作泰勒级数展开,并在一阶截断, 用得到的一阶近似项作为原状态方程和测量方 程近似表达形式,从而实现线性化同时假定线 性化后的状态依然服从高斯分布,然后对线性 化后的系统采用标准卡尔曼滤波获得状态估计。 采用局部线性化技术,能得到问题局部最优解, 但它能否收敛于全局最优解,取决于函数的非 线性强度以及展开点的选择。
卡尔曼滤波器的简介
卡尔曼全名Rudolf Emil Kalman,匈牙利数学家, 1930年出生于匈牙利首都布达佩斯。1953, 1954年于麻省理工学院分别获得电机工程学士 及硕士学位。1957年于哥伦比亚大学获得博士 学位。我们现在要学习的卡尔曼滤波器,正是 源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
y(k)是k时刻的测量值,
H是测量系统的参数,对于多测量系 统,H为矩阵。
系统噪声和测量噪声都是高斯分布的, q(k)和r(k)分别表示过程和测量的噪声。
协方差矩阵分别为Qk-1和Rk
他们被假设成高斯白噪声(White
Gaussian Noise),他们的covariance分
别是Q,R(这里我们假设他们不随
扩展Kalman滤波算法(EKF)
假定定位跟踪问题的非线性状态方程和测量方程如下:
X f (X ) W ...............(1)
k 1
k
k
Y h(X ) V ...................(.2)
k
k
k
在最近一次状态估计的时刻,对以上两式进行线性化处理,首先构造如 下2个矩阵:

卡尔曼滤波器介绍.doc

卡尔曼滤波器介绍.doc

卡尔曼滤波器介绍
摘要
在1960年,R.E.Kalman发表了关于递归解决线性离散数据滤波器的著名论文,从那时间起,由于在数字计算的大部分提高,Kalman滤波器已成为广泛研究和应用的学科,尤其是自动或辅助导航系统。

Kalman滤波器是一套数学等式,它提供了一种有效的以最小均方误差来估计系统状态的计算(递归的)方法。

它在以下几方面是非常强大的:它支持过去、现在、甚至将来估计,甚至在系统准确模型也未知的情况下。

本文的目的是提供一种对离散的Kalman滤波器的实用介绍。

这些介绍包括对基本离散kalman滤波器、起源和与之相关的简单(有形)的带有真实数字和结果的描述和讨论。

1、离散的kalman滤波器
在1960年,R.E.Kalman发表了关于递归解决线性离散数据滤波器的著名论文,从那时间起,由于在数字计算的大部分提高,Kalman滤波器已成为广泛研究和应用的学科,尤其是自动或辅助导航系统。

关于kalman滤波器一般方法的友好介绍可以在〔maybeck79〕的Chapter.1中找到,但是更完整部分的讨论能在〔Sorenson70〕中发现,它还包括许多有趣的历史解释。

在〔Gelb74;Grewal93;Maybeck79;Lewis86;Brown92;jacobs93〕中有更多参考。

估值过程
Kalman滤波器解决估计离散时间控制过程的状态X∈R n的一般性问题,定义线性随机差分方程
1。

卡尔曼滤波研究综述

卡尔曼滤波研究综述

卡尔曼滤波研究综述1.基本原理(1)预测步骤:通过系统的模型和先验信息,预测当前状态的条件概率分布。

这一步骤主要利用系统的状态转移方程和控制输入,进行状态的预测。

(2)更新步骤:通过测量数据,将预测的状态进行修正和优化。

这一步骤主要利用测量方程和观测数据,更新状态的估计值。

通过反复进行预测和更新,卡尔曼滤波不断修正状态的估计值,逐渐趋于系统的真实状态。

2.算法流程(1)初始化:设置系统的初始状态和协方差矩阵,初始化观测矩阵、观测协方差矩阵等参数。

(2)预测步骤:利用系统的状态转移方程和控制输入,预测系统的状态和状态协方差矩阵。

计算预测的观测值和观测协方差矩阵。

(3)更新步骤:根据测量数据,计算卡尔曼增益矩阵。

通过卡尔曼增益矩阵,修正预测的状态和状态协方差矩阵。

(4)迭代:反复执行预测和更新步骤,不断修正状态的估计值,直到达到收敛条件。

3.应用领域(1)目标跟踪:在雷达、视频监控等领域中,利用卡尔曼滤波对目标进行跟踪和预测,提高目标的检测精度和轨迹预测准确性。

(2)导航系统:在惯性导航系统和全球定位系统(GPS)中,利用卡尔曼滤波对位置和速度进行估计,提高导航的精度和鲁棒性。

(3)信号处理:在语音处理、图像处理等领域中,利用卡尔曼滤波对信号进行去噪、插值等处理,提高信号的质量和准确性。

(4)控制系统:在自动控制系统中,利用卡尔曼滤波对系统状态进行估计,实时调整控制器参数,提高控制系统的稳定性和性能。

总结:卡尔曼滤波是一种基于概率论和线性系统理论的优化算法,通过迭代估计系统状态,利用先验信息和测量数据进行更新,逐渐修正状态的估计值。

在目标跟踪、导航系统、信号处理和控制系统等领域中得到广泛应用。

其研究内容包括基本原理、算法流程和应用领域等方面,对于深入理解和应用卡尔曼滤波具有重要意义。

卡尔曼滤波研究综述

卡尔曼滤波研究综述

卡尔曼滤波研究综述1 卡尔曼滤波简介1.1卡尔曼滤波的由来1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文-《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。

卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。

其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。

算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。

对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。

它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

1.2标准卡尔曼滤波-离散线性卡尔曼滤波为了描述方便我们作以下假设:物理系统的状态转换过程可以描述为一个离散时间的随机过程;系统状态受控制输入的影响;系统状态及观测过程都不可避免受噪声影响;对系统状态是非直接可观测的。

在以上假设前提下,得到系统的状体方程和观测方程。

X ⎧⎨ 1-1式中:X k 为状态向量,L k 为观测向量,Φk,k-1为状态转移矩阵,U k-1为控制向量,一般不考虑,Γk,k-1,B k 为系数矩阵,Ωk-1为系统动态噪声向量,Δk 为观测噪声向量,其随机模型为E(Ωk ) =0;E(Δk ) =0;cov(Ωk ,Ωj ) = DΩ(k )δkj ,cov (Δk ,Δj ) = D k (k )δkj ;cov(Ωk ,Δj ) =0;E(X 0) =μx(0)var(X 0) = D(X 0);cov(X 0,Ωk ) =0;cov(X 0,Δk ) =0. 1-2卡尔曼滤波递推公式为X ∧(k/k) = X ∧(k/k-1)+J k (L k -B k X ∧(k/k-1)),D(k/k) = (E-J k B k )D x (k/k-1),J k = D x (k/k-1)BT k [B k D x (k/k-1)]B T k +D Δ(k)]-1,X ∧(k/k-1) =Φk ,k-1X ∧(k-1/k-1), D x (k/k-1) =Φk ,k-1D x (k-1/k-1)ΦT k ,k-1+Γk ,k-1D Δ(k-1)ΓT k ,k-1. 1-32 几种最新改进型的卡尔曼滤波算法。

卡尔曼滤波器综述

卡尔曼滤波器综述

卡尔曼滤波器综述瞿伟军G100741、卡尔曼滤波的起源1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。

斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。

关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与 Kalman and Bucy (1961)发表。

2、卡尔曼滤波的发展卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。

扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。

EKF的基本思路是,假定卡尔曼滤滤对当前系统状态估计值非常接近于其真实值,于是将非线性函数在当前状态估计值处进行台劳展开并实现线性化。

另一种非线性卡尔曼滤波叫线性化卡尔曼滤波。

它与EKF的主要区别是前者将非线函数在滤波器对当前系统状态的最优估计值处线性化,而后者因为预先知道非线性系统的实际运行状态大致按照所要求、希望的轨迹变化,所以这些非线性化函数在实际状态处的值可以表达为在希望的轨迹处的台劳展开式,从而完成线性化。

不敏卡尔曼滤波器(UKF)是针对非线性系统的一种改进型卡尔曼滤波器。

UKF处理非线性系统的基本思路在于不敏变换,而不敏变换从根本上讲是一种描述高斯随机变量在非线性化变换后的概率分布情况的方法。

不敏卡尔曼滤波认为,与其将一个非线性化变换线性化、近似化,还不如将高斯随机变量经非线性变换后的概率分布情况用高斯分布来近似那样简单,因而不敏卡尔曼滤波算法没有非线性化这一步骤。

在每一定位历元,不敏卡尔曼滤波器按照一套公式产生一系列样点,每一样点均配有一个相应的权重,而这些带权的样点被用来完整地描述系统状态向量估计值的分布情况,它们替代了原先卡尔曼滤波器中的状态向量估计值及协方差。

卡尔曼滤波研究综述

卡尔曼滤波研究综述
2.3自适应卡尔曼滤波
传统的滤波限制条件比较苛刻.它要求系统模型精确以及系统误差模型和观测误差模型已知.这在实际应用中是很难满足的,或者在系统工作过程中,模型发生变化,这些都导致传统KF的滤波发散或精度下降。针对此不足,很多学者提出了不同的方法加以克服,其中自适应卡尔曼滤波(以下简称AKF)因为具有自适应特性非常适合动态系统滤波而受到广泛重视,因此在采用卡尔曼滤波处理动态测量数据时,一般都要考虑采取适当的自适应滤波方法来解决这一问题。在此主要介绍AKF的两个最主要的研究方向。
其中 |X(k)= ,
|X(k+1)= (k+1|k)
Q(k)为系统噪声序列V(k)的方差阵,R(k)为测量噪声序列W(k)的方差阵。
2.2扩维无迹卡尔曼滤波
无迹卡尔曼滤波(Unscented Kalman Filter,UKF),它是在以无迹变换(Unscented Transformation,UT)为基础,借用卡尔曼线性滤波框架而建立起来的。它直接利用非线性状态方程来估算状态向量的概率密度函数。但是,简单的UKF在面对系统中的噪声影响较大时不能得到精确的滤波结果,改进的无迹卡尔曼滤波算法则是在初始状态中引入过程噪声和测量噪声,使得采样点也包括了这些噪声,这样在状态预测和更新过程中,噪声的影响就能够在非线性系统中进行传输和估计,使得滤波信号更好地接近真实值,尤其是当信号的系统噪声和观测噪声影响较大时。其算法如下:
更新阶段:
K(k+1) =P(k+1|k)HTk+1(Hk+1P(k+1|k)HTk+1+R(k+1))-12-1-8
(k+1) = (k+1|k)+K(k+1)[L(k+1)- (k+1k)]

简述卡尔曼滤波器

简述卡尔曼滤波器

卡尔曼滤波器摘要:卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。

由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

对于解决大部分问题,它是最优,效率最高甚至是最有用的。

他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

1卡尔曼滤波原理在统计中,卡尔曼滤波是以鲁道夫—卡尔曼命名的数学方法。

它提供了一种有效的计算(递归)算法来估计过程的状态,它最大限度地减少了均方误差。

该滤波器在许多方面的应用是非常强大:即使在模拟系统准确性不明的情况下,它可以对过去,现在,甚至可以对未来状态进行估计。

卡尔曼滤波器产生测量真值的估计值及其相关的计算值的预测值,估计预测值的不确定性,并计算预测值与实测值的加权平均值。

它给出不确定性最小的估计值。

用该方法产生的估计值往往比原来测量真值更接近真实值。

从理论上看,卡尔曼滤波是一种有效的实现非线性动力学系统的算法,所有潜在的和观察到的变量都服从高斯分布(通常是一个多元高斯分布)。

如果所有的噪声为高斯噪声,卡尔曼滤波器最小化了参数估计的均方误差。

鉴于只有噪声平均值和标准差,卡尔曼滤波器是最优的线性估计;并且,它结构优良,易于实现。

2 卡尔曼滤波简单介绍(1)首先,我们先要引入一个离散控制过程的系统。

该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k) 协方差为Q再加上系统的测量值:Z(k)=H X(k)+V(k) 协方差为RX(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

Z(k)是k时刻的测量值A和B是系统参数,对于多模型系统,他们为矩阵。

卡尔曼滤波研究综述

卡尔曼滤波研究综述

卡尔曼滤波研究综述卡尔曼滤波(Kalman filter)是一种常用于估计和预测系统状态的优化算法。

它是由卡尔曼在1960年提出的,用于解决航天航空领域中的导航问题。

现在已广泛应用于各个领域,如自动驾驶、机器人、金融和通信等。

本文将对卡尔曼滤波的原理、应用和研究进展进行综述。

卡尔曼滤波的基本原理是通过对系统的状态进行不断的估计和修正,提高对系统状态的精确度。

它通过测量值和状态方程来计算状态的估计值,并结合测量值和状态方程的可信度来对估计值进行修正。

卡尔曼滤波的核心思想是将系统的状态建模为一个高斯分布,通过最小化估计误差的期望值来修正系统状态的估计值。

卡尔曼滤波的应用非常广泛。

在自动驾驶领域,卡尔曼滤波可以用于车辆定位和轨迹预测。

通过结合GPS和车辆传感器的测量值,可以实时估计车辆的位置和速度,并预测车辆的未来轨迹。

在机器人方面,卡尔曼滤波可以用于定位和地图构建。

通过结合机器人的传感器数据和运动模型,可以实时估计机器人的位置和地图,并提高机器人的导航精度。

关于卡尔曼滤波的研究,主要包括以下几个方面。

首先是算法改进和优化。

随着计算机和传感器技术的不断发展,研究人员提出了一些新的算法和方法来改进卡尔曼滤波的性能。

例如,无迹卡尔曼滤波(Unscented Kalman Filter)和扩展卡尔曼滤波(Extended Kalman Filter)可以处理非线性系统和非高斯噪声的情况,提高了滤波的精确度和鲁棒性。

其次是状态估计和预测的应用。

传统的卡尔曼滤波主要用于状态估计,即通过测量值来估计系统的状态。

近年来,研究人员开始将卡尔曼滤波应用于状态预测,即通过历史数据和状态模型来预测系统的未来状态。

这些预测方法在金融和经济领域得到了广泛应用,可以用于股票价格预测和经济预测等任务。

此外,还有对卡尔曼滤波的扩展和改进。

卡尔曼滤波虽然被广泛应用,但在一些实际问题中存在一些限制。

例如,它假设系统的状态和噪声是高斯分布的,而实际问题中很多情况并不满足这个假设。

关于卡尔曼滤波器的一个简单介绍

关于卡尔曼滤波器的一个简单介绍

关于卡尔曼滤波器的一个简单介绍关于卡尔曼滤波器的一个简单介绍在实际生产过程中,我们经常需要使用某种仪器测量某一物理参数。

比如,用一台仪器测量大气中一氧化碳的浓度。

由于测量误差永远存在,使得这样两个问题非常突出,首先,是否存在某个计算方法,能够从含有误差的测量结果中获得比较接近真实值的结果;其次,如何证明这样的结果是最优的,也就是说有没有这样一种数学方法,经过其进行处理后得到的测量结果是最接近真实值的。

为了消除测量误差,人们首先想到的方法是取平均值。

通过对于同一物理量的多次测量,抵消可能存在的测量误差,从而得到真实值。

但是,通过生产实践,人们很快发现这样的测量方法并不是最优的。

如果参与平均值计算的数据量太小,就达不到抵消测量误差的目的,如果参与计算的数据量太多,不仅完全消除了可能的物理量变化,而且实现起来非常麻烦。

1960年,匈牙利数学家卡尔曼(Rudolf Emil Kalman,1930年出生于匈牙利首都布达佩斯。

1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位,1957年于哥伦比亚大学获得博士学位)在他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)中提出一种计算方法,后来被称为卡尔曼滤波器。

这种滤波器比较简单,但是对于绝大多数类似本文开头提出的问题,可以证明,它得出的结果是最优的。

卡尔曼滤波器的最大优势是它非常简单,非常容易实现。

故而在各领域广泛应用超过三十年。

下面简单介绍卡尔曼滤波器,为了便于阅读,尽量少使用数学公式。

下面的用词不是非常严格的。

假如,我们需要用一个温度计测量一个房间的温度。

每个1秒钟从温度计上读取一个数值。

假设这个房间的真实温度是25度。

由于温度计本身有测量误差,我们得到的测量值是围绕25度上下波动的一组数值。

“围绕”这一特性是符合我们的直观感受的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卡尔曼滤波器综述瞿伟军G100741、卡尔曼滤波的起源1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。

斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。

关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与 Kalman and Bucy (1961)发表。

2、卡尔曼滤波的发展卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。

扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。

EKF的基本思路是,假定卡尔曼滤滤对当前系统状态估计值非常接近于其真实值,于是将非线性函数在当前状态估计值处进行台劳展开并实现线性化。

另一种非线性卡尔曼滤波叫线性化卡尔曼滤波。

它与EKF的主要区别是前者将非线函数在滤波器对当前系统状态的最优估计值处线性化,而后者因为预先知道非线性系统的实际运行状态大致按照所要求、希望的轨迹变化,所以这些非线性化函数在实际状态处的值可以表达为在希望的轨迹处的台劳展开式,从而完成线性化。

不敏卡尔曼滤波器(UKF)是针对非线性系统的一种改进型卡尔曼滤波器。

UKF处理非线性系统的基本思路在于不敏变换,而不敏变换从根本上讲是一种描述高斯随机变量在非线性化变换后的概率分布情况的方法。

不敏卡尔曼滤波认为,与其将一个非线性化变换线性化、近似化,还不如将高斯随机变量经非线性变换后的概率分布情况用高斯分布来近似那样简单,因而不敏卡尔曼滤波算法没有非线性化这一步骤。

在每一定位历元,不敏卡尔曼滤波器按照一套公式产生一系列样点,每一样点均配有一个相应的权重,而这些带权的样点被用来完整地描述系统状态向量估计值的分布情况,它们替代了原先卡尔曼滤波器中的状态向量估计值及协方差。

不敏卡尔曼滤器让这些样点一一经历非线性状态方程与测量方程,然后再将这些经非线性变换后的样点按照它们的权重而综合出对当前时刻的系统状态向量估计值。

多态自适应(MMA)卡尔曼滤波器是一种受到广泛关注的滤波器,它由好多个并联、同时运行的卡尔曼滤波器组成。

在这组卡尔曼滤波器中,每一个滤波器对未知的滤波参数分别做出相互不同的假设,然后各自按照自己的模型假设进行滤波计算,而多态自适应滤波器最后将它们对系统状态的各个估计值进行加权,并以此作为最优估计值输出。

3、卡尔曼滤波器概述简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。

他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

卡尔曼滤波器由一系列递归数学公式描述,它们提供了一种高效可计算的方法来估计过程的状态,并使估计均方误差最小。

卡尔曼滤波器应用广泛且功能强大,它可以估计信号的过去和当前状态,甚至能估计将来的状态,即使并不知道模型的确切性质。

假设我们要研究的对象是一个房间的温度。

根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。

假设你对你的经验不是100%的相信,可能会有上下偏差几度。

我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。

另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。

我们也把这些偏差看成是高斯白噪声。

现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。

下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k 时刻的是实际温度值。

首先你要根据1k -时刻的温度值,来预测k 时刻的温度。

因为你相信温度是恒定的,所以你会得到k 时刻的温度预测值是跟1k -时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果1k -时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。

然后,你从温度计那里得到了k 时刻的温度值,假设是25度,同时该值的偏差是4度。

由于我们用于估算k 时刻的实际温度有两个温度值,分别是23度和25度。

究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的协方差来判断。

因为252(5242)Kg ∧∧∧∧=+,所以0.78Kg =,我们可以估算出k 时刻的实际温度值是:230.78(2523)24.56+*-=度。

可以看出,因为温度计的协方差比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

现在我们已经得到k 时刻的最优温度值了,下一步就是要进入1k -时刻,进行新的最优估算。

到现在为止,好像还没看到什么自回归的东西出现。

对了,在进入1k -时刻之前,我们还要算出k 时刻那个最优值(24.56度)的偏差。

算法如下:((1)52)0.5 2.35Kg ∧∧-*=。

这里的5就是上面的k 时刻你预测的那个23度温度值的偏差,得出的2.35就是进入1k +时刻以后k 时刻估算出的最优温度值的偏差(对应于上面的3)。

就是这样,卡尔曼滤波器就不断的把协方差递归,从而估算出最优的温度值。

他运行的很快,而且它只保留了上一时刻的协方差。

上面的Kg ,就是卡尔曼增益(Kalman Gain )。

他可以随不同的时刻而改变他自己的值。

4、卡尔曼滤波器算法首先,我们先要引入一个离散控制过程的系统。

该系统可用一个线性随机微分方程(Linear Stochastic Difference equation )来描述:()(1)()()X k AX k BU k W K =-++ (3.1)再加上系统的测量值:()()()Z k HX k V k =+ (3.2)上两式子中,()X k 是k 时刻的系统状态,()U k 是k 时刻对系统的控制量。

A 和B 是系统参数,对于多模型系统,他们为矩阵。

()Z k 是k 时刻的测量值,H 是测量系统的参数,对于多测量系统,H 为矩阵。

()W K 和()V k 分别表示过程和测量的噪声。

他们被假设成高斯白噪声(White Gaussian Noise),他们的协方差分别是,Q R (这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。

下面我们来用他们结合他们的协方差s 来估算系统的最优化输出。

首先我们要利用系统的过程模型,来预测下一状态的系统。

假设现在的系统状态是k ,根据系统的模型,可以基于系统的上一状态而预测出现在状态:(1)(11)()X k k AX k k BU k -=--+ (3.3) 式(3.3)中,(1)X k k -是利用上一状态预测的结果,(11)X k k --是上一状态最优的结果,()U k 为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于(1)X k k -的协方差(协方差)还没更新。

我们用P 表示协方差:'(1)(11)P k k AP k k A Q -=--+ (3.4)式(3.4)中,(1)P k k -是(1)X k k -对应的协方差,(11)P k k --是(11)X k k --对应的协方差,'A 表示A 的转置矩阵,Q 是系统过程的协方差。

式子(3.3),(3.4)就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。

结合预测值和测量值,我们可以得到现在状态()k 的最优化估算值()X k k :()(1)()(()(1))X k k X k k Kg k Z k HX k k =-+-- (3.5)其中Kg 为卡尔曼增益(Kalman Gain):''()(1)((1))Kg k P k k H HP k k H R =--+ (3.6)到现在为止,我们已经得到了k 状态下最优的估算值()X k k 。

但是为了要令卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k 状态下()X k k 的协方差: ()(())(1)P k k I Kg k H P k k =-- (3.7)其中I 为1的矩阵,对于单模型单测量,1I =。

当系统进入1k +状态时,()P k k 就是式子(3.4)的(11)P k k --。

这样,算法就可以自回归的运算下去。

式子(3.3),(3.4),(3.5),(3.6)和(3.7)就是卡尔曼滤波器的基本原理了。

根据这5个公式,可以很容易的实现计算机的程序。

5、卡尔曼滤波器的原理在现代,随机最优控制和随机信号处理技术中,信号和噪声往往是多维非平稳随机过程。

卡尔曼滤波理论采用时域上的递推算法在数字计算机上进行数据滤波处理。

对于离散域线性系统:()(1)(()())x k Ax k B u k w k =-++ (3.8)()()()v y k Cx k v k =+ (3.9)式中,()w k 为过程噪声信号, ()v k 为测量噪声信号。

离散卡尔曼滤波器递推算法为: ()()()T n T P k C M k CP k C R=+ (3.10) ()(1)T T P k AP k A BQB =-+ (3.11)()(())()n n P k I M k C P k =- (3.12)()(1)()(()(1))n v x k Ax k M k y k CAx k =-+-- (3.13)()()e y k Cx k = (3.14)误差的协方差为:cov()()T err k CP k C = (3.15)卡尔曼滤波器结构如图所示卡尔曼滤波器结构6、卡尔曼滤波器的应用实例6.1、基于VDLL 的GPS 信号跟踪算法图2 VDLL 的基本结构系统的状态量为用户状态( 位置、速度、用户钟差、用户钟漂移) ,观测量为所有卫星通道的码环鉴相器输出组成的矢量D(X)X =(x y z b x • y • z • b •)TD(X)=(D(Δτ1) D(Δτ2) … D(ΔτN ))T (3-1)其中x ,y ,z ,b ,x •,y •,z •,b •分别为在ECEF( Earth Centered Earth Fixed, 地心坐标系) 下的用户接收机三维位置和速度, b , b •分别为接收机钟差和钟差变化率。

相关文档
最新文档