高中数学必修四第三章三角恒等变换知识点总结

合集下载

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
解:(1) 原式 =
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =

高二必修四数学三角恒等变换知识点

高二必修四数学三角恒等变换知识点

高二必修四数学三角恒等变换知识点 2019 年
在中国古代把数学叫算术,又称算学,最后才改为数学。

以下是查词典大学网为大家整理的高二必修四数学三角恒
等变换知识点,希望能够解决您所碰到的有关问题,加油,
查词典大学网向来陪同您。

知识构造:
1. 两角和与差的正弦、余弦和正切公式
要点:经过探究和议论沟通,导出两角差与和的三角函数的
十一个公式,并认识它们的内在联系。

难点:两角差的余弦公式的探究和证明。

2. 简单的三角恒等变换
要点:掌握三角变换的内容、思路和方法,领会三角变换的
特色.
难点:公式的灵巧应用 .
三角函数几点说明:
1. 对弧长公式只需求认识,会进行简单应用,不用在应用方
面加深 .
2. 用同角三角函数基本关系证明三角恒等式和求值计算,熟
练副角和 sin 和 cos 的计算 .
3. 已知三角函数值求角问题,达到课本要求即可,不用拓展 .
4. 娴熟掌握函数 y=Asin(wx+j) 图象、单一区间、对称轴、对
称点、特别点和最值 .
第 1 页
5. 积化和差、和差化积、半角公式只作为练习,不要求记忆 .
6. 两角和与差的正弦、余弦和正切公式
最后,希望小编整理的高二必修四数学三角恒等变换知识点
对您有所帮助,祝同学们学习进步。

第 2 页。

高中数学必修4第三章_三角恒等变换知识点(K12教育文档)

高中数学必修4第三章_三角恒等变换知识点(K12教育文档)

高中数学必修4第三章_三角恒等变换知识点(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4第三章_三角恒等变换知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4第三章_三角恒等变换知识点(word版可编辑修改)的全部内容。

高中数学必修4第三章 三角恒等变换知识点1、同角关系:⑴商的关系:①sin tan cos y x θθθ== ②cos cot sin x y θθθ== ③sin cos tan y r θθθ==⋅ ④cos sin cot x rθθθ==⋅ ⑵倒数关系:tan cot 1θθ⋅=⑶平方关系:22sin cos 1θθ+=2、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=- ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+ ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+) ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-) 3、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式21cos 2cos 2αα+=,21cos 2sin 2αα-=⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 4、万能公式: ①22tan sin 21tan θθθ=+ ②221tan cos 21tan θθθ-=+ ③22tan tan 21tan θθθ=- ④222tan sin 1tan θθθ=+ ⑤221cos 1tan θθ=+5、半角公式cos 2α=sin 2α=sin 1cos tan 21cos sin ααααα-===+ ⇒ (后两个不用判断符号,更加好用) 6、)sin(cos sin 22ϕθθθ++=+b a b a(其中辅助角ϕ与点(,)a b 在同一象限,且tan b a ϕ=)。

高一数学必修四三角恒等变换知识点

高一数学必修四三角恒等变换知识点

高一数学必修四三角恒等变换知识点两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----·cos—---22α+βα-βsinα-sinβ=2cos—----·sin—----22α+βα-βcosα+cosβ=2cos—-----·cos—-----22α+βα-βcosα-cosβ=-2sin—-----·sin—-----22积化和差公式⒏三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]9解三角形步骤1.在锐角△ABC中,设三边为a,b,c。

人教版高中数学必修四《三角恒等变换-复习小结》

人教版高中数学必修四《三角恒等变换-复习小结》
2 3 8 5 3 . tan A tan B 11 1 tan A tan B 1 2 3
[借题发挥] 在三角函数式的化简求值问题中要注意角的变化 函数名的变化,合理选择公式进行变形,同时注意三角变换 技巧的运用.(给角求值,给值求值,给值求角)
1 tan B 3 , 1 tan B
(1 , 3 ) (cos A , sinA) 1 , 即 3 sinA cos A 1 , 2( 3 sin A 1 cos A) 1 , 2 2 sin(A ) 1 . 6 2 0 A , A 5 , 6 6 6 A , 即 A . 6 6 3


tan12 tan33 (5) 1 tan12 tan33

1 4
公式变,逆用)
2 2
质疑再探
例1:已知 ,为锐角, cos 1 13 , cos( ) 求 cos 的值 7 14
注:⑴ 常用角的变换:
① ( ) ② 2 ( ) ( )
设疑自探 5.三角变换的方针是什么? 遵循原则
寻求差异
注意常识
消除差异
解疑合探
计算:
(1) cos74 sin 14 sin 74 cos14
(2) sin 20 cos110 cos160 sin 70

3 2
1
(3)1 2 sin 22.5
2

(4) sin 15 cos15
设疑自探
4.三角变换常识有哪些?
(1)sinα,cosα→凑倍角公式. (2)1± cosα→升幂公式. π α α2 (3)1± sinα 化为 1± cos(2± α),再升幂或化为(sin2± cos2) . (4)asinα+bcosα→辅助角公式 asinα+bcosα= a2+b2· sin(α+ b φ),其中 tanφ=a或 asinα+bcosα= a2+b2· cos(α-φ),其中 tanφ a =b.

必修4-第三章三角恒等变换-知识点详解

必修4-第三章三角恒等变换-知识点详解

必修4 第三章三角恒等变换知识点详解3.1 两角和与差的正弦、余弦和正切公式1. 两角和与差的正弦、余弦、正切公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-2. 倍角公式:()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-3. 正切变形公式tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)3.2 简单的三角恒等变换三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等), (2)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。

高中数学第三章三角恒等变换3

高中数学第三章三角恒等变换3
差角余弦公式
3.三角恒等变换知识框架图
简单三角恒等变换
31/32
不要对一切人都以不信任眼光对待,但要慎
重而坚定。
——德谟克里特
32/32
所以周期T = 2π,最大值为2,最小值为- 2.
9/32
经过三角恒等变换, 我们把形如 y a sin x函 b数cos x
转化为形如
y 函A数sin,(从x而使)问题得到简化.
10/32
【变式练习】
已知函数 f(x)=2sin2ωx+2 3sinωxsin(π2-ωx)(ω>0)的 最小正周期为 π. (1)求 ω 的值; (2)求函数 f(x)在区间[0,23π]上的值域.
1 A.2
2 B. 2
C.2
3 D. 2
解析:
3-sin70° 2-cos210°

3-cos20° 2-cos210°

3-(22-cocso2s1201° 0°-1)=42--2ccooss221100°°=2.
27/32
5、(2014·山东高考)函数 y
3 2
sin
2x
cos2
x

最小正周期为 .
32
2
63
66
由0 , 得 2 5 .
36
66
所以当2+ = ,即= 时,
62
6
S最大 =
1 3
3 6
3. 6
因此,当= 时,矩形ABCD的面积最大,最大面积为 3 .
6
6
20/32
【变式练习】
已知半径为1半圆,PQRM是半圆内接矩形,如 图,P点在什么位置时,矩形面积最大,并求最大 面积值.

高一数学人教b版必修4课件第三三角恒等变换归纳总结

高一数学人教b版必修4课件第三三角恒等变换归纳总结

的变换等.
3 .恒等变形前需分析已知式中角和函数名称的差异,寻 求联系,实现转化. 4 .掌握基本技巧,如切割化弦、异名化同名、异角化同 角等.
第三章 章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修4
专题研究
第三章
章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修4
第三章
章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修4
[ 解析 ]
2 2sin A-1 1 sinA 1 tanA - sin2A = cosA - 2sinAcosA = 2sinAcosA =-
cos2A π π π sin2A =tan(-2+2A)=tanB,∴2A-2=B,即 2A=2+B,∴ π sin2A=sin(2+B)=cosB.
学后反思
第三章
章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修4
1 .本章公式较多,学好本章的关键在于清楚各公式的来
龙去脉,搞明白各公式之间的内在联系,把握公式的结构,这 样才能准确应用公式,同时注意公式的逆用、变用. 2 .转化思想是实施三角变换的主导思想,变换包括函数 名称的变换、角的变换、和与积的变换、幂的升降变换及“1”
第三章
章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修4
命题方向
给值求值 7 8 已知 cos(α-β)=-25, cos(α+β)=17, 且 90° <α
-β<180° ,270° <α+β<360° ,求 cos2α、sin2β 的值.
[ 分析 ] 注意到 2α = (α + β) + (α - β) , 2β = (α + β) - (α -

高中数学 第三章 三角恒等变换章末归纳总结课件 新人教A版必修4

高中数学 第三章 三角恒等变换章末归纳总结课件 新人教A版必修4
成才之路 ·数学
人教A版 ·必修4
路漫漫其修远兮 吾将上下而求索
三角恒等变换 第三章
章末归纳总结 第三章
1 知识结构 2 专题突破
知识结构
专题突破
Байду номын сангаас
专题一 三角函数式的化简 1.三角函数式化简的基本原则: (1)“切”化“弦”. (2)异名化同名 (3)异角化同角. (4)高次降幂. (5)分式通分. (6)无理化有理. (7)常数的处理(特别注意“1”的代换).
[解析]
化简:2cos21θ++3stainn2θθ-1-cos2θ3-+45stainn2θθ-4
原式=cos2θ-31s+in23θt+an2θsinθcosθ+3cos2θ+53s+in52θta+nθ8sinθcosθ
cosθ+3sinθ
3cosθ+5sinθ
=cosθ+3sincθosθcosθ-sinθ+3cosθ+5sicnoθsθcosθ+sinθ
已知 tanα=4 3,cos(α+β)=-1114,α、β 均为锐角, 求 cosβ 的值.
[探究] 利用 β=(α+β)-α 进行角的代换,则 cosβ=cos[(α+ β)-α],利用公式展开,结合已知条件求解.
[解析] ∵α、 β 均为锐角,∴0<α+β<π. 又 cos(α+β)=-1114, ∴sin(α+β)= 1--11142=5143.
又 tanα=4 3, ∴sin2α=sin2αsi+n2cαos2α=1+tanta2nα2α=4489.
∴sinα=473,从而 cosα= 1-sin2α=17, 故 cosβ=cos[(α+β)-α] =cos(α+β)cosα+sin(α+β)sinα =(-1114)×17+5143×4 7 3=12.

【高中数学必修四】3.2简单的三角恒等变换

【高中数学必修四】3.2简单的三角恒等变换

11
11
11
11
11
对于(C2)公式的变形用,即升(降)幂公式的运用,已介绍。
复习:
凑角公式
a sin x b cos x a 2 b 2 sin x b a, b所在象限决定 其中tan , 角所在象限由点 a
功能:把形如“asinx+bcosx”的多项式化成“一角一函数” 形式,从而使问题简化,蕴含了化归思想。
三.课堂小结
1.( S2 )公式的变形用 2.(C 2 )公式的变形用
2 tan 3.万能公式: sin 2 1 tan2 1 tan2 cos 2 1 tan2
5.积化和差与和差化积公式
2 tan tan 2 1 tan2
4.三角恒等变换在实际问题中的应用
万 能 公 式
例4.求证(教材140页例2) 1 1sin cos sin sin 2 2sin sin 2 sin cos 2 2
此例中(1)与教材142练习2,称为积化和差公式 此例中(2)与教材142练习3,称为和差化积公式
1 2 4 解法二:原式 cos cos cos 2 9 9 9 8 2 4 8 sin sin sin sin 1 1 9 9 9 9 2 2 sin 2 sin 2 2 sin 4 16 sin 16 9 9 9 9 1 2 3 4 5 cos cos cos cos cos 32 .
R, k
2 , k
(T2 )

4 (k Z )
二.新课: 题型1:二倍角中的连乘积问题
例1 求值: cos 80o cos 40o cos 20o

高中数学必修4第三章 三角恒等变换知识点归纳

高中数学必修4第三章 三角恒等变换知识点归纳
高中数学必修 4 第三章 三角恒等变换知识点
1、同角关系: ⑴商的关系:① tan ③ sin
y sin x cos
② cot ④ cos
x cos y sin
x sin cot r
y cos tan r ⑵倒数关系: tan cot 1
tan tan 1 tan tan tan tan 1 tan tan

( tan tan tan 1 tan tan ) ( tan tan tan 1 tan tan )
④ sin 2
tan 2 1 tan 2
⑤ cos 2
6、辅助角公式:
a sin b cos a 2 b 2 sin( )
(其中辅助角 与点 (a, b) 在同一象限,且 tan 7、常数“1”的代换变形:
1 sin 2 cos 2 tan cot sin 90 o tan 45 o

(后两个不用判断符号,更加好用)
4、半角公式
cos

2tan

2

5、万能公式: ① sin 2
2 tan 1 tan 2
② cos 2
1 tan 2 1 tan 2
1 1 tan 2
③ tan 2
2 tan 1 tan 2
⑶平方关系: sin 2 cos 2 1 2、两角和与差的正弦、余弦和正切公式: ⑴ cos cos cos sin sin ; ⑵ cos cos cos sin sin ⑶ sin sin cos cos sin ; ⑷ sin sin cos cos sin ⑸ tan ⑹ tan

高中数学必修4第三章3.2简单的三角恒等变换

高中数学必修4第三章3.2简单的三角恒等变换
sin( ) sin cos cos sin 简记为:S(α-β)
一、复习:两角和的正弦、余弦、正切公式:
sin sin cos cos sin
cos cos cos sin sin
tan
tan tan 1 tan tan
二sin 2 2sin cos
=3(cosx 2)2 1 33
又 x 2 , 1 cosx 1 ,
3 当x= 2
3
32
时,(cosx) min
1 2
,
y2max=145
;
当x=
3
时,(cosx) max
1 2
, ymin=
1 4.
七、y (a sinx+cosx)+bsinxcosx型
例7 求函数y sinx+cosx+sinxcosx的最值. <分析>注意到(sinx+cosx)2=1 2sinxcosx.可把sinx+cosx
sin2 1 cos 2
2
降幂升角公式
二、讲授新课:
例1.试以cos表示sin2 ,cos2 ,tan2 .
2
2
2
半角公式
sin 1 cos ,
2
2
cos 1 cos ,
2
2
tan 1 cos .
符号由α所在象限决定. 2
1 cos
2
1.半角公式
sin 1 cos
分析:要求当角取何值时,矩形ABCD的面积 S最大, 可分二步进行. ①找出S与之间的函数关系; ②由得出的函数关系,求S的最大值.
解 在Rt△OBC中,OB=cos,BC=sin 在Rt△OAD中,

三角函数、三角恒等变换知识点总结

三角函数、三角恒等变换知识点总结

高中数学必修4三角函数知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:注意:若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合:(3)区间角的表示:①象限角:第一象限角: ;第四象限角: ;第一、三象限角: ;②写出图中所表示的区间角: (4)由α的终边所在的象限, 来判断2α所在的象限,来判断3α所在的象限 (5)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一角α的弧度数的绝对值rl=||α,其中l 为以角α为圆心角时所对圆弧的长。

(6)弧长公式: ;半径公式: ;扇形面积公式: ; 练习:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

(22cm ) 二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系I )在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan (注意r>0)练习:已知角α的终边经过点P(5,-12),则ααcos sin +的值为__。

角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

II )作单位元交角α的终边上点),(y x P ,则=αsin ;=αcos ;=αtan (2)在图中画出 角α的正弦线、 余弦线、正切线;练习:(1)若α为锐角,则,sin ,tan ααα的大小关系为_____ (sin tan ααα<<)(2)函数)3sin 2lg(cos 21+++=x x y 的定义域是______222,33xk x k k Z ππππ⎧⎫∣-<≤+∈⎨⎬⎩⎭(3)特殊角的三角函数值:三、同角三角函数的关系与诱导公式: (1)同角三角函数的关系平方关系__________________;商数关系_____________________ 练习;(1)已知53sin +-=m m θ,)2(524cos πθπθ<<+-=m m ,则θtan =____(125-) (2)若11tan tan -=-αα,则ααααcos sin cos 3sin +-=____;2cos sin sin 2++ααα=___(35-;513); (3)已知x x f 3cos )(cos =,则)30(sinf 的值为______(-1)。

苏教版数学高一- 必修4第3章《三角恒等变换》知识整合

苏教版数学高一- 必修4第3章《三角恒等变换》知识整合

三角函数的求值主要有两类题型,给角求值与给值求值.给角求值一般是利用和、差、倍角公式进行变换,使其出现特殊角,若为非特殊角,则应变为可消去或约分的情况,从而求出其值.给值求值一般应先化简所求的式子,弄清实际所求,或变化已知的式子,寻找已知与所求的联系,再求值.已知α∈⎝ ⎛⎭⎪⎫π4,34π,β∈⎝ ⎛⎭⎪⎫0,π4,且cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫54π+β=-1213,求cos(α+β).分析:由已知条件要求cos(α+β),应注意到角之间的关系,α+β=⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α,可应用两角差的余弦公式求得.解析:由已知α∈⎝ ⎛⎭⎪⎫π4,34π得-α∈⎝ ⎛⎭⎪⎫-34π,-π4,∴π4-α∈⎝ ⎛⎭⎪⎫-π2,0. 又cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin ⎝ ⎛⎭⎪⎫π4-α=-45.由β∈⎝ ⎛⎭⎪⎫0,π4,得π4+β∈⎝ ⎛⎭⎪⎫π4,π2,又∵sin ⎝ ⎛⎭⎪⎫54π+β=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π4+β=-sin ⎝ ⎛⎭⎪⎫π4+β=-1213,∴sin ⎝ ⎛⎭⎪⎫π4+β=1213,∴cos ⎝ ⎛⎭⎪⎫π4+β=513.由⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α=α+β,得 cos(α+β)=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α=cos ⎝ ⎛⎭⎪⎫π4+βcos ⎝ ⎛⎭⎪⎫π4-α+sin ⎝ ⎛⎭⎪⎫π4+β·sin ⎝ ⎛⎭⎪⎫π4-α=513×35+1213×⎝ ⎛⎭⎪⎫-45=-3365. ◎规律总结:给值求值的关键是找出已知式与欲求式之间的差异,一般可以适当变换已知式,求得另外函数式的值,以备应用,同时也要变换欲求式,便于将已知式求得的函数值代入,从而达到解题的目的.变式训练1.已知cos(α+β)=13,cos(α-β)=15,求tan α·tan β 的值.解析:∵cos(α+β)=cos αcos β-sin αsin β=13,①cos(α-β)=cos αcos β+sin αsin β=15,②①+②得cos αcos β=415,②-①得sin αsin β=-115,∴tan αtan β=sin αsin βcos αcos β=-115415=-14.求sin 220°+cos 280°+3sin 20°cos 80°的值.解析:方法一 原式=12(1-cos 40°)+12(1+cos 160°)+32·(sin 100°-sin 60°) =1+12(cos 160°-cos 40°)+32sin 100°-34=14-sin 100°sin 60°+32sin 100° =14. 方法二 原式=sin 220°+cos 2(60°+20°)+3sin20°·cos(60°+20°)=sin 220°+⎝ ⎛⎭⎪⎫12cos 20°-32sin 20°2+3sin20°·⎝ ⎛ 12cos 20°⎭⎪⎫-32sin 20°=14sin 220°+14cos 220° =14. 方法三 令M =sin 220°+cos 280°+3sin 20°cos 80°,则其对偶式N =cos 220°+sin 280°+3cos 20°sin 80°.因为M +N =(sin 220°+cos 220°)+(cos 280°+sin 280°)+3·(sin 20°cos 80°+cos 20°sin 80°)=2+3sin 100°,①M -N =(sin 220°-cos 220°)+(cos 280°-sin 280°)+3(sin20°cos 80°-cos 20°sin 80°)=-cos 40°+cos 160°-3sin 60°=-2sin 100°sin 60°-32=-3sin 100°-32, ②所以①+②得2M =12,M =14,即sin 220°+cos 280°+3sin 20°cos 80°的值为14.◎规律总结:“给角求值”问题,一般所给出的角都是非特殊角,从表面上看是很难的,但仔细观察非特殊角与特殊角总有一定的关系,解题时,要认真观察,综合三角公式转化为特殊角并且清除非特殊角的三角函数而得解.变式训练2.求3tan 12°-3sin 12°·4cos 212°-2的值.解析:原式=3tan 12°-32sin 12°cos 24°=3tan 12°-3·2cos 12°2sin 12°·cos 12°·2cos 24°=23sin 12°-6cos 12°sin 48°=43sin 12°cos 60°-cos 12°sin 60°sin 48°=-43sin 48°sin 48°=-4 3.一元二次方程mx 2+(2m -3)x +(m -2)=0的两根为tan α,tan β.求tan(α+β)的最小值.解析:∵mx 2+(2m -3)x +m -2=0有两根tan α,tan β,∴⎩⎨⎧Δ=2m -32-4m m -2≥0,m ≠0.解得m ≤94且m ≠0.由一元二次方程的根与系数的关系得tan α+tan β=3-2m m ,tan α·tan β=m -2m.∴tan(α+β)=tan α+tan β1-tan αtan β=3-2mm1-m -2m=3-2m 2=32-m ≥32-94=-34.故tan(α+β)的最小值为-34.◎规律总结:数学问题解决的过程实质上是一个等价转化的过程,这一点务必引起高度重视.特别是综合题,条件的使用顺序和转化,以及知识之间的联系,在平时的训练中都要认真体会和总结.变式训练3.如下图,三个相同的正方形相接,试计算α+β的大小.解析:本题的实质是已知tan α=13,tan β=12,且α,β∈⎝ ⎛⎭⎪⎫0,π2,求α+β. 可通过求tan(α+β)及(α+β)的范围来求得α+β. 由图可知:tan α=13,tan β=12且α,β均为锐角.∴tan(α+β)=tan α+tan β1-tan α·tan β=13+121-13×12=1.而α+β∈(0,π),在(0,π)上正切值等于1的角只有π4,∴α+β=π4.规律总结:已知三角函数值求角,分三步进行:①先求角α+β的某一三角函数值;②确定角所在范围(或区间);③求角的值.三角函数式的化简是三角变换应用的一个重要方面,其基本思想方法是统一角,统一三角函数的名称.在具体实施过程中,应着重抓住“角”的统一.通过观察角、函数名、项的次数等,找到突破口,利用切化弦、升幂、降幂、逆用公式等手段将其化简.最后结果要求:(1)能求值尽量求值;(2)三角函数名称尽量少;(3)项数尽量少;(4)次数尽量低;(5)分母、根号下尽量不含三角函数.化简:tan 70°cos 10°·(3tan 20°-1).分析:先化切为弦,再利用特殊角的特殊值进行转换.解析:tan 70°cos 10°· (3tan 20°-1). =sin 70°cos 70°·cos 10°·⎝⎛⎭⎪⎫3·sin 20°cos 20°-1 =3cos 10°-cos 10°·sin 70°cos 70° =3cos 10°-cos 10°cos 20°2sin 10°cos 10°=3sin 20°-cos 20°2sin 10°=sin 20°cos 30°-cos 20°sin 30°sin 10°=sin 20°-30°sin 10°=-1.◎规律总结:在三角变换中,有时根据需要,可以将一特殊值还原成某一三角函数值,如:12=sin π6=cos π3;1=tan π4=sin π2=2cos π4=sin 2α+cos 2α等,如果我们在解题时巧妙地加以运用,往往会出奇制胜.三角恒等式的证明主要有两种类型:绝对恒等式与条件恒等式. 证明绝对恒等式要根据等式两边的特征,采取化繁为简,左右归一,变更命题等方法,通过三角恒等变换,使等式的两边化异为同.条件恒等式的证明则要认真观察、比较已知条件与求证等式之间的联系,选择适当途径,常用代入法、消去法、两头凑法等.证明:tan 32x -tan x 2=2sin xcos x +cos 2x.证明:左边=sin 32xcos 32x -sin x2cosx 2=sin 32x ·cos x 2-cos 32x ·sinx2cos 32x ·cosx 2=sin ⎝ ⎛⎭⎪⎫32x -x 212⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫32x +x 2+cos ⎝ ⎛⎭⎪⎫32x -x 2 =2sin x cos 2x +cos x=右边.即等式成立.方法技巧:证明三角恒等式,一般是从左证右,从右证左,或是两边分头化简得同一结果.同时要注意“切割化弦”、“化异为同”基本原则的应用.变式训练4.已知tan(α+β)=2tan β.求证:3sin α=sin(α+2β).证明:由已知tan(α+β)=2tan β可得sinα+βcosα+β=2sin βcos β.∴sin(α+β)cos β=2cos(α+β)sin β而sin(α+2β)=sin=sin (α+β)cos β+cos(α+β)sin β=2cos(α+β)sin β+cos(α+β)sin β=3cos(α+β)·sin β. 又sin α=sin=sin(α+β)cos β-cos(α+β)sin β=cos(α+β) sin β∴3sin α=sin(α+2β).设函数f(x)=a·b,其中向量a=(2cos x,1),b=(cos x,3sin 2x ),x ∈R ,(1)若f (x )=1-3且x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求x .(2)若函数y =2sin 2x 的图象按向量c =(m ,n )⎝ ⎛⎭⎪⎫|m |<π2平移后得到函数y =f (x )的图象,求实数m ,n 的值.分析:本题主要考查平面向量的概念和计算、三角函数的恒等变换及其图象变换的基本技能,考查运算能力.解析:(1)依题设,f (x )=2cos 2x +3sin 2x=1+2sin ⎝ ⎛⎭⎪⎫2x +π6.由1+2sin ⎝⎛⎭⎪⎫2x +π6=1-3,得sin ⎝⎛⎭⎪⎫2x +π6=-32. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤56π.∴2x +π6=-π3,即x =-π4.(2)函数y =2sin 2x 的图象按向量c =(m ,n )平移后得到函数y =2sin +n 的图象,即函数y =f (x )的图象.由(1)得f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+1,∵|m |<π2,∴m =-π12,n =1.◎规律总结:涉及三角函数性质的问题时,常通过三角变换将函数式f (x )化为y =A sin(ωx +φ)的形式,进而研究相关问题,一定要加强这种训练.向量与三角函数知识的交汇是近几年高考命题的热点,要充分体会向量的工具性作用.变式训练 5.已知向量a =(3cos x,2cos x ),b =(2sin x ,cos x ),定义函数f (x )=a ·b .(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调增区间.解析:(1)f (x )=a ·b =23sin x cos x +2cos 2x =3sin 2x +cos 2x +1=1+2sin ⎝ ⎛⎭⎪⎫2x +π6.∴T =2π2=π.(2)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z 得:k π-π3≤x ≤k π+π6,k ∈Z ,∴f (x )的单调增区间为: ⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z)..已知锐角三角形ABC 中,sin(A +B )=35,sin(A -B )=15.(1)求证:tan A =2tan B ; (2)设AB =3,求AB 边上的高.分析:本题要求能灵活运用两角和与差的有关三角函数公式来求证、求解,且对解三角形也有一定考查.(1)证明:∵sin(A +B )=35,sin(A -B )=15,∴⎩⎪⎨⎪⎧sin A cos B +cos A sin B =35,sin A cos B -cos A sin B =15⇒⎩⎪⎨⎪⎧sin A cos B =25,cos A sin B =15⇒tan A tan B=2. ∴tan A =2tan B .(2)解析:∵π2<A +B <π,sin(A +B )=35,∴tan(A +B )=-34,即tan A +tan B 1-tan A tan B =-34.将tan A =2tan B 代入上式并整理得 2tan 2B -4tan B -1=0,解得tan B =2±62,舍去负值,得tan B =2+62.∴tan A =2tan B =2+ 6.设AB 边上的高为CD .则AB =AD +DB =CD tan A +CD tan B =3CD2+6.由AB =3,得CD =2+ 6.所以AB 边上的高等于2+6.◎规律总结:在三角函数的应用问题中,要根据问题的特点,恰当选择使用两角和(差)、倍角公式.同时,要注意数形结合、方程(组)、等价转化等数学思想的运用.变式训练6.已知角A ,B ,C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan 2A 的值;(2)求2cos 2A2-3sin A -12sin ⎝ ⎛⎭⎪⎫A +π4的值.解析:(1)∵OM→·ON →=(sin B +cos B )sin C +cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15,∴sin A +cos A =-15,①两边平方整理得:2sin A cos A =-2425.②∴A ∈⎝ ⎛⎭⎪⎫π2,π,由①,②解得:sin A =35,cos A =-45.∴tan A =-34,∴tan 2A =-247.(2)∵tan A =-34,∴2cos 2A2-3sin A -12sin ⎝ ⎛⎭⎪⎫A +π4=cos A -3sin Acos A +sin A=1-3tan A 1+tan A =1-3×⎝ ⎛⎭⎪⎫-341+⎝ ⎛⎭⎪⎫-34 =13.。

数学必修4本章概览 第3章三角恒等变换 含解析 精品

数学必修4本章概览 第3章三角恒等变换 含解析 精品

第3章三角恒等变换
本章概览
三维目标
1.了解用单位圆与向量的数量积推导出两角差的余弦公式的过程,进一步体会到向量方法在解决数学问题中的重要作用;发展我们的应用意识和能力.培养探究数学问题的兴趣和能力.
2.能借助两角差的余弦公式导出两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们之间的内在联系.熟记两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式并会灵活地正用、逆用、变形用,体验量与量之间的联系,感受其中的变化规律, 培养我们的科学探究精神.
3.能运用上述公式进行简单的恒等变换、会推导出半角公式、积化和差与和差化积公式,进一步提高运用联系转化的观点处理问题的自觉性,体会一般与特殊、换元、方程的思想、数形结合的思想在解决三角函数问题中的作用;
4.灵活运用角的变换处理三角函数问题的求解、证明与化简;会用三角恒等变换解决一些简单的实际问题(如求山顶上电视塔的高,物理中有关力的最小值问题及日常生活中材料的节省问题等)认识到三角变换在求一些非特殊角的三角函数值的应用,培养学习三角函数的兴趣.
知识网络。

高中数学 第三单元 三角恒等变换 3.2.2 半角的正弦、余弦和正切课件 新人教B版必修4.pptx

高中数学 第三单元 三角恒等变换 3.2.2 半角的正弦、余弦和正切课件 新人教B版必修4.pptx

1-cos α 2,
1+cos α 2,
(S )
2
(C )
2
1-cos 1+cos
αα=1+sincoαs
1-cos
= α
sin α
α
.
(T )
2
8
题型探究
9
类型一 应用半角公式求值
例1
若π2<α<π,且 cos α=-35,则 sin 2α=
25 5
.
解析 因为 cos α=1-2sin2α2,
答案
αα
α
tan2α= sin cos
2α=
sin2·2cos α
2 cos2·2cos
2α=1+sincoαs 2
, α
α
αα
tan
2α= sin
2α= sin
2·2sin α
2α=1-sincoαs
α .
cos 2 cos 2·2sin 2
7 答案
梳理 正弦、余弦、正切的半角公式
sin α2= ± cos α2=± tan α2=±
sin α、cos α 都可以表示成 tan 2α=t 的“有理式”,将其代入式子中,
从而可以对式子求值.
11
跟踪训练 1
若 tan θ2+ 1 θ=m,则 sin θ=
2 m
.
tan 2
解析 因为 tanθ2+ 1 θ=m, tan2
即tanta2θ2n+θ2 1=m,所以tanta2θ2n+θ2 1=m1 ,
所以 2sin2α2=1-c2os α=45,
又因为π4<2α<π2,所以
sinα2=2
5
5 .
解析 10 答案
容易推出下列式子:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章三角恒等变换
一、两角和与差的正弦、余弦和正切公式:
⑴()cos cos cos sin sin αβαβαβ-=+;
⑵()cos cos cos sin sin αβαβαβ+=-;
⑶()sin sin cos cos sin αβαβαβ-=-;
⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=
+⇒()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβαβαβ
++=-⇒()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式:
⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ⇒2cos 21cos 2
αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα
=-. 三、辅助角公式:
()sin cos α+=+a x b x x

cos sin ϕϕϕ==其中由决定
四、三角变换方法:
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异
角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:
①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4
α的二倍; ②2304560304515o
o o o o o =-=-=; ③()ααββ=+-;④()424π
ππ
αα+=--; ⑤2()()()()44
ππ
ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

如在三
角函数中正余弦是基础,通常化切为弦,变异名为同名。

(3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转化为
三角函数值,例如常数“1”的代换变形有:
(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。

降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。

(5)三角函数式的变换通常从:“角、名、形、幂”四方面入手;
基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名,高次降
低次,特殊值与特殊角的三角函数互化等。

相关文档
最新文档