基本不等式在实际生活中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式在实 际生活中的应用
a+b ≥ ab 2
动物园要围成相同面积的长方形虎笼四间, 例1. 动物园要围成相同面积的长方形虎笼四间,一面 可利用原有的墙,其他各面用钢筋网围成. 可利用原有的墙,其他各面用钢筋网围成 (1)现有可围 )现有可围36m长网的材 长网的材 每间虎笼的长, 料,每间虎笼的长,宽各设计 为多少时, 为多少时,可使每间虎笼的面 积最大? 积最大? 分析: 分析: 设每间虎笼的长为 x m,宽为 y m,则四间虎笼共用去钢 , , 筋网 4x+6y = 36m. 显然和为定值,则积有最大值 可用基本不等式求之 可用基本不等式求之. 显然和为定值,则积有最大值.可用基本不等式求之
y x y x y x y x y y
则每间虎笼的长, (2)若使每间虎笼的面积为 )若使每间虎笼的面积为24m2,则每间虎笼的长,宽各 设计为多少时,可使围成的四间虎笼的钢筋网总长最小? 设计为多少时,可使围成的四间虎笼的钢筋网总长最小?
b a b a
b a b a
b b
Baidu Nhomakorabea
分析:设每间虎笼的长为 ,宽为bm,则由题意可得 分析:设每间虎笼的长为am,宽为 , ab = 24 m2. 显然积为定值,则和有最小值 可用基本不等式求之 可用基本不等式求之. 显然积为定值,则和有最小值.可用基本不等式求之
某种汽车,购车费用是10万元 每年使用的保险费, 万元, 例2. 某种汽车,购车费用是 万元,每年使用的保险费,养 路费,汽油费约为0.9万元 年维修费第一年是0.2万元 万元, 万元, 路费,汽油费约为 万元,年维修费第一年是 万元,以后 逐年递增0.2万元 问这种汽车使用多少年时, 万元. 逐年递增 万元.问这种汽车使用多少年时,它的年平均费 用最少? 用最少? 分析:平均费用是指汽车的总费用除以汽车的使用年数. 分析:平均费用是指汽车的总费用除以汽车的使用年数. 是指汽车的总费用除以汽车的使用年数 汽车的总费用一共有三项:购车费+保险费,养路费,汽油 保险费, 汽车的总费用一共有三项:购车费 保险费 养路费, 维修费. 费+维修费. 维修费 年平均费用最少,则购车费为10万元 万元, 设汽车使用 x 年平均费用最少,则购车费为 万元,保险 养路费, 万元, 费,养路费,汽油费为 0.9x 万元,维修费为 (0.2 + 0.4 + 0.6 + )万元 .
课堂练习:课本第 页 课堂练习:课本第94页
同学们再见

相关文档
最新文档