材料力学习题解答(弯曲应力)
工程力学第2版周松鹤徐烈烜习题解答弯曲应力
=
0.469
MPa
tB= 0 t 分布
P82 44-2 h = 180 mm
tt
y
负面积法
yC =
A1y1 + A2y2 A1 + A2
= 85 mm
yC 21.15 MPa 14.39 MPa
th
C D zC
b yC z
Iz = S(IzCii+Aibi2) = 3752 cm4
Sz*max
组合法 = 264.5 cm3
A FA l1
BC FB
z y
M│max = 1.016 kN·m
Wz =
bh2 6
= 144 cm3
1.611 kN
1.239 m
l2 1.625 kN
smax =
FS 图
M│max = 7.05 MPa < [s ]
Wz
FS│max = 2.289 kN
Iz =
bh3 12
= 864 cm4
2.289 kN
F CD
F
ll
1 3
Fl
mA = 0
B
z
FB y
Fy = 0
FB =
1 3
F
FA = 13F
I 20 a
查表 : 导学篇 附录B-3 P380中 I 20a
Wz = 236.9 cm3
1 Fl 3
M│max
M图=1 3 NhomakorabeaFl
smax =
M│max Wz
F ≤ kN
≤ [s ]
则 [ F ]= 57 kN
M│max = 20 kN·m
smax =
M│max Wz
《材料力学》弯曲计算-习题
②无均布载荷段弯矩图均为直线。有均布载荷段,弯矩图为
抛物线,其开口与均布载荷方向相同。
(3)弯矩、剪力、载荷集度的关系
①
M '(x) F S (x) F S'(x) q(x)
② FS=0的点是M图的取极值的点,FS=0的段M图是平行
于轴线的直线。
注意: 内力图上要注明控制面值、特殊点纵坐标值。
利用微分关系绘内力图
y
B截面 30.3 +
z
C截面 15.1 z
-
+
69
34.5
(d) 单位:MPa
Engineering Mechanics
四、弯曲 弯曲强度计算
例3 之二
解:(1)求截面形心轴,即中性轴z轴。
yC
( yi Ai ) Ai
170 30 170 30 200 (170 30)
2
2
17030 30 200
解:(1)外力分析,判变形。
10kN
50kN
(a) A
CD
B
z
4m
2m
4m
求得支坐反力
FA 26kN ,FB 34kN
荷载与梁轴垂直,梁将发
26kN 26 16
34kN
生平面弯曲。中性轴z过形心
+ (b)
与载荷垂直,沿水平方向。
FQ(kN)
104 136
34
(2)内力分析,判危险面。剪力
+
(c)
⑤解题步骤:
1)外力分析,判变形、中性轴,求截面的几何性质、支反力。 2)内力分析,判危险面,画剪力图、弯矩图(可只画弯矩图)
3)应力分析,判危险点。 4)强度计算。
材料力学作业6(弯曲应力)
第六章 弯曲应力一、是非题1 梁在纯弯曲时,横截面上各点只有正应力。
( )2 对于等截面梁,弯矩绝对值最大的截面,就是危险截面。
( )3 抗弯截面系数是反映梁横截面抵抗弯曲变形的一个几何量,它的大小与梁的材料有关。
( )4 钢梁和木梁的截面形状和尺寸相同,在受同样大的弯矩时,木梁的应力一定大于钢梁的应力。
( )5 对于矩形截面梁,无论平放还是立放,其抗弯强度相同。
( ) 二、选择或填空1 材料弯曲变形后( )长度不变。
A .外层B .中性层C .内层 2 梁弯曲时横截面上的最大正应力在( )。
A.中性轴上B.对称轴上C.离中性轴最远处的边缘上3 若矩形截面梁的高度h 和宽度b 分别增大一倍,其抗弯截面系数将增大 ( )。
A.2倍 B.4倍 C.8倍 D.16倍4一圆截面悬臂梁,受力弯曲变形时,若其它条件不变,而直径增加一倍,则其最大正应力是原来的________倍。
A :81B :8C :2D :21 5 图示悬臂梁,在外力偶矩M 的作用下,N-N 截面应力分布图正确的是( )A B C D 6 图示横截面上的应力分布图,其中属于直梁弯曲的是图( ),属于圆轴扭转的是图( )。
7 等强度梁各横截面上 数值近似相等。
A .最大正应力B .弯矩C .面积D .抗弯截面系数8 图示,用T 形截面形状的铸铁材料作悬臂梁,从提高梁的弯曲强度考虑,图( )的方案是合理的。
A B三计算题1 图示悬臂梁,梁长L =1m ,集中载荷F =10k N ,梁截面为工字形,已知其Z W =102 cm3 试求出该悬臂梁上最大正应力。
2 长度mm 250=l 、截面宽度mm 25=b 、高度mm 8.0=h 的薄钢尺,由于两端外力偶矩的作用而弯成中心角为 60的圆弧。
已知钢的弹性模量GPa 210=E ,试求钢尺横截面上的最大正应力。
3 图示矩形截面简支梁。
试求1-1截面上a 、b 两点的正应力。
8kN4图示木梁受移动载荷kN 40=F 作用。
弯曲应力练习题
弯曲应力练习题弯曲应力是工程力学中的重要概念,涉及到物体在受到弯曲力作用时的应力分布和变化。
掌握弯曲应力的计算方法对于力学领域的学习至关重要。
在本文中,我们将介绍一些常见的弯曲应力练习题,旨在帮助读者加深对弯曲应力的理解和运用。
1. 长方形截面材料的弯曲应力考虑一块长度为L、宽度为b、高度为h的长方形截面材料,在其最大弯曲力矩为M的作用下,我们希望计算其截面处的最大弯曲应力σ。
根据工程力学的理论,我们可以使用以下公式进行计算:σ = (M * y) / (I * c)其中,y表示距离截面中性轴的距离,I是截面的惯性矩,c是截面最大应力面的最大距离。
2. 悬臂梁的最大弯曲应力考虑一个长度为L、所受力矩为M的悬臂梁,我们希望计算其截面处的最大弯曲应力σ。
对于悬臂梁而言,最大弯曲应力出现在悬臂梁固定端。
根据工程力学的理论,我们可以使用以下公式进行计算:σ = (M * L) / (I * c)其中,M是所受力矩,L是悬臂梁的长度,I是截面的惯性矩,c是截面最大应力面的最大距离。
3. 圆柱体的弯曲应力考虑一个半径为r、所受力矩为M的圆柱体,我们希望计算其截面处的最大弯曲应力σ。
根据工程力学的理论,我们可以使用以下公式进行计算:σ = (M * r) / (I * c)其中,M是所受力矩,r是圆柱体的半径,I是截面的惯性矩,c是截面最大应力面的最大距离。
以上是三个常见的弯曲应力计算问题的解决方法。
在实际的工程应用中,我们需要根据具体情况选择合适的公式并进行计算。
同时,为了准确评估材料的弯曲性能,我们还需要了解材料的力学性质,如弹性模量、截面惯性矩等。
通过练习和实践,我们可以逐渐提高对弯曲应力问题的解决能力。
总结:本文简要介绍了弯曲应力的概念和计算方法,并提供了三个常见的弯曲应力练习题。
这些题目涉及到了不同结构的材料,如长方形截面材料、悬臂梁和圆柱体。
通过解决这些练习题,读者可以深入理解弯曲应力的计算过程,进一步掌握工程力学的基础知识。
材料力学典型例题及解析 5.弯曲应力典型习题解析
9m q
4 ≤ [σ ]
A
1 πd 2
4
解得 q ≤ 1 π d 2 [σ ] = 1 × 20 ×10 −6 m 2 ×160 ×10 6 Pa = 22300 N/m = 22.3 kN/m
9m
9m
4、确定结构的许用载荷 取 AC 梁、BD 杆的许用 q 值中的小值,即为结构的许用载荷。
所以 [ q ] = 15.68 kN / m 。
切口,如图 a 所示。已知材料的许用应力 [σ ] = 100 MPa , (1) 计算切口许可的最大深度,并
画出切口处截面的应力分布图。(2) 如在杆的另一侧切出同样的切口,正应力有何变化?
F
y
(a)
38MPa
h=40mm
F
C'
M
F
CF F
F
100MPa
b=5mm (b)
(c)
(d)
题6图
解题分析:此题为偏心拉伸问题,可利用弯曲与拉伸组合变形的强度条件求出切口的允许深 度。若另一侧开同样深度切口,偏心拉伸问题变为轴向拉伸问题。 解:1、计算切口许可的最大深度
得 F B y = 12.75 kN
2、作弯矩图,确定危险截面
1
弯矩图如图 b 所示,峰值为 M C = 3.75kN ⋅ m 和 M B = − 4.5kN ⋅ m 。
B 截面的上边缘各点受拉,下边缘各点受压;C 截面的上边缘各点受压,下边缘各 点受拉。由于不能直观确定最大拉、压应力的位置,需要进一步计算。 3、计算 B、C 截面上的应力
设 A 处支反力为 F A y ,B 处支反力为 F B y ,均竖直向上。考虑梁 AD 的平衡,有
∑ M B = 0 , − F A y × 2 m − 4.5×103 N ×1m + 12×103 N ×1m = 0
材料力学习题及答案4-6
第四章弯曲应力判断图弯矩的值等于梁截面一侧所有外力的代数和。
()负弯矩说明该截面弯矩值很小,在设计时可以忽略不计。
()简支梁上向下的集中力对任意横截面均产生负弯矩。
()横截面两侧所有外力对该截面形心力矩的代数和就是该截面的弯矩值。
()梁的任一横截面上的弯矩在数值上等于该截面任一侧所有外力对该截面形心的力矩代数和。
()在计算指定截面的剪力时,左段梁向下的荷载产生负剪力。
()在计算指定截面的剪力时,右段梁向下的荷载产生正剪力。
()梁纯弯曲时中性轴一定通过截面的形心。
()简支梁上受一集中力偶作用,当集中力偶在不改变转向的条件下,在梁上任意移动时,弯矩图发生变化,剪力图不发生变化。
()图示梁弯矩图的B点是二次抛物线的顶点。
()图示梁段上集中力偶作用点两侧的弯矩直线一定平行。
()(M图)下列三种斜梁A截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁B截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁C截面的弯矩均相同。
()l/2l/2l/2l/2l/2l/2梁弯曲时的内力有剪力和弯矩,剪力的方向总是和横截面相切,而弯矩的作用面总是垂直于横截面。
()一端(或两端)向支座外伸出的简支梁叫做外伸梁。
()##√悬臂梁的一端固定,另一端为自由端。
()##√弯矩的作用面与梁的横截面垂直,它们的大小及正负由截面一侧的外力确定。
()##√弯曲时剪力对细长梁的强度影响很小,所以在一般工程计算中可忽略。
()##√图示,外伸梁BC段受力F作用而发生弯曲变形,AB段无外力而不产生弯曲变形()##×由于弯矩是垂直于横截面的内力的合力偶矩,所以弯矩必然在横截面上形成正应力。
()##√抗弯截面系数是反映梁横截面抵抗弯曲变形的一个几何量,它的大小与梁的材料有关。
()##×无论梁的截面形状如何,只要截面面积相等,则抗弯截面系数就相等。
()##×梁弯曲变形时,弯矩最大的截面一定是危险截面。
材料力学弯曲应力答案
4-1(4-1)试求图示各梁中指定截面上的剪力和弯矩。
解:(a)(b)(c)(d)=(e)(f)(g)(h)=返回4-2(4-2) 试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图。
解:(a)(b)时时(c)时时(d)(e)时,时,(f)AB段:BC段:(g)AB段内:BC段内:(h)AB段内:BC段内:CD段内:返回4-3(4-3)试利用荷载集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图。
返回4-4(4-4)试作下列具有中间铰的梁的剪力图和弯矩图。
返回4-5(4-6)已知简支梁的剪力图如图所示。
试作梁的弯矩图和荷载图。
已知梁上没有集中力偶作用。
返回4-6(4-7) 试根据图示简支梁的弯矩图作出梁的剪力图与荷载图。
返回4-7(4-15)试作图示刚架的剪力图、弯矩图和轴力图。
返回4-8(4-18)圆弧形曲杆受力如图所示。
已知曲杆轴线的半径为R,试写出任意横截面C上剪力、弯矩和轴力的表达式(表示成角的函数),并作曲杆的剪力图、弯矩图和轴力图。
解:(a)(b)返回4-9(4-19)图示吊车梁,吊车的每个轮子对梁的作用力都是F,试问:(1)吊车在什么位置时,梁内的弯矩最大?最大弯矩等于多少?(2)吊车在什么位置时,梁的支座反力最大?最大支反力和最大剪力各等于多少?解:梁的弯矩最大值发生在某一集中荷载作用处。
,得:当时,当M极大时:,则,故,故为梁内发生最大弯矩的截面故:=返回4-10(4-21)长度为250mm、截面尺寸为的薄钢尺,由于两端外力偶的作用而弯成中心角为的圆弧。
已知弹性模量。
试求钢尺横截面上的最大正应力。
解:由中性层的曲率公式及横截面上最大弯曲正应力公式得:由几何关系得:于是钢尺横截面上的最大正应力为:4-11(4-25) 矩形截面的悬臂梁受集中力和集中力偶作用,如图所示。
试求截面m-m和固定端截面n-n上A,B,C,D四点处的正应力。
解:对m-m及n-n截面,都给以坐标系如图所示。
河海大学-材料力学第5章弯曲应力作业参考解答
IZ
=
2 × ( 1 × 60 ×1403 12
+ 60 ×140 × (70 - (76.82 - 50))2 )
+ 1 × 280 ×503 + 280 ×50 × (76.82 - 50 / 2)2 = 9.9´107 mm4 12
(3)b-b 处切应力
t b-b
=
FS
S
* z
Izb
=
27.5kN ´ (60 ´100 ´ 63.18mm3 ) 9.9 ´107 ´108 mm4 ´ 60mm
解:
A
A
z
z
A
z
y
y
y
5-23 求图所示梁的最大容许荷载 q。梁的容许正应力为 3.5MPa,容许切应力为 0.7MPa,胶 结处的容许切应力为 0.35MPa。
yc
解:(1)求内力
最大剪力为 Fs max
=
0.5ql
= 0.3q ,最大弯矩为 M z max
=
1 8
ql
2
= 0.045q 。
(2)确定形心位置及计算惯性矩
£ 0.7 ´106
解得: q £ 3.97kN / m 。
(5) 粘结处应力强度条件
t max
=
Fs
max
S
* z
Izb
=
0.3q ´ 25´ 25´ 25´10-9 3.32 ´10-6 ´ 25´10-3
£ 0.35´106
解得: q £ 6.2kN / m 。
最后容许荷载为 q £ 3.97kN / m 。
第 5 章作业参考解答
本章主要公式
梁平面纯弯曲时曲率与弯矩和弯曲刚度的关系: 1 = M r EI z
材料力学习题解答弯曲应力
材料⼒学习题解答弯曲应⼒6.1. 矩形截⾯悬臂梁如图所⽰,已知l =4 m , b / h =2/3,q =10 kN/m ,[?]=10 MPa解:(1) (2) (3) 强度计算6.2. 20a ⼯字钢梁的⽀承和受⼒情况如图所⽰,若[?]=160 MPa ,试求许可载荷。
解:(1)(2) (3) 强度计算取许可载荷6.3. 图⽰圆轴的外伸部分系空⼼轴。
试作轴弯矩图,并求轴内最⼤正应⼒。
解:(1)(2) No20axxxC截⾯:B截⾯:(3) 轴内的最⼤正应⼒值6.5. 把直径d=1 m的钢丝绕在直径为2 m的卷筒上,设E=200 GPa,试计算钢丝中产⽣的最⼤正应⼒。
解:(1) 由钢丝的曲率半径知(2) 钢丝中产⽣的最⼤正应⼒6.8. 压板的尺⼨和载荷如图所⽰。
材料为45钢,?s=380 MPa,取安全系数n=1.5。
试校核压板的强度。
解:(2)(3) 强度计算许⽤应⼒强度校核压板强度⾜够。
6.12. 图⽰横截⾯为⊥形的铸铁承受纯弯曲,材料的拉伸和压缩许⽤应⼒之⽐为[?t]/[?c]=1/4。
求⽔平翼缘的合理宽度b。
A-A x解:(1) 梁截⾯上的最⼤拉应⼒和最⼤压应⼒(2) 由截⾯形⼼位置6.13. ⊥形截⾯铸铁梁如图所⽰。
若铸铁的许⽤拉应⼒为[?t]=40 MPa,许zc=10180 cm4,h1解:(1)(2)A截⾯的最⼤压应⼒A截⾯的最⼤拉应⼒C截⾯的最⼤拉应⼒取许⽤载荷值6.14. 铸铁梁的载荷及截⾯尺⼨如图所⽰。
许⽤拉应⼒[?l]=40 MPa,许⽤压应⼒[?c变,但将解:(1)(3) 强度计算B截⾯的最⼤压应⼒B 截⾯的最⼤拉应⼒C 截⾯的最⼤拉应⼒梁的强度⾜够。
(4) 讨论:当梁的截⾯倒置时,梁内的最⼤拉应⼒发⽣在B 截⾯上。
梁的强度不够。
6.19. 试计算图⽰⼯字形截⾯梁内的最⼤正应⼒和最⼤剪应⼒。
解:(3)计算应⼒最⼤剪应⼒最⼤正应⼒6.22. 起重机下的梁由两根⼯字钢组成,起重机⾃重Q=50 kN ,起重量P=10kN 。
材料力学习题解答弯曲应力
6.1.矩形截而悬臂梁如图所示,已知1=4 b/h=2!3, q二10 kN/m, [cr]=10 MPa,试确定此梁横截面的尺寸.max 2(2)计算抗弯截面系数2,3W 如31"yy = ----- = ------- =—6 6 9(3)强度计算0尸max W M 2 h3~[T/9X10X103X42心/. h > / —— = 3 ------------------- - - =416〃〃〃\2[(T] V 2xl0xl06b > 277mm62 20a工字钢梁的支承和受力情况如图所示,若[a]=160 MPa,试求许可载荷。
由弯矩图知:2P= = J_.pgEW W 3W.• A 哄=3x237xl0F60>d。
”= %.8 球2取许可载荷[P] = 57AN解:(1)画梁的弯矩图M c M c 32xl.34xl03=—=—Y = :— = 63.2MPaW c诚;. n x 0.06?"3TB截面:0.9xlO3 5z 4——;------------ -- = 62.1 MPa力以八d;、〃x0.06 〃 0.045、---- U ——r)------------ (1 —----- r-)32 矶32 0.064(3)轴内的最大正应力值(2)查表得抗弯截面系数(3)强度计算2P、=——W =237x10^7/1maxbfmax63.图示圆轴的外伸部分系空心轴.试作轴弯矩图,并求轴内最大正应力.由弯矩图知:可能危险截面是C和B截而(2)计算危险截而上的最大正应力值C截面:解:(1)画梁的弯矩图M t = 308M H(2)计算抗弯截面系数(3)强度计算 许用应力[(r] = ^- = — = 253MPa n 1.5强度校核308 inA1/rn r 】b” = —- = ------------------ I T = 1961"“ Y b maxW 1.568x1 Of压板强度足够。
第六章 弯曲应力(习题解答)
6-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
中性轴z 轴过形心C 与载荷垂直,沿水平方向。
(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M -=-⨯=-⋅kN m)(3)应力分析,梁上边有弯矩图,上侧纤维受拉。
1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。
3111111max2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯Pa MPa 。
11.11b a σσ=-=-MPa0c σ= 31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯Pa MPa37M kN V 图(kN)(a)(c)(b)(c)(e)(d)2+q l /8MkN ·m)(f)(b)180q题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。
梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。
若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。
而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。
如图所示。
(2)内力分析,判危险面:弯矩图如图(b )所示,跨中截面为危险面。
(整理)材料力学试题库题解题6_弯曲应力
弯曲应力1.圆形截面简支梁A,B套成,A,B层间不计摩擦,材料的弹性模量E B=2E A求在外力偶矩M e作用下,A,B中最大正应力的比值^max有4个答案:Bmin1(A)-;61 (C)1;81(D)丄10答: B2.矩形截面纯弯梁,材料的抗拉弹性模量E t大于材料的抗压弹性模量E c,则正应力在截面上的分布图有以下4种答案:(A) (B) (C) (D) 答: C3.将厚度为2 mm的钢板尺与一曲面密实接触,已知测得钢尺点A处的应变为—,则该曲面在点A1000处的曲率半径为_________ m m。
答:999 mmP4.边长为a的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大正应力之比匕丛= ___________(%x)bO(b)答:1/ , 25. 一工字截面梁,截面尺寸如图,h二b, b =10t。
试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%证: — My M12MA y(ybdy) =1 820 罟3Iz4 l z=690tM1 Mt4 1勺8207 6904”88%I yh/2—- 丄h/2zt其中:积分限Bt? , A弓为翼缘弯矩6. 直径d =20 mm 的圆截面钢梁受力如图,已知弹性模量E = 200 GPa , a =200 mm ,欲将其中段AB 弯成 f m 的圆弧,试求所需载荷,并计算最大7. 钢筋横截面积为A ,密度为「,放在刚性平面上,一端加力F ,提起钢筋离 开地面长度-。
试问F 应多大?3解:截面C 曲率为零2Fl gA(l /3) 3 28. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用|向上的拉力时,试求钢条内最大正应力。
解:在截面C 处,有―罟丸弯曲正应力。
解:1 = M 而 M 二 Fa P EI Fmax64 =0.785 10 岀 m 4, 「旦 Pa = 0.654 kN21 Fad 21 3 3 0.654 1 03 0.2 20 10 2 0.785 10 出 = 167 MPa即M C =F Is3 l AC F (I AC )2 l 2 2l AC AC 段可视为受均布载荷q 作用的简支梁 max max 2q(U c ) /8 _ Fl bt 2/6 3bt 2iF/3 C9.图示组合梁由正方形的铝管和正方形钢杆套成,在两端用刚性平板牢固联接。
材料力学答案第六章
第六弯曲应力第六章答案6.1钢丝直径d=0.4mm, 弹性模量E=200GPa, 若将钢丝弯成直径D=400mm 的圆弧时,试求钢丝横截面上的最大弯曲正应力。
(200MPa ) 解:钢丝的弯矩和中性层曲率半径之间的关系为:EIM =ρ1则: ρEIM =,由弯曲正应力公式得ρσmaxmax My ==ρmaxEy ,钢丝弯成圆弧后,产生的弯曲变形,其中性层的曲率半径22Dd D ≈+=ρ 2)2(maxD dE =σ==D Ed MPa 2004004.0102003=⨯⨯6.2 矩形截面梁如图所示。
b = 8cm, h =12cm, 试求危险截面上a 、c 、d 三点的弯曲正应力。
(20.8MPa, 10.4MPa, 0) 解:由平衡方程0)(=∑F M A得到: KN F F B A 44221=⨯⨯== 危险截面在梁的中点处:KNm ql M 442818122max =⨯⨯==I z =1212h b ⨯⨯=44310115212080121mm ⨯=⨯⨯MP a I My MPa I MyI My z d d z c c za a 83.201011526010442.101011523010404646=⨯⨯⨯===⨯⨯⨯====σσσA F BF s F MM机械土木6.3 从直径为d 的圆木中截取一矩形截面梁,试根据强度观点求出所截取的矩形截面的最合理的高h 和宽b 。
(h=d 36, b=d 33) 解:最大弯曲正应力:zz W My I M m a x m a x m a x m a x ==σ h/b 的最佳值应应使梁的抗弯截面系数为最大。
抗弯截面系数: )(61)(616132222b b d b d b bh W -=-==为b 为自变量的函数。
由 06322=-=b d dt dW 36 333222db d h d d b =-===6.4 图示两根简支梁,其跨度、荷载及截面面积都相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1. 矩形截面悬臂梁如图所示,已知l =4 m , b / h =2/3,q =10 kN/m ,[σ]=10 MPa ,试确定此梁横截面的尺寸。
解:(1) 画梁的弯矩图由弯矩图知:2max2ql M = (2) 计算抗弯截面系数32323669hbh h W === (3) 强度计算22maxmax 33912[]29416 277ql M ql h Wh h mm b mmσσ===⋅≤∴≥==≥ 6.2. 20a 工字钢梁的支承和受力情况如图所示,若[σ]=160 MPa ,试求许可载荷。
解:(1) 画梁的弯矩图由弯矩图知:No20a xql 2xmax 23P M =(2) 查表得抗弯截面系数6323710W m -=⨯(3) 强度计算max max 66223[]33[]3237101601056.8822PM P W W WW P kNσσσ-===⋅≤⨯⨯⨯⨯∴≤== 取许可载荷[]57P kN =6.3. 图示圆轴的外伸部分系空心轴。
试作轴弯矩图,并求轴最大正应力。
解:(1) 画梁的弯矩图由弯矩图知:可能危险截面是C 和B 截面 (2) 计算危险截面上的最大正应力值C 截面:3max3332 1.341063.20.0632C C C C C M M MPa d W σππ⨯⨯====⨯ B 截面:3max3434440.91062.10.060.045(1)(1)32320.06B B B BB B B M M MPa D d W D σππ⨯====⨯-- (3) 轴的最大正应力值MPa C 2.63max max ==σσx6.5. 把直径d =1 m 的钢丝绕在直径为2 m 的卷筒上,设E =200 GPa ,试计算钢丝中产生的最大正应力。
解:(1) 由钢丝的曲率半径知1M E M EI Iρρ=∴= (2) 钢丝中产生的最大正应力93max200100.510100 1MR ER MPa I σρ-⨯⨯⨯====6.8. 压板的尺寸和载荷如图所示。
材料为45钢,σs =380 MPa ,取安全系数n=1.5。
试校核压板的强度。
解:(1) 画梁的弯矩图由弯矩图知:危险截面是A 截面,截面弯矩是308A M Nm =(2) 计算抗弯截面系数232363330.030.0212(1)(1) 1.568106620bH h W m H -⨯=-=-=⨯(3) 强度计算许用应力380[]2531.5SMPa nσσ=== 强度校核max 6308196[]1.56810A M MPa W σσ-===⨯ 压板强度足够。
A-Ax6.12. 图示横截面为⊥形的铸铁承受纯弯曲,材料的拉伸和压缩许用应力之比为[σt ]/[ σc ]=1/4。
求水平翼缘的合理宽度b 。
解:(1) 梁截面上的最大拉应力和最大压应力()[][]11,max ,max ,max 1,max 11400 40014320 t c zzt t c c M y My I I y y y mmσσσσσσ-==-====(2) 由截面形心位置()()304006017060370320304006060510 i CiCiA y b y Ab b mm⨯-⨯+⨯⨯===⨯-+⨯=∑∑6.13. ⊥形截面铸铁梁如图所示。
若铸铁的许用拉应力为[σt ]=40 MPa ,许用压应力为[σc ]=160 MPa ,截面对形心z c 的惯性矩I zc =10180 cm 4,h 1=96.4 mm ,试求梁的许用载荷P 。
解:(1) 画梁的弯矩图由弯矩图知:可能危险截面是A 和C 截面 (2) 强度计算A 截面的最大压应力Bz C x()22max 86320.8[][]101801016010132.60.80.825096.410A C C zC zCzC C M h Ph I I I P kN h σσσ--==≤⨯⨯⨯∴≤==-⨯A 截面的最大拉应力11max 86310.8[][]1018010401052.80.80.896.410A t t zC zCzC t M h Ph I I I P kN h σσσ--==≤⨯⨯⨯∴≤==⨯⨯C 截面的最大拉应力()22max 86320.6[][]1018010401044.20.60.625096.410C t t zC zCzC t M h Ph I I I P kN h σσσ--==≤⨯⨯⨯∴≤==-⨯取许用载荷值[]44.2P kN =6.14. 铸铁梁的载荷及截面尺寸如图所示。
许用拉应力[σl ]=40 MPa ,许用压应力[σc ]=160MPa 。
试按正应力强度条件校核梁的强度。
若载荷不变,但将T 形截面倒置成为⊥形,是否合理?何故?解:(1) 画梁的弯矩图由弯矩图知:可能危险截面是B 和C 截面 (2) 计算截面几何性质形心位置和形心惯性矩42.572.522264157.542.53020021520030100157.5 30200200303020060.12510i Ci C i zCAA y y mmAIy dA y dy y dy m --⨯⨯+⨯⨯===⨯+⨯==⨯⨯+⨯⨯=⨯∑∑⎰⎰⎰x(3) 强度计算B 截面的最大压应力3max620100.157552.4 []60.12510B C C C zC M y MPa I σσ-⨯⨯===⨯ B 截面的最大拉应力3max6(0.23)2010(0.230.1575)24.12 []60.12510B C t t zC M y MPa I σσ--⨯-===⨯C 截面的最大拉应力3max610100.157526.2 []60.12510C C t t zC M y MPa I σσ-⨯⨯===⨯ 梁的强度足够。
(4) 讨论:当梁的截面倒置时,梁的最大拉应力发生在B 截面上。
3max620100.157552.4 []60.12510B C t t ZC M y MPa I σσ-⨯⨯===⨯梁的强度不够。
6.19. 试计算图示工字形截面梁的最大正应力和最大剪应力。
解:(1) 画梁的剪力图和弯矩图最大剪力和最大弯矩值是max max 15 20 Q kN M kNm ==(2) 查表得截面几何性质3*max14113.8 6z z I W cm cm b mm S===(3) 计算应力最大剪应力No16 Qxx*3max max max151018.10.0060.138Z Z Q S MPa bI τ⨯===⨯最大正应力3max max62010141.814110M MPa W σ-⨯===⨯ 6.22. 起重机下的梁由两根工字钢组成,起重机自重Q=50 kN ,起重量P=10 kN 。
许用应力[σ]=160 MPa ,[τ]=100 MPa 。
若暂不考虑梁的自重,试按正应力强度条件选定工字钢型号,然后再按剪应力强度条件进行校核。
解:(1) 分析起重机的受力由平衡方程求得C 和D 的约束反力10 50C D R kN R kN ==(2) 分析梁的受力由平衡方程求得和的约束反力x R x R B A 610 650+=-=(3) 确定梁发生最大弯矩时,起重机的位置及最大弯矩值C 截面:()(506)()501204.17C C M x x x dM x x dxx m=-=-== BR此时C 和D 截面的弯矩是104.25 134.05C D M kNm M kNm ==D 截面:()(106)(8)()381203.17D D M x x x dM x x dxx m=+-=-== 此时C 和D 截面的弯矩是98.27 140.07C D M kNm M kNm ==最大弯矩值是max 140.07 M kNm =(4) 按最大正应力强度条件设计maxmax 33max 6[]2140.0710438 2[]216010M WM W cm σσσ=≤⨯∴≥==⨯⨯查表取25b 工字钢(W=423 cm 3),并查得*max1021.3z z I b mm cm S ==(5) 按剪应力强度校核当起重机行进到最右边时(x =8 m ),梁剪应力最大;最大剪力值是max 58 Q kN =xQ剪应力强度计算*3max max max581013.6[]220.010.213z z Q S MPa bI ττ⨯===⨯⨯剪应力强度足够。
6.23. 由三根木条胶合而成的悬臂梁截面尺寸如图所示,跨度l =1 m 。
若胶合面上的许用切应力为0.34 MPa ,木材的许用弯曲正应力为[σ]=10 MPa ,许用切应力为[τ]=1 MPa ,试求许可载荷P 。
解:(1) 截面上的最大剪力和弯矩max max Q P M Pl ==(2) 梁弯曲正应力强度条件max max 2262[]16[]10100.10.15 3.75 661M PlW bhbh P kNl σσσ==≤⨯⨯⨯≤==⨯ (3) 梁弯曲切应力强度条件max max 633[]222[]21100.10.1510 33Q PA bhbh P kNτττ==≤⨯⨯⨯⨯≤== (4)胶合面上切应力强度条件2222max 1336312222[]244212[]0.34100.10.15 3.825 0.15660.02544z Q h P h y y bh I bh P kN h y τττ⎛⎫⎛⎫=-=-≤ ⎪ ⎪⎝⎭⎝⎭⨯⨯⨯⨯≤==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭许可载荷:[P ]=3.75 kN 。
6.27. 在图中,梁的总长度为l ,受均布载荷q 作用。
若支座可对称地向中点移动,试问移动距离为若干时,最为合理?AD解:(1) 约束反力2B C ql R R ==(2) 截面上的最大正弯矩和最大负弯矩22,max2,max 228822ql l ql ql qla M a qa M +-⎛⎫=--=- ⎪⎝⎭=-(3) 二者数值相等时最为合理222282244010.2072ql qla qa a la l a l l-=+-=-+===。