数学人教版五年级上册第四单元简易方程教材解读
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学人教版五年级上册第四单元简易方程教材解读
数学人教版五年级上册第四单元简易方程教材解读
简易方程属于数学课程标准中“数与代数部分”,是小学阶段正式教学代数初步知识的单元,是学生从算术数量关系到代数数量关系认识过程的一个飞跃,在数学方法上也是一次突破。
一课标与教材内容分析
1. 课标要求
简易方程这一单元包括用字母表示数和解简易方程两个内容。《数学课程标准》在小学阶段关于这一方面的唯一要求是:理解等式的性质,会用等式的性质解简单的方程(如3x +2=5,2x-x=3)。对于这一教学阶段目标,可否这么理解:用其他方式(如用四则运算中的六个基本关系式)解简单的方程,而没用等式的基本性质解简单的方程,就没有完成这阶段的教学目标呢?而且从教学目标中也可以看出:现在,教学方程的着眼点不仅仅是去求方程的解的过程,不能演绎为操作、训练解方程技巧的过程,而是在求方程的解的过程中,进行数学模型的变换,进一步体会等式的基本性质,而这一教学目的是传统方法无法达到的。因此,我们从一开始就应坚持引导学生用等式的基本性质解方程。我们在具体教学过程中将课标要求进行分解,通过这两个内容的教学完成四点知识技能的要求1.在具体情境中会用字母表示数。2.结合简单的实际情境,了解等量关系,并能用字母表示。3.能用方程表示简单情境中的等量关系(如3X+2=5 2X-X=3),了解方程的作用。4.了解等式的性质,能用等式的性质解简单的方程。在学习知识技能时要尽可能地为学生提供观察、操作、归纳、类比、猜测、证明的机会,完成课标中提出的发展学生的数感、符号意识、运算能力和模型思想的要求。
2. 编写意图
在小学教学简易方程有以下几方面的意义:
一是有助于培养学生的抽象概括能力,发展学生思维的灵活性。因为对小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃,
现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。
二是有助于巩固和加深理解所学的算术知识。通过用字母表示所学过的数量关系、运算定律以及一些图形的周长、面积计算公式,可以使学生加深对这些知识的理解。同时,由于用字母表示比用文字表述更简明易记,所以便于学生巩固所学知识。
三是有利于加强中小学数学的衔接。让小学生初步接触一点代数知识,能使小学生摆脱算术思维方法中的某些局限性(逆向思考,未知数不参加运算,等于缺少一个条件,思维的步骤增加),为今后进一步学习代数知识做好认识的准备和铺垫。
教材在编写上突出了以下三个特点:
(1)用字母表示数的教材编排更贴近学生的认知特点。
用字母表示数,对小学生来说,是比较抽象的。特别是用含有字母的式子表示数量关系,更感困难一些。例如,已知爸爸年龄比小红大30岁,用a表示小红岁数,那么a+30既表示爸爸岁数总是比小红岁数大30的年龄关系,又表示父亲的岁数。这是学生初学时的一个难点。首先,他们要理解父子年龄之间的关系,把用语言叙述的这一关系改用含有字母的式子表示;其次,他们往往不习惯将a+30视为一个量,常有学生认为这是一个式子,不是结果。而用一个式子表示一个量恰恰是学习列方程不可或缺的一个基础。因此,为了保证基础,突破难点,教材对用字母表示数的教学内容作出了更贴近学生的认知特点的安排。即先学习用字母表示一个特定的数(例1),然后学习用字母表示一般的数,即用字母表示运算定律和计算公式(例2和例3),待学生有了一定的基础,再学习用含字母的式子表示数量和数量关系(例4)。这样由易到难,便于学生逐步感悟、适应字母代数的特点。
(2)以等式的基本性质为基础,而不是依据逆运算关系解方程。
长期以来,在小学教学简易方程,方程变形的依据总是加减运算的关系或乘除运算之间的关系。这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理,然后重新学习依据等式的基本性质或方程的同解原理解方程,而且小学的思路及其算法掌握的越牢固,对中学代数起步教学的负迁移就越明显。现在,根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。
(3)调整简易方程的内容,突显利用等式基本性质解方程的优势。
引进等式基本性质作为解简易方程的认知基础之后,一个相应的措施就是调整简易方程的基本内容,暂不出现形如a-x=b和a÷x=b的简易方程。这是因为小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及其算理解释比较麻烦。至于形如a÷x=b的方程,本质上是分式方程,依据等式的基本性质解需要先去分母,同样不适合在小学阶段学习。事实上,回避这两种类型的简易方程,并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或a÷x=b的方程时,总可以根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。这也体现了列方程解决问题,常常可以化逆向思维为顺向思维的优势。
内容调整后,利用等式基本性质解方程的优越性就比较容易显现出来了,比如,解形如x+a=b与x-a=b的方程,都可以归结为,等式两边减去(加上)a,得x=b-a与x=b+a。解形如ax=b与x÷a=b 的方程,都可以归结为,等式两边除以(乘上)a,得x=b÷a与x=ab。显然比原来依据逆运算关系解方程,思路更为统一。
(4)解方程与解决实际问题的教学有机整合。
过去,解方程的教学与列方程解应用题的教学是分开进行的,前者属于计算,后者属于应用。现在恢复计算与应用的天然联系,体现在本单元中,学习“稍复杂的方程”时,由实际问题引入方程,在现实背景下求解方程并检验,这样处理有助于学生理解解方程的过程,也有利于加强数学知识与现实世界的联系,有利于培养学生的数学应