指数函数时解析精品PPT课件
合集下载
指数函数ppt课件
新知探究
【针对训练】比较下列各值的大小:
4
1 3
2
,23
,
−2
3
,
3
1
2.
3
3
4
【解析】先根据幂的特征,将这4个数分类:
(1)负数:
−2
3
3
;(2)大于1的数:
4 3
1 3
2
,23
;(3)大于0且小于1的数:
3 4
1
2.
在(2)中,
4 3
1 3
1
< 23
2
< 23(也可在同一平面直角坐标系中,
分别作出y =
【方法指导】(1)根据偶次根式被开方数非负以及指数函数的单调性可解得原函数的定义域;
(2)根据偶次根式被开方数非负、分母不为零以及指数函数的单调性可解得原函数的定义域.
【解析】(1)由题意可得2x − 1 ≥ 0,即2x ≥ 20,又指数函数f(x) = 2x单调递增,得x ≥ 0.
所以函数y = 2x − 1的定义域为[0,+∞).
新知探究
【探究小结】比较幂的大小的方法
(1)同底数幂比较大小时构造指数函数,根据其单调性比较. (2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x取相同幂指数 时可观察出函数值的大小. (3)底数、指数都不相同时,取与其中一底数相同和另一指数相同的幂与两数比较,或 借助“1”与两数比较. (4)当底数含参数时,要按底数a > 1和0 < a < 1两种情况分类讨论.
【解析】令x − 4 = 0得x = 4,y = 5.所以f(4) = 5,所以函数f(x)恒过定点(4,5).
4.求下列函数的定义域和值域:
第三章 第五节 指数函数 课件(共53张PPT)
解析: 函数 y=|3x-1|的图象是由函数 y=3x 的图象向下平移一个单位 后,再把位于 x 轴下方的图象沿 x 轴翻折到 x 轴 上方得到的,函数图象如图所示.
由图象知,其在(-∞,0]上单调递减,所以 k 的取值范围为(-∞,0].
答案: (-∞,0]
指数函数的性质及应用
角度一 比较指数幂的大小
解析: (1)由函数 y=kx+a 的图象可得 k<0,0<a<1.因为函数的图象与 x 轴交点的横坐标大于 1,所以 k>-1,所以-1<k<0.函数 y=ax+k 的图象可以 看成把 y=ax 的图象向右平移-k 个单位长度得到的,且函数 y=ax+k 是减函 数,故此函数与 y 轴交点的纵坐标大于 1,结合所给的选项,选 B.
1.判断下列结论是否正确(请在括号中打“√”或“×”)
n (1)
an
=(n
a
)n=a(n∈N+).(
)
m
(2)分数指数幂 an
可以理解为mn
个 a 相乘.(
)
(3)函数 y=3·2x 与 y=2x+1 都不是指数函数.( )
(4)若 am<an(a>0,且 a≠1),则 m<n.( )
答案: (1)× (2)× (3)√ (4)×
角度二 解简单的指数方程或不等式
(1)若
,则函数 y=2x 的值域是( )
1 A.8,2
1 B.8,2
C.-∞,18
D.[2,+∞)
4x,x≥0, (2)已知实数 a≠1,函数 f(x)=2a-x,x<0, 若 f(1-a)=f(a-1),则 a 的
值为________.
解析: (1)因为
由图象知,其在(-∞,0]上单调递减,所以 k 的取值范围为(-∞,0].
答案: (-∞,0]
指数函数的性质及应用
角度一 比较指数幂的大小
解析: (1)由函数 y=kx+a 的图象可得 k<0,0<a<1.因为函数的图象与 x 轴交点的横坐标大于 1,所以 k>-1,所以-1<k<0.函数 y=ax+k 的图象可以 看成把 y=ax 的图象向右平移-k 个单位长度得到的,且函数 y=ax+k 是减函 数,故此函数与 y 轴交点的纵坐标大于 1,结合所给的选项,选 B.
1.判断下列结论是否正确(请在括号中打“√”或“×”)
n (1)
an
=(n
a
)n=a(n∈N+).(
)
m
(2)分数指数幂 an
可以理解为mn
个 a 相乘.(
)
(3)函数 y=3·2x 与 y=2x+1 都不是指数函数.( )
(4)若 am<an(a>0,且 a≠1),则 m<n.( )
答案: (1)× (2)× (3)√ (4)×
角度二 解简单的指数方程或不等式
(1)若
,则函数 y=2x 的值域是( )
1 A.8,2
1 B.8,2
C.-∞,18
D.[2,+∞)
4x,x≥0, (2)已知实数 a≠1,函数 f(x)=2a-x,x<0, 若 f(1-a)=f(a-1),则 a 的
值为________.
解析: (1)因为
指数函数及其性质(一)公开课解析PPT课件
2.1.2 指数函数及其性质
-
一、创设情境 问题1:一张白纸对折一次得两层,对折
两次得4层,对折3次得8层,问若对折x次所得 层数为y,则y与x的函数关系是什么?
分析:把对折次数x与所得层数y列出表格
2 4 22 8 23
2x
N y 2 xx
-
一、创设情境 问题2:《庄子·逍遥游》中写道:一尺之
(3)
1 4
0.8
与
1 2
1.8
(4)33.1与23.1
2、函数ya2-3a+2ax是指数函数,则a的
取值范围是( )
A.a=1或a=2 B.a=2
C.a=1
-
D.a 0 , + 且 a1 , a2
四、强化训练
3、已知指数函数 fx = a xa > 0 , 且 a1 的
图象经过点(2,9),求fx 的解析式。
-
五、小结归纳 (1)说一说通过本节课的学习,你学到了哪
些知识? (2)通过本节课的学习,你学习了哪些数学
思想方法? (3)你能将指数函数的学习与实际生活联系
起来吗?
作业:课本作业2.1 A组 7. 8
-
x
3
-
1
1
1
27
9
3
1
1
1
2
4
8
1
1
1
3
9
27
三、探求新知
描点、连线
y
y
1 2
x
y
1 3
x
y 3x
y 2x
1
0
1
x
-
三、探求新知
0,
-
牛刀小试
-
一、创设情境 问题1:一张白纸对折一次得两层,对折
两次得4层,对折3次得8层,问若对折x次所得 层数为y,则y与x的函数关系是什么?
分析:把对折次数x与所得层数y列出表格
2 4 22 8 23
2x
N y 2 xx
-
一、创设情境 问题2:《庄子·逍遥游》中写道:一尺之
(3)
1 4
0.8
与
1 2
1.8
(4)33.1与23.1
2、函数ya2-3a+2ax是指数函数,则a的
取值范围是( )
A.a=1或a=2 B.a=2
C.a=1
-
D.a 0 , + 且 a1 , a2
四、强化训练
3、已知指数函数 fx = a xa > 0 , 且 a1 的
图象经过点(2,9),求fx 的解析式。
-
五、小结归纳 (1)说一说通过本节课的学习,你学到了哪
些知识? (2)通过本节课的学习,你学习了哪些数学
思想方法? (3)你能将指数函数的学习与实际生活联系
起来吗?
作业:课本作业2.1 A组 7. 8
-
x
3
-
1
1
1
27
9
3
1
1
1
2
4
8
1
1
1
3
9
27
三、探求新知
描点、连线
y
y
1 2
x
y
1 3
x
y 3x
y 2x
1
0
1
x
-
三、探求新知
0,
-
牛刀小试
高一数学指数函数ppt课件
图像法
运算性质法
利用指数函数的运算性质,如乘法公 式和指数法则,推导出奇偶性的判断 方法。例如,若f(x)和g(x)都是奇函数, 则f(x)*g(x)也是奇函数。
通过观察指数函数的图像,判断其是 否关于原点对称或关于y轴对称,从而 确定函数的奇偶性。
06 典型例题解析与 课堂互动环节
典型例题选讲及思路点拨
指数函数的图像关于y轴对称。
当a>1时,函数在定义域内单调递增,图 像上升;当0<a<1时,函数在定义域内单 调递减,图像下降。
指数函数图像特点 函数图像过定点(0,1)。
指数函数性质探讨
指数函数的单调性
01
当a>1时,函数在R上单调递增;当0<a<1时,函数在R上单调
递减。
指数函数的周期性
02
指数函数不是周期函数。
应用举例
$3^4 = (frac{3}{2})^4 times 2^4$
对数转换
当底数不同且难以直接 计算时,可通过对数转 换为相同底数进行计算。
应用举例
比较 $7^{10}$ 和 $10^7$ 的大小,可转 换为比较 $10 times
log7$ 和 $7 times log10$。
复杂表达式化简技巧
利用指数函数构建可持续增长模型,可以预测未来经济发展的趋势和可能遇到的问 题,帮助学生了解经济增长的复杂性和不确定性。
05 指数函数图像变 换与性质变化规 律
平移、伸缩变换对图像影响
平移变换
指数函数图像沿x轴或y轴平移,不改 变函数的形状和周期性,只改变函数 的位置。
伸缩变换
通过改变函数的参数,实现对指数函 数图像的横向或纵向伸缩,从而改变 函数的周期和振幅。
高一数学 指数函数 ppt课件
1
y=1
o
x
课后作业:
1.阅读课本有关内容
2.课本练习
3.研究题:
(1)画出 y 2 x 及 y (0.5) x 的草图
(2)利用函数 Y=2x 的图像,在同一 坐标系中分别画出Y=-2x ,Y=-2-x 的草图
y
1
x
2
设问1:象y 2x , y ( 1 )x 这类函数与我们前
2 面学过的 y x, y x2, y x1一样吗?
这两类函数有什么区别?
设问2:像这类y=ax函数,当x从正整数拓
展到全体•实自数变量时x,的为位使置不y=同a。x 有意义,对 y=ax 中的前底者数做a指应数数该。,有后什者么做要底 求?
1
o
x
y
y=3x
y=2x
1
0
x1
x
试分析上述图像中,哪一条是 y 2 x的图像 哪一条是y 3x的图像
y
1
0
x
试分析上述图像中,哪一条是 y (1 )x 的图像,
2
哪一条是 y (1)x 的图像。
3
下一页
例3、比较下列各题中两个值的大小:
(1) 1.72.5与1.73 (2) 0.80.1与0.80.2
2⑤
x⑥
y
1
2
x
2
1
答案: ⑤
设问3:我们研究函数的性质,通常都研究
哪些性质?通常又如何去研究?
定义域,值域,单调性,过定点等. 我们通常是根据图像来研究函数的性质.
设问4:一般用什么方法得到函数的图象?
列表、描点、作图
用描点法绘制 y 2x 的草图:
用描点法绘制 y (0.5)x的草图:
指数函数ppt课件
04
指数函数的应用
在金融领域的应用
复利计算
股票和期货价格预测
在金融领域,复利计算是评估投资回 报的重要方式。指数函数用于计算复 利,通过复利公式,可以计算出投资 的未来价值。
在股票和期货市场中,指数函数常用 于价格预测模型。通过分析历史数据 ,利用指数函数可以预测未来的价格 走势。
保险精算
在保险行业中,指数函数用于精算模 型,例如生命表和风险评估。通过指 数函数,保险公司可以预测未来的风 险和损失。
指数函数和三角函数在某些方面具有 相似性,例如在周期性和对称性方面 。
三角函数的图像具有对称性,例如正 弦函数和余弦函数的图像关于y轴对称 ,而指数函数的图像则关于y=1对称 。
三角函数具有周期性,而指数函数在 形式上也可以表示为具有周期性的形 式。
06
练习题与答案解析
基础练习题
定义域和值域
指数函数的定Leabharlann 域和值域分别是什么?指数函数的起源与历史
起源
指数概念最早可以追溯到古代数学家和天文学家的著作中,但现代意义上的指 数函数则是在17世纪由数学家约翰·纳皮斯和费马等人提出。
历史发展
随着数学和科学技术的不断发展,指数函数的概念和应用范围也在不断扩展和 深化。在复数、微积分、线性代数等领域中,指数函数都扮演着重要的角色。
02
指数函数与幂函数的关系
指数函数和幂函数具有相似的 形式,即y=a^x和y=x^a。
当a>0时,指数函数和幂函数 的图像都是单调递增的;当 a<0时,指数函数和幂函数的 图像都是单调递减的。
指数函数和幂函数的定义域都 是全体实数集R,值域都是正 实数集(0,+infty)。
指数函数与三角函数的关系
《指数函数》课件
应用广泛
指数函数是数学、物理、金融、 生物、化学等领域中的重要概 念,可应用于许多实际问题。
引领未来
了解和熟练掌握指数函数是探 索自然、认识世界和关注未来 的重要个人能力。
指数函数的导数可以通过 导数公式进行易解,使得 它在实际应用中更加方便。
指数函数和常见函数的比较
对数函数
指数函数和对数函数是一对互 为反函数的函数,它们在实际 应用中经常一同出现。
幂函数
幂函数是与指数函数类似的一 般形式函数,但其中自变量与 常数的次数可以不相等。
三角函数
三角函数是解析几何和物理学 中不可缺少的一部分,它们与 指数函数密切相关的。
指数增长可以应用于股票、金融市场的分析,为财 务规划和决策提供参考。
人口增长中的指数增长
应用于人口、社会发展的研究,探索城市规划、资 源分配等关键问题。
指数函数的特性
1 指数增长特性
指数函数的特殊增长和减 小特性使得它在许多现象 中都有着广泛的应用。
2 图像特性
3 求导特性
指数函数的图像特性是理 解和应用指数函数的关键, 因此必须加以理解。
指数函数PPT课件
欢迎来到《指数函数》PPT课件,我们将探讨指数函数的定义、性质和应用。 让我们开始吧!
指数函数是什么?
定义
指数函数的数学表达式是 $f(x)=a^x$,其中$a$是常数, $x$是自变量,$a>0$且 $a≠1$。
图像
当$a>1$时,函数增长迅速, 当$0<a<1$时,函数递减, 特殊情况:$a=1$时,函数 值恒为1。
基于指数函数的优化算法可以在数学和计算机应用领域中得到广泛应用。
梯度下降算法
梯度下降算法是使用最广泛的优化算法之一,它可以运用于指数函数的数据建模。
高一数学指数函数00ppt课件
化学反应速率
在化学中,某些化学反应的速率与反应物的浓度成正比。当反应物浓度较高时,反应速率也较快;反之则较慢。 这种关系可以用指数函数来描述,其中反应速率常数与反应温度、压力等因素有关。
05
指数函数与对数函数关系 探讨
对数函数定义及图像特征回顾
对数函数定义
对于任意正实数a(a≠1),函数y=logax(x>0)叫做对数 函数,其中x是自变量,函数的定义域是(0,+∞)。
利用对数运算性质化 简得 $x = 3$。
两边取对数得 $x = log_2 8$。
一元二次指数方程求解
• 定义与性质:一元二次指数方程是指形如 $a^x + b^x = c$ 的方程,其中 $a > 0$,$b > 0$,$c > 0$。
一元二次指数方程求解
求解步骤 观察方程形式,尝试通过换元法将其转化为一元一次或一元二次方程。
高一数学指数函数00ppt课件
contents
目录
• 指数函数基本概念与性质 • 指数运算规则与技巧 • 指数方程求解方法 • 指数函数在生活中的应用举例 • 指数函数与对数函数关系探讨 • 课堂小结与拓展延伸
01
指数函数基本概念与性质
指数函数定义及图像特征
指数函数定义
形如 y = a^x (a > 0, a ≠ 1) 的函 数称为指数函数。
深入探讨了指数函数的四则运算,包 括加法、减法、乘法和除法。
学生自我评价报告分享
01
知识掌握情况
大部分学生表示能够理解和掌握指数函数的基本概念和性质,以及相关
的运算方法。
02
学习困难与挑战
部分学生反映在解决复杂问题和应用指数函数时仍存在一定困难,需要
在化学中,某些化学反应的速率与反应物的浓度成正比。当反应物浓度较高时,反应速率也较快;反之则较慢。 这种关系可以用指数函数来描述,其中反应速率常数与反应温度、压力等因素有关。
05
指数函数与对数函数关系 探讨
对数函数定义及图像特征回顾
对数函数定义
对于任意正实数a(a≠1),函数y=logax(x>0)叫做对数 函数,其中x是自变量,函数的定义域是(0,+∞)。
利用对数运算性质化 简得 $x = 3$。
两边取对数得 $x = log_2 8$。
一元二次指数方程求解
• 定义与性质:一元二次指数方程是指形如 $a^x + b^x = c$ 的方程,其中 $a > 0$,$b > 0$,$c > 0$。
一元二次指数方程求解
求解步骤 观察方程形式,尝试通过换元法将其转化为一元一次或一元二次方程。
高一数学指数函数00ppt课件
contents
目录
• 指数函数基本概念与性质 • 指数运算规则与技巧 • 指数方程求解方法 • 指数函数在生活中的应用举例 • 指数函数与对数函数关系探讨 • 课堂小结与拓展延伸
01
指数函数基本概念与性质
指数函数定义及图像特征
指数函数定义
形如 y = a^x (a > 0, a ≠ 1) 的函 数称为指数函数。
深入探讨了指数函数的四则运算,包 括加法、减法、乘法和除法。
学生自我评价报告分享
01
知识掌握情况
大部分学生表示能够理解和掌握指数函数的基本概念和性质,以及相关
的运算方法。
02
学习困难与挑战
部分学生反映在解决复杂问题和应用指数函数时仍存在一定困难,需要
高中数学《指数函数》ppt课件
01
02
03
乘法法则
$a^m times a^n = a^{m+n}$,同底数幂相 乘,底数不变,指数相加 。
除法法则
$a^m div a^n = a^{mn}$,同底数幂相除,底 数不变,指数相减。
幂的乘方法则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
不同底数指数运算法则
常见指数函数类型及其特点
自然指数函数
幂指数函数
对数指数函数
复合指数函数
底数为e(约等于2.71828) 的指数函数,记为y=e^x。 其图像上升速度最快,常用 于描述自然增长或衰减现象
。
形如y=x^n(n为实数)的函 数,当n>0时图像上升,当 n<0时图像下降。特别地,当 n=1时,幂指数函数退化为线
高中数学《指数函数》ppt 课件
目录
• 指数函数基本概念与性质 • 指数函数运算规则与技巧 • 指数函数在生活中的应用举例 • 指数函数与对数函数关系探讨 • 指数方程和不等式求解技巧 • 总结回顾与拓展延伸
01 指数函数基本概 念与性质
指数函数定义及图像特点
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
在生物学领域,指数函 数和对数函数被用于描 述生物种群的增长和衰 减过程;
在物理学领域,指数函 数和对数函数被用于描 述放射性衰变等物理现 象。
05 指数方程和不等 式求解技巧
一元一次、二次指数方程求解方法
01
一元一次指数方程:形如 $a^x = b$ ($a > 0, a neq 1$)的方程。求解方法
利用对数性质将指数方程转化为代数 方程进行求解。
《指数函数》PPT课件
商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。
。
工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随
指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;
指数函数及其性质PPT课件
05 指数函数与其他函数的比 较
与线性函数的比较
线性函数
y=kx+b,表示的是一种 匀速变化,增加或减少的 趋势。
指数函数
y=a^x,表示的是一种爆 炸式增长或衰减的趋势。
比较
线性函数的变化速率是恒 定的,而指数函数的变化 速率会随着x的增大或减小 而快速增大或减小。
与幂函数的比较
01
幂函数
y=x^n,当n>0时,表示的是一种增长趋势;当n<0时,表示的是一种
包括单调性、奇偶性、周期性等。
指数函数的应用
在数学、物理、工程等领域都有广泛的应用。
练习与思考
练习题
根据指数函数的性质,判断下列哪些是指数函数,哪些不是,并说明理由。
思考题
指数函数在生活和生产中有哪些应用?请举例说明。
THANKS FOR WATCHING
感谢您的观看
指数函数的运算性质
01
基本运算性质
02
$a^m times a^n = a^{m+n}$
03
$(a^m)^n = a^{mn}$
04
$frac{a^m}{a^n} = a^{m-n}$
05
复合运算性质:如果 $u(x) = b^x$ 且 $b > 0$ 且 $b neq 1$,则 $y = a^{u(x)}$ 也是指数函数。
04
05
指数函数的值域为 $(0, +infty)$。
指数函数的图像
当 $a > 1$ 时,图像位于第一象限和第四象限 ;
绘制方法:选择一个 $a$ 值,例如 $y = 2^x$ 或 $y = frac{1}{2}^x$,然后使用计算器或数学软件绘制图
高一数学必修一《指数函数及其性质》PPT课件
进行求解,也可以将对数方程转化为指数方程进行求解。
03
指数函数与对数函数在图像上的关系
指数函数的图像与对数函数的图像关于直线y=x对称。
02
指数函数运算规则
同底数指数运算法则
乘法法则
$a^m times a^n = a^{m+n}$,其中$a$是底数,$m$和$n$ 是指数。
除法法则
$a^m div a^n = a^{m-n}$,其中$a neq 0$。
分组让学生讨论指数函数的性质,如定义域、值域、 单调性、奇偶性等,并让他们尝试通过图像观察验证 这些性质。
问题导入
互动问答
通过具体案例,如“细菌繁殖”、“投资回报”等, 让学生应用指数函数的知识进行分析和计算,加深对
指数函数的理解。
案例分析
老师提出问题,学生抢答或点名回答,问题可以涉及 指数函数的计算、性质应用等,以检验学生的学习效 果。
放射性物质衰变模型
放射性物质衰变模型
01
N(t) = N0 * e^(-λt),其中N(t)表示t时刻的放射性物质数量,
N0表示初始放射性物质数量,λ表示衰变常数。
指数函数在放射性物质衰变模型中的应用
02
通过指数函数可以描述放射性物质数量随时间减少的规律。
放射性物质衰变模型的意义
03
对于核能利用、环境保护等领域具有重要的指导意义。
单调性
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函 数在R上是减函数。
指数函数与对数函数关系
01
指数函数与对数函数的互化关系
指数函数y=a^x(a>0且a≠1)与对数函数y=log_a x(a>0且a≠1)是
指数函数的概念图象及性质PPT课件
y ax
指数函数的定义:
一般地,函数 y ax(a 0,且a 1)叫做指 数函数,其中 x 是自变量, 函数的定义 域是 R.
? 注意三点:
(1)底数:大于0且不等于1的常数 (2)指数:自变量x (3)系数:1
思考2:为什么要规定a 0且a 1?
0
1
a
当a<0时, a x不一定有意义,
如-2x,当x 1 ,1 等等,
正确.
答案:D
2.函数 f(x)= 2x1-1的定义域为(
)
A.R
B.(0,+∞)
C.[0,+∞) D.(-∞,0)
解析:要使函数有意义,则 2x-1>0,∴2x>1,∴x>0. 答案:B
3.在同一坐标系中,函数 y=2x 与 y=12x 的图像之间的关系 是( )
A.关于 y 轴对称 B.关于 x 轴对称 C.关于原点对称 D.关于直线 y=x 对称
例题讲解
已知指数函数
f
x
ax
(
a>0,且
a
1)
的图象经过点 3, ,求 f 0, f 1, f 3的值.
解: f 3
1
即: a3 a 3 3
1
x
f x ( 3 )x 3
0
f 0 3 0 1
1
f 1 3
f
3
3 3
1
1
巩固训练,拓展提升
变式训练
已知指数函数f(x)=ax(a>0且a≠1)的 图象经过点(2,16),求f(0),f(2)的值。
24
在实数范围内函数无意义。
当a=0时, x>0 ax 0 ,无研究价值 x≤0 ax无意义
指数函数的定义:
一般地,函数 y ax(a 0,且a 1)叫做指 数函数,其中 x 是自变量, 函数的定义 域是 R.
? 注意三点:
(1)底数:大于0且不等于1的常数 (2)指数:自变量x (3)系数:1
思考2:为什么要规定a 0且a 1?
0
1
a
当a<0时, a x不一定有意义,
如-2x,当x 1 ,1 等等,
正确.
答案:D
2.函数 f(x)= 2x1-1的定义域为(
)
A.R
B.(0,+∞)
C.[0,+∞) D.(-∞,0)
解析:要使函数有意义,则 2x-1>0,∴2x>1,∴x>0. 答案:B
3.在同一坐标系中,函数 y=2x 与 y=12x 的图像之间的关系 是( )
A.关于 y 轴对称 B.关于 x 轴对称 C.关于原点对称 D.关于直线 y=x 对称
例题讲解
已知指数函数
f
x
ax
(
a>0,且
a
1)
的图象经过点 3, ,求 f 0, f 1, f 3的值.
解: f 3
1
即: a3 a 3 3
1
x
f x ( 3 )x 3
0
f 0 3 0 1
1
f 1 3
f
3
3 3
1
1
巩固训练,拓展提升
变式训练
已知指数函数f(x)=ax(a>0且a≠1)的 图象经过点(2,16),求f(0),f(2)的值。
24
在实数范围内函数无意义。
当a=0时, x>0 ax 0 ,无研究价值 x≤0 ax无意义
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-0.5
1
2
3
4
5
6
(2)0.80.1 < 0.80.2
解:∵函数 y 在 0R.上8x 是减函数,
而指数-0.1>-0.2
∴ 0.80.1 0.80.2
1.8 1.6
fx = 0.8x 1.4 1.2 1 0.8 0.6 0.4 0.2
-1.5
-1
-0.5
0.5
1
练习
比较两个数的大小
(1)2.012.8 < 2.013.5
> (2) 0.79-0.1
0.790.1
钥匙
底数相同,指数不同。 做题方法:利用指数函数的单调性来判断.(数形结合)。
例2,比较两个数的大小
1.70.3 0.93.1
解:根据指数函数的性质,得:
1.70.3 1.70 1且 0.93.1 0.90 1
从而有 1.70.3 0.93.1
3.2 3
(0<a<1)
图 象
(0,1)
y=1 y=1
(a>1) (0,1)
0
x
0
x
(1)定义域:R
性 (2)值域:(0,+∞) 质 (3)过点(0,1)即x=0时,y=1
(4)在R上是减函数 (4)在R上是增函数
例1、比较下列各题中两个值的大小:
11.72.5 ,1.73 ; 2 0.80.1, 0.80.2 ;
2.8 2.6 2.4 2.2
2 1.8
fx = 1.7x 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2
-2
-1.5
-1
-0.5
-0.2
-0.4
0.5
1
1.5
2
2.5
3.2 3
2.8 2.6 2.4 2.2
2 1.8 1.6 1.4 1.2
1 0.8 0.6 0.4 0.2
-0.5 -0.2 -0.4
[1,2]上,
f(x)最大=f(2)=a2,f(x)最小=f(1)=a,
∴a2-a=a2,即 a(2a-3)=0,
∴a=0(舍)或 a=32>1,a=32.
必修1 第二章 基本初等函数(I)
栏目导引
当 0<a<1 时,f(x)=ax 为减函数, 在 x∈[1,2]上,f(x)最大=f(1)=a,f(x)最小=f(2)= a2. ∴a-a2=a2,∴a(2a-1)=0,∴a=0(舍)或 a= 12,
31.81.6 , 2.31.6 41.70.3 , 0.93.1;
1
5 1.50.2
,1.30.7
,
2 3
3
(1)1.72.5 <1.73
解:∵函数 y 在 1R.7上x 是增函数,
而指数2.5<3.
∴ 1.7 2.5<1.73
5
4.5
4
3.5
3
fx
=
1.7x
2.5
2
1.5
1
0.5
-2
-1
fx = 0.9x
0.5
1
1.5
2
2.5
3
3.5
4
练习
比较两个数的大小
1.080.3 > 0.983.1
钥匙
指数不同,底数也不同。 做题方法:引入中间量法(常用0或1)。
例3.设23-2x>0.53x-4,则x的取值范围是 ________. 解析: 23-2x>0.53x-4 ⇒23-2x>24-3x ⇒3-2x>4-3x ⇒x>1. 答案: {x|x>1}
∴a=12.综上可知,a=12或 a=32.
必修1 第二章 基本初等函数(I)
栏目导引
练一练
3.函数 f(x)= 1-2x的定义域是( )
A.(-∞,0]
B.[0,+∞)
C.(-∞,0)
D.(-∞,+∞)
解析: 要使函数有意义, 则1-2x≥0,即2x≤1, ∴x≤0.故选A. 答案: A
必修1 第二章 基本初等函数(I)
2.1.2指数函数 及其性质(二)
• 1.理解指数函数的单调性与底数a的关系, 能运用指数函数的单调性解决一些问题.
• 1.指数函数单调性在比较大小,解不等式及 求最值中的应用.(重点)
复习 指数函数在底数 0 a 1 及 a 1 这两种
情况下的图象和性质:
0 a 1
a 1
y=ax
y
y
y=ax
必修1 第二章 基本初等函数(I)
栏目导引
练一练:(1)求使不等式4x>32成立的x的集合;
(2)已知
a
4 5
x
a 2 (a>0,且a≠1),求数x的取值范
围。
例 4.函数 f(x)=ax(a>0,且 a≠1)在区间[1,2]
上的最大值比最小值大a,求 2
a
的值.
解析: 当 a>1 时,f(x)=ax 为增函数,在 x∈
栏目导引
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
17
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal