高中数学必修四第三章三角恒等变换知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章三角恒等变换
一、两角和与差的正弦、余弦和正切公式:
⑴()cos cos cos sin sin αβαβαβ-=+;
⑵()cos cos cos sin sin αβαβαβ+=-;
⑶()sin sin cos cos sin αβαβαβ-=-;
⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=
+⇒()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβαβαβ
++=-⇒()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式:
⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ⇒2cos 21cos 2
αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα
=-. 三、辅助角公式:
()sin cos α+=+a x b x x
,
cos sin ϕϕϕ==其中由决定
四、三角变换方法:
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异
角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:
①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4
α的二倍; ②2304560304515o
o o o o o =-=-=; ③()ααββ=+-;④()424π
ππ
αα+=--; ⑤2()()()()44
ππ
ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三
角函数中正余弦是基础,通常化切为弦,变异名为同名。
(3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转化为
三角函数值,例如常数“1”的代换变形有:
(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手;
基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名,高次降
低次,特殊值与特殊角的三角函数互化等。