带电粒子在电场中偏转的三个重要结论

合集下载

带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。

高考物理带电粒子在电场中的偏转运动解题方法

高考物理带电粒子在电场中的偏转运动解题方法
k-12mv20③ 设粒子第一次到达 G 时所用的时间为 t,粒子在水平方向的位移大小为 l,则 有 h=21at2④,l=v0t⑤
联立①②③④⑤式解得 Ek=12mv20+2dφqh⑥,l=v0 mqdφh。⑦ (2)若粒子穿过 G 一次就从电场的右侧飞出,则金属板的长度最短。由对称性
多维训练
3.(2019·全国Ⅱ卷,24)如图,两金属板P、Q水平放置,间距为d。两金属板正中间 有一水平放置的金属网G,P、Q、G的尺寸相同。G接地,P、Q的电势均为φ(φ>0)。 质量为m、电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,以速度v0平行于纸 面水平射入电场,重力忽略不计。
(1)电场强度的大小; (2)B 运动到 P 点时的动能。
答案
3mg (1) q
(2)2m(v20+g2t2)
小球做什么运动? 一般怎么处理? 还有其它方法吗?
转到解析
课堂互动
解析 (1)设电场强度的大小为 E,小球 B 运动的加速度为 a。根据牛顿第二定律、
运动学公式和题给条件,有 mg+qE=ma①
A.动能增加21mv2
一般用什么方法? B.机械能增加 2mv2
C.重力势能增加23mv2 D.电势能增加 2mv2 解析 动能变化量 ΔEk=12m(2v)2-21mv2=23mv2,A 错误;重力和电场力做功,机
械能增加量等于电势能减少量,带电小球在水平方向向左做匀加速直线运动,由运动 学公式得(2v)2-0=2qmEx,则电势能减少量等于电场力做的功 ΔEp 减=W 电=qEx=2mv2, B 正确,D 错误;在竖直方向做匀减速运动,到 N 点时竖直方向的速度为零,由-v2 =-2gh,得重力势能增加量 ΔEp 重=mgh=12mv2,C 错误。答案 B

带电粒子在电场中的偏转(含问题详解)

带电粒子在电场中的偏转(含问题详解)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。

高三物理总复习_带电粒子在电场场中的运动讲解

高三物理总复习_带电粒子在电场场中的运动讲解

t=
=2.5×10-9 s┄┄┄┄┄┄(2分)
而交变电压的周期T=
s=0.02 s, 图6-3-8
远远大于t,故可以认为进入偏转电场的电子均在当时所加
电压形成的匀强电场中运动.┄┄┄┄┄┄┄┄┄(2分)
2019/6/4
纵向位移
=at2,a=
┄┄┄┄(2分)
所以电子能够打在荧光屏上的最大偏转电压
Um=
2019/6/4
一、带电粒子在电场中的加速和偏转
1.带电粒子在电场中的加速
(1)运动状态的分析:带电粒子沿与电场线平行的方向进入
匀强电场,受到的电场力与运动方向在同一条直线上,
做 加(减)速直线运动 .
带电粒
(2)用功能观点分析:电场力对带电粒子做的功等于
子动能的增量
qU
,即 = mv2- mv02.
2019/6/4
4.如图6-3-11所 示,质子( 11H)和α粒子 ( He42)以
相同的初动能垂直射入偏转电
图6-3-11
场(粒子不计重力),则这两个粒子射出电场时的侧位移y之
比为
()
A.1∶1
B.1∶2
2019/C6/.4 2∶1
D.1∶4
解析:由y=
和Ek0= mv02,
得:y=
可知,y与q成正比,B正确.
的距离为x,则x=

结论:粒子从偏转电场中射出时,就像是从极板间的l/2处 20沿19/6直/4 线射出.
②若不同的带电粒子是从静止经同一加速电压U0加速后进入 偏转电场的,则由②和④得:
y=


结论:粒子的偏转角和偏转距离与粒子的q、m无关,仅取决
于加速电场和偏转电场.即不同的带电粒子从静止经过同一

一轮复习:带电粒子在电场中的偏转

一轮复习:带电粒子在电场中的偏转

6.示波器的工作原理 (1)构造:①电子枪;②偏转极板;③荧光屏。(如图所示) (2)工作原理 ①YY′上加的是待显示的信号电压,XX′上是仪器自身产生的锯 齿形电压,叫做扫描电压。
②观察到的现象
a.如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出 的电子沿直线运动,打在荧光屏中心,在那里产生一个亮斑。
6.(多选)如图所示,水平放置的平行金属板A、B连接一恒定 电压,两个质量相等的带电粒子M和N同时分别从极板A的边缘
和两极板的正中间沿水平方向进入板间电场,两带电粒子恰好
在板间某点相遇。若不考虑带电粒子的重力和它们之间的相互 作用,则下列说法正确的是A( C ) A.M的电荷量大于N的电荷量 B.两带电粒子在电场中运动的加速度相等 C.从两带电粒子进入电场到两带电粒子相遇,电场力对M做 的功大于电场力对N做的功 D.M进入电场的初速度大小与N进入电场的初速度大小一定相 同
3.两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再 从同一偏转电场射出时,偏移量和偏转角总是相同的。 证明:由 qU0=12mv20 y=12at2=12·qmUd1·vl02 tanθ=mqUdv1l20 得:y=4UU10l2d,tanθ=2UU10ld。 (2)粒子经电场偏转后,合速度的反向延长线与初速度延 长线的交点 O 为粒子水平位移的中点,即 O 到偏转电场边 缘的距离为2l 。
(1)13.5 cm (2)30 cm
Байду номын сангаас
2L qEL 3qEL2 (1) v0 (2)mv20 (3) 2mv20
2.(多选)如图,质子(11H)、氘核(21H)和 α 粒子(42He)都沿
平行板电容器中线 OO′方向垂直于电场线射入板间的匀强

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

第八章 静电场带电粒子在电场中的偏转【考点预测】1. 带电粒子在电场中的类平抛2. 带电粒子在电场中的类斜抛3. 带电粒子在电场中的圆周运动4. 带电粒子在电场中的一般曲线运动【方法技巧与总结】带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =l v 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22m d v 20③离开电场时的偏转角:tan θ=v y v 0=qUlm d v 201.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 20在偏转电场偏移量y =12at 2=12·qU 1md ·l v 0 2偏转角θ,tan θ=v y v 0=qU 1lm d v 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.【题型归纳目录】题型一:带电粒子在电场中的类平抛题型二:带电粒子在周期性电场中的运动题型三:带电粒子在电场中的偏转的实际应用题型四:带电粒子在电场中的非平抛曲线运动【题型一】电荷守恒定律【典型例题】1如图所示,在立方体的塑料盒内,其中AE 边竖直,质量为m 的带正电小球(可看作质点),第一次小球从A 点以水平初速度v 0沿AB 方向抛出,小球在重力作用下运动恰好落在F 点。

M 点为BC 的中点,小球与塑料盒内壁的碰撞为弹性碰撞,落在底面不反弹。

05-偏转电场

05-偏转电场
①沿初速度方向为匀速直线运动,运动时间: .
②沿电场力方向为初速度为零的匀加速直线运动:
③离开电场时的偏移量:
④离开电场时的偏转角:
(3)两个重要结论:
①不同的带电粒子从静止经过同一电场加速后进入同一偏转电场后,它们在电场中的偏转角度,偏转距离总相同,即其轨迹将重合.
②粒子从偏转电场中射出时,速度的反向延长线与初速度延长线的交点平分沿初速度方向的位移,即粒子好像从该中点处沿直线飞离电场一样.
A.有相同的动能和相同的荷质比B.有相同的动量和相同的荷质比
C.有相同的速度和相同的荷质比D.只要有相同的荷质比就可以了
【例3】让质子 、氘核 的混合物沿着与电场垂直的方向进入匀强电场偏转,要使它们最后偏转角相同,这些粒子必须具有相同的( )
A.初速度B.动能C.动量D.质量
【例4】一个质子 和一个 粒子,从同一位置垂直电场方向以相同的动量射入匀强电场,它们在电场中的运动轨迹是如图中的( )
C.使粒子初动量为原来2倍D.使两板间电压为原来2倍
【例9】如图所示,电子电荷量为-e,以 的速度,沿与电场强度E垂直的方向从A点飞入匀强电场,并从另一端B沿与场强E成150°角飞出则A、B两点间的电势差为______.
【例10】 一质量为 、电荷量为 的带正电质点,以 的速度垂直于电场方向从 点进入匀强电场区域,并从 点离开电场区域,离开电场时的速度为 ,由此可知,电场中 两点间的电势差为 ______ ;带电质点离开电场时速度在电场方向的分量为_______ ,不考虑重力作用.
【例9】质子和氮核从静止开始经相同电压加速后,又垂直于电场方向进入同一匀强电场,离开偏转电场时,它们横向偏移量之比和在偏转电场中运动的时间之比分别为()
A.2:1, B.1:1, C.1:2,2:1D.1:4,1:2

带电粒子在电场中的平衡问题

带电粒子在电场中的平衡问题

•1、带电粒子在电场中的平衡问题:带电粒子在电场中处于静止或匀速直线运动状态时,则粒子在电场中处于平衡状态。

假设匀强电场的两极板间的电压为U,板间的距离为d,则:mg=qE=,有q=。

2、带电粒子在电场中的加速问题:带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量。

3、带电粒子在电场中的偏转问题:带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动。

垂直于场强方向做匀速直线运动:V x=V0,L=V0t;平行于场强方向做初速为零的匀加速直线运动:,,,偏转角:。

4、粒子在交变电场中的往复运动当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。

带电粒子是做单向变速直线运动,还是做变速往复运动主要由粒子的初始状态与电场的变化规律(受力特点)的形式有关。

①若粒子(不计重力)的初速度为零,静止在两极板间,再在两极板间加上甲图的电压,粒子做单向变速直线运动;若加上乙图的电压,粒子则做往复变速运动。

②若粒子以初速度为v0从B板射入两极板之间,并且电场力能在半个周期内使之速度减小到零,则甲图的电压能使粒子做单向变速直线运动;则乙图的电压也不能粒子做往复运动。

所以这类问题要结合粒子的初始状态、电压变化的特点及规律、再运用牛顿第二定律和运动学知识综合分析。

注:是否考虑带电粒子的重力要根据具体情况而定,一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量);②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。

••电场中无约束情况下的匀速圆周运动:•1.物体做匀速圆周运动的条件从力与运动的关系来看,物体要做匀速圆周运动,所受合外力必须始终垂直于物体运动的方向,而且大小要恒等于物体所需的向心力。

带电粒子在匀强电场中的偏转(解析版)

带电粒子在匀强电场中的偏转(解析版)

带电粒子在匀强电场中的偏转1.运动规律沿初速度方向为匀速直线运动,运动时间 vl t 0=沿电场力方向为初速度为零的匀加速直线运动,加速度:a = F/m = qU/dm 离开电场时的偏移量 222mdv qULy =离开电场时的偏转角:L ymdV qUL 2tan 2==θ2.分析带电粒子在匀强电场中的偏转问题的关键(1)条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动.(2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.3.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的. (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点为粒子水平位移的中点. 【典例1】如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏。

现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,A 与虚线MN 的间距为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′到点O 的距离x 。

【答案】 (1)3mLeE(2)2 (3)3L 【解析】 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1,由牛顿第解得:tan θ=2。

(3)如图,设电子在电场E 2中的偏转距离为x 1 x 1=12a 2t 32tan θ=x 2L解得:x =x 1+x 2=3L 。

【典例2】 如图甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v 0从a 点水平射入,沿直线从b 点射出,若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b 点以速度v 0射出,求:(1)交变电压的周期T 应满足什么条件?(2)粒子从a 点射入金属板的时刻应满足什么条件? 【答案】 (1)T =L nv 0,其中n 取大于等于L2dv 0qU 02m的整数 (2)t =2n -14T (n =1,2,3,…)【解析】 (1)为使粒子仍从b 点以速度v 0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L =nTv 0,解得T =Lnv 0粒子在14T 内离开中心线的距离为y =12a ⎝⎛⎭⎫14T 2所以粒子的周期应满足的条件为 T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数. (2)粒子进入电场的时间应为14T ,34T ,54T ,…故粒子进入电场的时间为t =2n -14T (n =1,2,3,…). 【跟踪短训】1.如图所示,真空中水平放置的两个相同极板Y 和Y ′长为L ,相距为d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点; (2)求两板间所加偏转电压U YY ′的范围; (3)求粒子可能到达屏上区域的长度.【答案】 (1)见【解析】 (2)-d 2mv 20qL 2≤U YY ′≤d 2mv 20qL 2 (3)d L +2b L【解析】 (1)设粒子在电场中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,如图所示,则有y =12at 2L =v 0tv y =at ,tan θ=v y v 0=y x ,联立解得x =L2故粒子在屏上可能到达的区域的长度为 H =2y 0=d L +2bL.2. 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器板长和板间距离均为L =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图乙所示.(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t =0.06 s 时刻,电子打在荧光屏上的何处. (2)荧光屏上有电子打到的区间有多长?【答案】 (1)打在屏上的点位于O 点上方,距O 点13.5 cm (2)30 cm【解析】 (1)电子经电场加速满足qU 0=12mv 2经电场偏转后侧移量y =12at 2=12·qU 偏mL ⎝⎛⎭⎫L v 2所以y =U 偏L4U 0,由图知t =0.06 s 时刻U 偏=1.8U 0,所以y =4.5 cm设打在屏上的点距O 点的距离为Y ,满足Yy =L +L 2L2所以Y =13.5 cm.(2)由题知电子侧移量y 的最大值为L2,所以当偏转电压超过2U 0,电子就打不到荧光屏上了,所以荧光屏上电子能打到的区间长为3L =30 cm.课后作业1. 喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( ).A .向负极板偏转B .电势能逐渐增大C .运动轨迹是抛物线D .运动轨迹与带电量无关【答案】 C2. 如图,带电粒子由静止开始,经电压为U 1的加速电场加速后,沿垂直电场方向进入电压为U 2的平行板电容器,经偏转落在下板的中间位置。

3.8带电粒子在电场中的偏转

3.8带电粒子在电场中的偏转

带电粒子在电场中的偏转精讲年级:高中 科目:物理 类型:同步 制作人:黄海辉知识点:带电粒子在电场中的偏转1.基本规律设粒子带电荷量为q ,质量为m ,两平行金属板间的电压为U ,板长为l ,板间距离为d (忽略重力影响), 则有(1)加速度:a =F m =qE m =qUmd。

(2)在电场中的运动时间:t =l v 0。

(3)速度⎩⎪⎨⎪⎧v x =v 0v y =at =qUlmv 0dv =v x 2+v y 2,tan θ=v y v x =qUlmv 02d 。

(4)位移⎩⎪⎨⎪⎧l =v 0t y =12at 2=qUl22mv 02d2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的。

证明:由qU 0=12mv 02及tan φ=qUl mv 02d 得tan φ=Ul2U 0d。

(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l2。

3.带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =Udy ,指初、末位置间的电势差。

[例1] 如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出。

已知电子质量为m ,电荷量为e ,加速电场电压为U 0。

偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d 。

(1)忽略电子所受重力,求电子射入偏转电场时初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法。

在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因。

已知U =2.0×102V ,d =4.0×10-2m ,m =9.1×10-31kg ,e =1.6×10-19C ,g =10 m/s 2。

带电粒子在电场中的运动问题2(偏转)知识讲解

带电粒子在电场中的运动问题2(偏转)知识讲解

带电粒子在电场中的偏转一、如图所示,某带电粒子以速度0v 沿垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力作用而做匀变速曲线运动。

1、处理方法:类平抛运动,运动的合成与分解求解相关问题;水平方向:匀速直线运动; 竖直方向:匀加速直线运动。

2、所涉及的方程及结论 ①加速度:mdqU m qE m F a ===②运动时间: A 、能飞出极板间时,0v l t = B 、打在极板上时,由qUmd a d t at d 22,212===得 ③竖直上的偏转量:A 、离开电场时,dmv U ql at y 2022221==,如果综合加速电场0U 时,由20021mv qU =得dU Ul y 024=,即经过加速电场后进入偏转电场时,竖直方向上的偏转量与粒子的比荷无关。

换句话说,就是不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时竖直方向上的偏转量都是一样的。

B 、打在极板上时,2d y =,水平方向的位移为qUmd v a d v t v x 2000=== ④偏转角:dmv qUl v at v v y2000tan ===θ,结合20021mv qU =得d U Ul 02tan =θ即经过加速电场后进入偏转电场时,偏转角与粒子的比荷无关。

换句话说,即不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时速度的方向都是一样的。

⑤如果粒子能离开偏转电场,离开电场时速度方向的反向延长线交水平位移的中点2l 处。

⑥速度:220y v v v +=或者根据动能定理:y dU U mv mv qU y y =-=,2121202例1、如图所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ;④离子在偏转电场中的加速度;⑤离子在离开偏转电场时的横向速度y v ;⑥离子在离开偏转电场时的速度v 的大小;⑦离子在离开偏转电场时竖直方向上的偏移量y ;⑧离子离开偏转电场时的偏转角θ的正切值tanθ举一反三1、如图所示,质子(11H)、氘核(H21)和α粒子(42He),以相同的初动能垂直射入偏转电场(粒子不计重力),三个粒子均能射出电场;求①这三个粒子射出电场时所花时间比;②这三个粒子射出电场时竖直方向上的偏转量的比;③这三个粒子射出电场时速度的偏转角的比;2、如图所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么()A.经过加速电场过程,电场力对氚核做的功最多B.经过偏转电场过程,电场力对三种核做的功一样多C.三种原子核打在屏上时的速度一样大D.三种原子核都打在屏上的同一位置上3、在上题的基础上,求:①进入偏转电场到离开时所需时间比;二、示波器工作原理例2、如图所示是示波管的原理图.它由电子枪、偏转电极(XX′和YY′)、荧光屏组成,管内抽成真空.给电子枪通电后,如果在偏转电极XX′和YY′上都没有加电压,电子束将打在荧光屏的中心O点,在那里产生一个亮斑.下列说法正确的是()A.要想让亮斑沿OY向上移动,需在偏转电极YY′上加电压,且Y′比Y电势高B.要想让亮斑移到荧光屏的右上方,需在偏转电极XX′、YY′上加电压,且X比X′电势高、Y比Y′电势高C.要想在荧光屏上出现一条水平亮线,需在偏转电极XX′上加特定的周期性变化的电压(扫描电压)D.要想在荧光屏上出现一条正弦曲线,需在偏转电极XX′上加适当频率的扫描电压、在偏转电极YY′上加按正弦规律变化的电压举一反三1、如图所示,是一个示波器工作原理图,电子经过加速后以速度v0垂直进入偏转电场,离开电场时偏转量是h,两平行板间距离为d,电势差为U,板长为l,每单位电压引起的偏移量(h/U)叫示波器的灵敏度.若要提高其灵敏度,可采用下列办法中的()A.增大两极板间的电压B.尽可能使板长l做得短些C.尽可能使板间距离d减小些D.使电子入射速度v0大些2、如图所示的示波管,当两偏转电极XX′、YY′电压为零时,电子枪发射的电子经加速电场加速后会打在荧光屏上的正中间(图示坐标的O点,其中x轴与XX′电场的场强方向重合,x轴正方向垂直于纸面向里,y轴与YY′电场的场强方向重合).若要电子打在图示坐标的第Ⅲ象限,则()A.X、Y极接电源的正极,X′、Y′接电源的负极B.X、Y′极接电源的正极,X′、Y接电源的负极C.X′、Y极接电源的正极,X、Y′接电源的负极D.X′、Y′极接电源的正极,X、Y接电源的负极。

带电粒子在电场中偏转的三个重要结论

带电粒子在电场中偏转的三个重要结论

带电粒子在电场中偏转的三个重要结论例:如图所示,质量为m电荷量为q的带电粒子以平行于极板的初速度v0射入长L板间距离为d的平行板电容器间,两板间电压为U,求射出时的侧移、偏转角和动能增量.解:分解为两个独立的分运动:平行极板的匀速运动(运动时间由此分运动决定),垂直极板的匀加速直线运动,,,.偏角:,得:.穿越电场过程的动能增量是:ΔE K=qEy从例题可以得出结论有三:结论一、不同带电粒子从静止进入同一电场加速后再垂直进入同一偏转电场,射出时的偏转角度总和位移偏转量y是相同的,与粒子的q、m无关。

例1.如图所示,电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的两块平行极板间的电场中,射入方向跟极板平行,整个装置处在真空中,重力可忽略,在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是()A.U1变大、U2变大B.U1变小、U2变大C.U1变大、U2变小D.U1变小、U2变小解析:3电子在加速电场中由动能定理得,电子在偏转电场中有:.由以上各式得:,可知要使θ增大必然U2变大,U1变小,故选B.答案:B结论二、粒子垂直进入电场偏转射出后,速度的反向延长线与初速度延长线的交点为粒子水平位移中点。

(粒子好像是从中点直线射出!)例2.证明:在带电的平行金属板电容器中,只要带电粒子垂直电场方向射入(不一定在正中间),且能从电场中射出如图所示,则粒子射入速度v0的方向与射出速度v t的方向的交点O必定在板长L的中点.证明:粒子从偏转电场中射出时偏距,粒子从偏转电场中射出时的偏向角,作粒子速度的反向延长线,设交于O点,O 点与电场边缘的距离为x,则。

可知,粒子从偏转电场中射出时,就好像是从极板间的处沿直线射出似的,即证。

结论三、粒子垂直飞入电场偏转射出时,速度偏转角正切值()等于位移偏转角正切值()的两倍()。

证明:tan β=12at 2v 0=v y 2v 0=12tan θ 所以:。

带电粒子在电场中的运动知识要点归纳

带电粒子在电场中的运动知识要点归纳

带电粒子在电场中的运动1.研究对象分类1)基本粒子及各种离子:如电子、质子、α粒子等,因为质量很小,所以重力比电场力小得多,重力可忽略不计.2)带电颗粒或微粒,如尘埃、液滴、小球等质量较大,其重力一般情况下不能忽略.2.带电粒子在电场中的加速直线运动1)若粒子作匀变速运动,则可采用动力学方法求解,即先求加速度a =qE qUm md=,然后由运动学公式求速度.2)用能量的观点分析:合外力对粒子所作的功等于带电粒子动能的增量.即:2201122qU mv mv =-,此式对于非匀强电场、非直线运动均成立.【例1】下列粒子从初速度为零的状态经过加速电压为U 的电场之后,哪种粒子的速度最大()a 粒子氚核质子钠离子+a N练习:1.如图所示,A 板接地,B 板电势为U ,质量为m 的带电粒子(重力不计)以初速度v 0水平射入电场,若粒子电量为-q ,则粒子到达B 板时的速度大小为_____________;若粒子电量为+q ,它到达B 板时速度大小为______________。

2.如图所示P 和Q 为两平行金属板,板间电压为U ,在P 板附近有一电子由静止开始向Q 板运动,关于电子到达Q 板时的速率,下列说法正确的是:( )A .两板间距越大,加速的时间越长B .两板间距离越小,电子到达Q 板时的速度就越大C .电子到达Q 板时的速度与板间距离无关,仅与加速电压有关D .电子的加速度和末速度都与板间距离无关3.一个质子(11H)和一个α粒子(42He),开始时均静止在平行板电容器的正极板上,同时释放后,在到达负极板时( )A .电场力做功之比为1∶2B .它们的动能之比为2∶1C .它们的速率之比为2∶4D .它们运动的时间之比为1∶14.真空中水平放置的两金属板相距为d ,两板电压是可以调节的,一个质量为m 、带电量为+q 的粒子,从负极板中央以速度v o 垂直极板射入电场,当板间电压为U 时,粒子经d/4的距离就要返回,若要使粒子经d/2才返回,可采用的方法是( )A 、v o 增大1倍B 、使板间电压U 减半C 、v o 和U 同时减半D 、初速增为2v o ,同时使板间距离增加d/2: 5.如图所示,电量和质量都相同的带正电粒子以不同的初速度通过A 、B 两板间的加速电场后飞出,不计重力的作用,则:( )A 、它们通过加速电场所需的时间相等B 、它们通过加速电场过程中动能的增量相等C 、它们通过加速电场过程中速度的变化量相等D 、它们通过加速电场过程中电势能的减少量相等6.如图1所示,从F 处释放一个无初速的电子向B 板方向运动,指出下列对电子运动的描述中错误的是(设电源电动势为E)( )A .电子到达B 板时的动能是E eV B .电子从B 板到达C 板动能变化量为零 C .电子到达D 板时动能是3E eV D .电子在A 板和D 板之间做往复运动7.如图所示在一匀强电场中,有两个平行的电势不同的等势面A 和C ,在它们的正中间放入一个金属网B ,B 接地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在电场中偏转的三个重要结论
带电粒子在电场中偏转的三个重要结论广西合浦廉州
中学物理组秦付平关于带电粒子在电场的运动问题,高考题中经常出现,下面我们先看一个例题:
例:如图所示,质量为m电荷量为q的带电粒子以平行于极板的初速度v0射入长L板间距离为d的平行板电容器间,两板间电压为U,求射出时的侧移、偏转角和动能增量.
解:分解为两个独立的分运动:平行极板的匀速运动(运动时间由此分运动决定),垂直极板的匀加速直线运动,,,.偏角:,得:.穿越电场过程的动能增量是:ΔEK=qEy (注意,一般来说不等于qU),从例题可以得出结论有三:
结论一、不同带电粒子从静止进入同一电场加速后再垂直进入同一偏转电场,射出时的偏转角度总和位移偏转量y 是相同的,与粒子的q、m无关。

例1.如图所示,电子在电势差为U1的加速电场中由
静止开始运动,然后射入电势差为U2的两块平行极板间的电场中,射入方向跟极板平行,整个装置处在真空中,重力可忽略,在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是(

A.U1变大、U2变大B.U1变小、U2变大
C.U1变大、U2变小D.U1变小、U2变小
解析:电子在加速电场中由动能定理得,电子在偏转电场中有:.由以上各式得:,可知要使θ增大必然U2变大,U1变小,故选B.答案:B
结论二、粒子垂直进入电场偏转射出后,速度的反向延长线与初速度延长线的交点为粒子水平位移中点。

(粒子好像是从中点直线射出!)
例2.证明:在带电的平行金属板电容器中,只要带电粒子垂直电场方向射入(不一定在正中间),且能从电场中
射出如图所示,则粒子射入速度v0的方向与射出速度vt的方向的交点O必定在板长L的中点.
证明:粒子从偏转电场中射出时偏距,粒子从偏转电场中射出时的偏向角,作粒子速度的反向延长线,设交于O点,O点与电场边缘的距离为x,则。

可知,粒子从偏转电场中射出时,就好像是从极板间的处沿直线射出似的,即证。

结论三、粒子垂直飞入电场偏转射出时,速度偏转角正切值()等于位移偏转角正切值()的两倍()。

例3.(2009山东)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。

位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。

上述m、q、l、l0、B为已知量。

(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小。

(2)求时进
入两板间的带电粒子在磁场中做圆周运动的半径。

解析:(1)时刻进入两极板的带电粒子在电场中做匀变速曲线运动,时刻刚好从极板边缘射出,在y轴负方向偏移的距离为,则有,,联立以上三式,解得两极板间偏转电压为。

(2)时刻进入两极板的带电粒子,前时间在电场中偏转,后时间两极板没有电场,带电粒子做匀速直线运动。

带电粒子沿x轴方向的分速度大小为,带电粒子离开电场时沿y 轴负方向的分速度大小为,带电粒子离开电场时的速度大小为,设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,则有,联立上式解得。

点评:本题是高考真题,考查的是带电粒子在匀强电场、匀强磁场中的运动。

2011-。

相关文档
最新文档