异面直线判定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异面直线巧辨别

——异面直线的三种判别方法在学习立体几何的时候,大家经常会遇到证明两直线异面的题目.这一类的题目大家看上去会觉得很简单,因为直观看上去两条直线很明显不在一个平面内,但是要证明起来却又会觉得不知从何处下手.这次的专题就要介绍给大家证明异面直线的三种最基本的思路:定义法、反证法和定理法.

定义法一一排除

我们知道,异面直线的定义就是不共在任何平面内的两条直线.因为空间内的两条直线只有四种位置关系:重合、平行、相交和异面.所以,根据定义,我们只需要排除两条直线重合、平行和相交的可能,就可以证明两直线异面了.

这种思路非常的简单,但是要分别证明不重合、不平行、不相交也是很烦琐的工作,所以,一般情况下,我们不常使用这种思路.(除非,你真的想不到其它的证明方法)

反证法找出矛盾

反证法是我们在数学证明时常用的一种思路,也就是先假定命题的结论不成立,然后进行推理,如果出现与已知条件矛盾或者与公理、定理矛盾的情况,就可以说明我们的假定不成立,也就说明了原命题是正确的.

在异面直线判定中利用反证法,也就是先假设两条直线共面.有的题目很简单,根据两直线共面可以推导出直线上所有的点均在同一平面,就可以推导出与已知条件矛盾;还有一类题目就需要我们分情况来讨论,假定两直线共面,分为两种情况,平行和相交,要分别针对这两种情况进行推导,找到矛盾.

定理法 简明直观

所谓定理法,就是应用异面直线的判定定理,平面的一条交线与平面内不过交点的直线为异面直线.也就是说,如果一条直线m 与一个平面α相交于一点P ,那么α上任意一条不经过点P 的直线n 都与m 互为异面直线.

(

这种思路是很直观的,应用这种思路时,我们只需要找到一个平面,使一条直线n 在平面上,另一条直线m 与该平面相交于P 点,然后就只需证明P 不在直线n 上就可以了.

实践一下

上面我们介绍了三种异面直线的判定方法,下面我们就一起来实践几道题目,看一下每道题目应该用哪种思路,并且也检验一下,刚刚我们介绍的三种不同的思路,你是不是已经真正掌握了.

实践1:四面体ABCD 中,,AC BC AD BD =≠,DM AB ⊥于M ,CN AB ⊥于N ,求证DM 与CN 是异面直线.

指点迷津:这里要我们证明DM 和CN 为异面直线,很显然,DM 是在平面ABD 上的,而CN 与平面ABD 交于点N ,所以,根据判定定理,我们只需要证明N 不在DM 上就可以了.这里AC BC =,CN AB ⊥,所以N 为AB 的中点,而AD BD ≠,DM AB ⊥,所以M 不是AB 的中点,也就是说,DM 不会过点N ,所以,DM 和CN 为异面直线.

实践2:已知直线a上有两点A、B,直线b上有一点C,若AC、BC都与直线b垂直,A、B、C不共线,求证直线a与b为异面直线.

指点迷津:这道题我们可以用两种思路来证明.

(一)定理法.用定理法的关键是找到一个平面,而这里,如图所示,直线a是在A、B、C所确定的平面上的,而直线b与平面ABC相交于一点C,现在只需要证明,直线a不过点C就可以了.而A、B、C不共线,所以,C不在直线a上,即a与b为异面直线.

(二)>

(三)反证法.假设a、b不是异面直线,则a、b共面,即A、B、C也都在这个平面内,根据已知条件,

⊥⊥,那么这个平面内,过直

AC b BC b

线b上一点C就有两条直线与其垂直,这与在同一平面内过直线上一点有且仅有一条直线与其垂直相矛盾.所以原假设错误,a、b为异面直线.

相关文档
最新文档