二次函数知识点讲解
(完整版)二次函数知识点汇总(全)
二次函数知识点(第一讲)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数的知识点总结
二次函数的知识点总结一、二次函数的定义二次函数是指一个形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是常数,且 $a \neq 0$。
在这个表达式中,$x$ 是自变量,$y$ 是因变量,$a$、$b$ 和 $c$ 是系数,其中 $a$ 称为二次项系数,$b$ 称为一次项系数,$c$ 称为常数项。
二、二次函数的性质1. 抛物线形状:二次函数的图像是一个向上或向下开口的抛物线。
2. 开口方向:当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
3. 对称轴:二次函数图像关于直线 $x = -\frac{b}{2a}$ 对称,这条直线称为抛物线的对称轴。
4. 顶点:抛物线的顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$。
5. 与 X 轴的交点:二次函数与 X 轴的交点称为根,可以通过解方程$ax^2 + bx + c = 0$ 来找到。
三、二次函数的图像1. 顶点式:$y = a(x - h)^2 + k$,其中 $(h, k)$ 是顶点坐标。
2. 交点式:$y = a(x - x_1)(x - x_2)$,其中 $x_1$ 和 $x_2$ 是与 X 轴的交点坐标。
3. 标准式:$y = ax^2 + bx + c$。
四、求解二次方程1. 因式分解法:当能够找到两个数,它们的和等于 $b$,积等于$c$ 时,可以使用因式分解法。
2. 完全平方法:通过配方将二次方程转化为完全平方的形式。
3. 公式法:使用二次公式 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$ 来求解。
五、二次函数的应用1. 物理运动:描述物体在重力作用下的自由落体运动和抛体运动。
2. 优化问题:在商业和工程中,用于寻找最大利润或最小成本。
3. 数据拟合:在统计学中,用于拟合数据点,找到最佳曲线。
二次函数所有知识点
二次函数所有知识点二次函数是高中数学中的重要概念之一,它在数学和实际应用中具有广泛的应用。
本文将全面介绍二次函数的所有知识点,包括定义、性质、图像特征、方程求解和应用等方面。
1. 二次函数的定义与性质二次函数是指具有形如f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0。
二次函数的定义域为所有实数集,因为平方项对于任何实数都有定义。
二次函数的图像通常是一个开口向上或向下的抛物线,抛物线的开口方向取决于a的正负。
2. 二次函数的图像特征二次函数的图像特征包括顶点坐标、对称轴以及开口方向。
对于一般形式的二次函数f(x) = ax² + bx + c,顶点的横坐标为x = -b/2a,纵坐标为f(-b/2a)。
对称轴为经过顶点的直线,方程为x = -b/2a。
开口方向取决于a的正负,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的方程求解解二次函数的方程常常涉及求根和因式分解两种方法。
对于一般形式的二次函数f(x) = ax² + bx + c,求根可以使用求根公式x = (-b ± √(b²-4ac))/(2a)。
需要注意的是,判别式b²-4ac的值决定了方程的解的性质。
当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程没有实数解。
此外,对于特殊形式的二次函数,如完全平方式、提公因式法等求根方法也很常见。
4. 二次函数的应用二次函数在实际应用中有着广泛的应用价值。
例如,抛物线的运动轨迹可以用二次函数来描述,如抛射物的运动、物体的自由落体等。
此外,二次函数还可以用于最优化问题,如求解二次函数的最值问题,例如求取抛物线上点的最大高度、最大飞行距离等问题。
二次函数还可以用于建模和预测,如财务分析中的收益和成本曲线、市场需求曲线的形成等。
二次函数知识点总结
二次函数知识点总结二次函数是高中数学中的一个重要概念,它在数学和实际问题中都有广泛的应用。
本文将对二次函数的定义、性质、图像及其相关内容进行总结。
一、二次函数的定义二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c为常数且a ≠ 0。
其中,a 表示二次项的系数,b 表示一次项的系数,c 表示常数项。
二次函数的定义域为全体实数集。
二、二次函数的性质1. 凹凸性:二次函数的凹凸性取决于a 的正负性。
当a > 0 时,函数图像开口向上,为凹函数;当 a < 0 时,函数图像开口向下,为凸函数。
2. 对称轴:二次函数的对称轴是 x = -b / (2a)。
对称轴是图像的中心线,函数图像关于对称轴对称。
3. 零点:二次函数的零点是指函数值等于零的 x 值。
二次函数的零点可以有 0、1 或 2 个。
当判别式 D = b^2 - 4ac > 0 时,有 2个不同的实零点;当 D = 0 时,有一个实零点;当 D < 0 时,没有实零点。
4. 最值:当二次函数的开口向上时,函数的最小值为 f(-b / (2a)) = c - (b^2 - 4ac) / (4a);当二次函数的开口向下时,函数的最大值为 f(-b / (2a)) = c + (b^2 - 4ac) / (4a)。
三、二次函数的图像二次函数的图像为抛物线,其开口方向、顶点、对称轴和零点等特征在前面已经介绍过。
关于图像的绘制,可以根据以下步骤进行:1. 确定顶点:顶点的横坐标为 -b / (2a),纵坐标为 f(-b / (2a))。
2. 确定对称轴:对称轴的方程为 x = -b / (2a)。
3. 确定开口方向:根据 a 的正负性可以确定开口方向。
4. 确定零点:根据判别式 D 的值可以确定零点的情况。
除了以上内容,二次函数还与一些相关概念有密切联系:1. 判别式:二次函数的判别式 D = b^2 - 4ac 可以用来判断二次函数的零点情况。
二次函数的相关知识点总结
二次函数的相关知识点总结一、二次函数的概念。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。
- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。
二、二次函数的图象。
1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
2. 抛物线的顶点坐标。
- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。
根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。
3. 抛物线的对称轴。
- 对称轴方程为x =-(b)/(2a)。
4. 抛物线的开口方向。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。
三、二次函数的性质。
1. 增减性。
- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。
- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。
2. 最值。
- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。
二次函数的知识点总结
二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。
其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。
2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。
4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。
零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。
5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。
二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。
通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。
2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。
3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。
4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。
三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。
2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。
二次函数知识点汇总(全)
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2.2y ax c=+的性质: 上加下减。
3.()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项cc>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑴当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑵当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.⑶当0总结起来,c决定了抛物线与y轴交点的位置.,,都确定,那么这条抛物线就是唯一确定的.总之,只要a b c二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=---;y ax bx cy ax bx c=++关于x轴对称后,得到的解析式是2()2y a x h ky a x h k=---;=-+关于x轴对称后,得到的解析式是()22. 关于y轴对称2=-+;y ax bx cy ax bx c=++关于y轴对称后,得到的解析式是2()2y a x h k=++;=-+关于y轴对称后,得到的解析式是()2y a x h k3. 关于原点对称2=-+-;y ax bx cy ax bx c=++关于原点对称后,得到的解析式是2()2=-+-;y a x h ky a x h k=-+关于原点对称后,得到的解析式是()24. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。
《二次函数》知识点解读
《二次函数》知识点解读二次函数是高中数学中一个重要的知识点,它是一种常见的函数类型,形式为y=ax^2+bx+c,其中a、b、c为常数,且a不能为0。
接下来,让我们来深入解读二次函数的相关知识点。
一、二次函数的基本形式与性质1. 基本形式:二次函数的基本形式为y=ax^2+bx+c,其中a为二次项系数,b为一次项系数,c为常数项。
a决定了二次函数的开口方向和开口的大小,a>0时开口向上,a<0时开口向下。
2.对称轴:对称轴是二次函数图像的一个重要性质,其方程为x=-b/(2a),对称轴将图像分为对称的两部分。
3. 零点:二次函数的零点是函数图像与x轴相交的点,即满足二次函数方程ax^2+bx+c=0的x值。
4. 判别式:二次函数的判别式为Δ=b^2-4ac,它决定了二次函数的零点个数和性质。
当Δ>0时,函数有两个不同的实根;当Δ=0时,函数有两个相等的实根;当Δ<0时,函数没有实根。
二、二次函数的图像特征1.开口方向:二次函数的开口方向由a的正负确定,a>0时开口向上,a<0时开口向下。
2.顶点:二次函数的顶点是函数图像的最高或最低点,坐标为(-b/(2a),f(-b/(2a)))。
3.最值:当二次函数开口向上时,函数的最小值为顶点的纵坐标;当二次函数开口向下时,函数的最大值为顶点的纵坐标。
4.对称性:二次函数具有对称性,即关于对称轴对称。
三、二次函数的变形1.平移变形:二次函数的图像可以通过平移来进行变形,平移的形式为y=a(x-h)^2+k,其中(h,k)为平移的距离和方向。
2.缩放变形:二次函数的图像可以通过缩放来进行变形,缩放的形式为y=a(x-h)^2+k,其中a为缩放的比例因子。
四、二次函数的应用1.物理学中的应用:二次函数常用于描述抛物线运动,如自由落体运动、抛体运动等。
2.经济学中的应用:二次函数常用于描述成本、收益、利润等与产量之间的关系。
3.工程学中的应用:二次函数常用于描述波形、曲线形状等。
二次函数的所有知识点
二次函数的所有知识点二次函数是高中数学中重要的内容之一,它涉及到许多重要的知识点。
下面我将分享一些关于二次函数的重要知识点。
1. 二次函数的定义:二次函数是具有形式f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
其中,a决定了二次函数的开口方向,正值会使函数开口向上,负值会使函数开口向下;b决定了二次函数的位置,正值会使函数向左移动,负值会使函数向右移动;c是二次函数的常数项,它决定了二次函数与y轴的交点。
2. 顶点和对称轴:二次函数的顶点是函数图像的最高点(如果开口向上)或最低点(如果开口向下),顶点的坐标可以通过公式x = -b/(2a)和y = f(-b/(2a))计算得到。
对称轴是过顶点且垂直于x轴的直线,它可以通过公式x = -b/(2a)获得。
3. 零点和因式分解:二次函数的零点是函数图像与x轴的交点,也就是方程f(x) = 0的解。
我们可以使用求根公式x = (-b ± √(b^2-4ac))/(2a)来求解二次函数的零点。
另外,二次函数也可以通过因式分解的方式求解零点,即将二次函数表示为两个一次函数的乘积形式。
4. 判别式与函数图像的性质:在求解二次函数的零点时,判别式D = b^2 - 4ac起到了重要的作用。
当判别式为正时,二次函数有两个不同的实根,图像与x轴有两个交点;当判别式为零时,二次函数有一个实根,图像与x轴有一个交点;当判别式为负时,二次函数没有实根,图像与x轴没有交点。
通过判别式可以判断二次函数的零点个数和函数图像的性质。
5. 最值与增减性:二次函数的最值可以通过顶点坐标得到,如果二次函数开口向上,则最小值为顶点的纵坐标;如果开口向下,则最大值为顶点的纵坐标。
关于函数的增减性,二次函数的增减性取决于a的正负性,当a > 0时,二次函数是上升的,当a < 0时,二次函数是下降的。
6. 对称性与轴对称图形:二次函数具有轴对称性,即关于对称轴对称。
二次函数必背知识点(精辟)
二次函数必背知识点_ _冲刺中考21. 定义:一般地,如果y ax bx c(a,b,c是常数,a 0),那么y叫做x的二次函数22. 二次函数y ax的性质(1)抛物线y ax2的顶点是坐标原点,对称轴是y轴.(2)函数y ax2的图像与a的符号关系.①当a 0时抛物线开口向上顶点为其最低点;②当a 0时抛物线开口向下顶点为其最高点(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y ax2(a 0).3•二次函数y ax bxc的图像是对称轴平行于(包括重合)y轴的抛物线24.二次函数y ax bx c用配方法可化成:yb , 4ac b22a,4aa相等,抛物线的开口大小、形状相同②平行于y轴(或重合)的直线记作x h.特别地,y轴记作直线x 0.方向、开口大小完全相同,只是顶点的位置不同2a x h k的形式,其中5•二次函数由特殊到一般,可分为以下几种形式:① 2 2y ax ;② y ax k :③2 2 2y a x h :④ y a x h k :⑤ y ax bx c.6•抛物线的三要素:开口方向、对称轴、顶点①a的符号决定抛物线的开口方向:当 a 0时,开口向上;当a 0时,开口向下;7.顶点决定抛物线的位置•几个不同的二次函数, 如果二次项系数a相同,那么抛物线的开口8.求抛物线的顶点、对称轴的方法(1 )公式法:y ax2bx c2b2a4ac b24a2(2)配方法:运用配方的方法,将抛物线的解析式化为y a x h k 的形式,得到顶点为(h , k ),对称轴是直线x h .(3 )运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失29•抛物线y ax bx c 中,a,b,c 的作用2(1) a 决定开口方向及开口大小,这与 y ax 中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置 •由于抛物线y ax 2 bx c 的对称轴是直线x—,故:①b 0时,对称轴为y 轴;②一0 (即a 、b 同号)时,对称轴2a ab在y 轴左侧;③一 0 (即a 、b 异号)时,对称轴在 y 轴右侧•a2(3) c 的大小决定抛物线 y ax bx c 与y 轴交点的位置•2当x 0时,y c ,二抛物线y ax bx c 与y 轴有且只有一个交点(0, c ): ①c 0 ,抛物线经过原点;②c 0,与y 轴交于正半轴;③ c 0 ,与y 轴交于负半顶点是( ―,4ac b),对称轴是直线x2a 4ab 2a以上三点中,当结论和条件互换时, 仍成立.如抛物线的对称轴在Ky 轴右侧,则一 a0.11. 用待定系数法求二次函数的解析式(1)一般式:y ax2 bx c•已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:y ax h? k.已知图像的顶点或对称轴,通常选择顶点式(3)交点式:已知图像与x轴的交点坐标x i、X2,通常选用交点式:y ax x1x x2.12. 直线与抛物线的交点2(1)y轴与抛物线y ax bx c得交点为(0, c).2(2)与y轴平行的直线x h与抛物线y ax bx c有且只有一个交点2(h, ah bh c).(3 )抛物线与x轴的交点二次函数y ax2 bx c的图像与x轴的两个交点的横坐标x1、x2,是对应一元2二次方程ax bx c 0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0 抛物线与x轴相交;②有一个交点(顶点在x轴上)0 抛物线与x轴相切;③没有交点0 抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 k ,则横坐标是ax 2 bx c k 的两个实数根•(5)—次函数 y kx n k 0的图像I 与二次函数 y ax bx c a 0的图像Gy kx n的交点,由方程组厂2的解的数目来确定:①方程组有两组不同的解y ax bx c时 I 与G 有两个交点;②方程组只有一组解时 I 与G 只有一个交点;③方程组无解时 I 与G 没有交点.2A X i,0,B X 2,0,由于X i 、X 2是方程ax bx c 0的两个根,故bc x 1 x 2 ,x 1 x 2 aa考点一、二次函数的概念和图像(3~8分)1、二次函数的概念2一般地,如果y ax bx c (a, b, c 是常数,a 0),那么y 叫做x 的二次函数。
《二次函数》知识点解读
《二次函数》知识点解读知识点1 二次函数的概念二次函数的概念:形如y=ax 2+bx+c (a≠0,a,b,c 为常数)的函数是二次函数.若b=0,则y=ax 2+c ;若c=0,则y=ax 2+bx ;若b=c=0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c 是二次函数的一般式.在二次函数y=ax 2+bx+c (a≠0,a,b,c 为常数)中,其中ax 2叫做二次项,a 叫做二次项的系数;bx 叫做一次项,b 叫做一次项的系数;c 叫做常数项.为什么要规定二次项的系数a≠0?当a=0时,函数为y=bx+c 是一次函数,由此可见,一次函数是二次函数的特例.(1)a≠0是保证y 是x 的二次函数的重要条件,不能缺少.b 、c 可以为0.(2)因为解析式是整式,所以自变量x 的取值范围是全体实数.(3)确定二次函数的解析式就是确定待定系数a ,b ,c ,一般需要三个条件.(4)识别二次函数的条件:必须是整式,自变量的最高次数为2,即必须有二次项.例1 下列函数中,哪些是二次函数?(1)y=2+5x 2 (2)322+=x y (3)y=3x (x+5) (4)225x y = (5)y=x 2-4(4-x )2分析:二次函数y=ax 2+bx+c (a≠0,a,b,c 为常数)是整式函数,二次函数不一定是一般式,通过化简变形可以化成一般式,注意隐含条件a≠0.解:(1)(3)(4)(5)是二次函数;(2)不是.例2 已知,函数22)2(-+=k xk y 是关于x 的二次函数,你能确定k 的值吗?请说明理由. 分析:要想确定k 的值,可由二次函数的定义来求解.解:由题意,得{22022=-≠+k k解得k=2. 所以,当k=2时,函数22)2(-+=k xk y 是关于x 的二次函数. 知识点2 二次函数在实际问题中的应用例3 某商场第一个月销售额为50万元,第三个月的销售额y (万元)与月平均增长率x 之间的函数关系如何表示?解析:函数关系式是y=50(1+x )2,即y=50x 2+100x+50.点评 由上例,归纳出函数解析式均为整式(这表明这种函数与一次函数有共同的特征).自变量的最高次数是2(这与一次函数不同).例4 篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y (m 2)与长x 之间的函数关系式,并指出自变量的取值范围.分析:由矩形面积公式,写出二次函数关系式.解答:篱笆墙长30m ,一边长为x ,则另一边长为(30-x ),面积y (m 2)与长x 之间的函数关系式:y=x (15-x )=-x 2+15x.其自变量x 的取值范围:0<x <15.。
二次函数所有知识点
二次函数所有知识点二次函数是数学中非常重要的一个概念,在数学学习和实际应用中都有着广泛的用途。
接下来,咱们就一起详细地了解一下二次函数的各种知识点。
一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要特别注意的是,二次项系数 a 不能为 0,如果 a = 0,那么函数就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当 a > 0 时,抛物线开口向上;当a < 0 时,抛物线开口向下。
抛物线的对称轴是直线 x = b /(2a)。
顶点坐标为(b /(2a),(4ac b²)/(4a))。
通过观察抛物线的对称轴和顶点坐标,可以了解抛物线的基本特征和变化趋势。
三、二次函数的性质1、单调性当 a > 0 时,在对称轴左侧(即 x < b /(2a)),函数单调递减;在对称轴右侧(即 x > b /(2a)),函数单调递增。
当 a < 0 时,情况则相反,在对称轴左侧,函数单调递增;在对称轴右侧,函数单调递减。
2、最值当 a > 0 时,函数有最小值,且在顶点处取得,最小值为(4ac b²)/(4a)。
当 a < 0 时,函数有最大值,同样在顶点处取得,最大值为(4acb²)/(4a)。
四、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)这是最常见的形式,通过给定 a、b、c 的值,可以确定函数的图像和性质。
2、顶点式:y = a(x h)²+ k(a ≠ 0)其中(h,k)是抛物线的顶点坐标。
这种形式可以直接看出顶点的位置。
3、交点式(两根式):y = a(x x₁)(x x₂)(a ≠ 0)其中 x₁和 x₂是抛物线与 x 轴交点的横坐标。
五、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0)的图像与 x 轴的交点的横坐标,就是一元二次方程 ax²+ bx + c = 0(a ≠ 0)的根。
二次函数重要知识点归纳
二次函数重要知识点归纳二次函数是高中数学中的重要内容,下面是关于二次函数的重要知识点的归纳。
1. 二次函数的定义:二次函数是具有形式f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0。
2.二次函数的图象特点:二次函数的图象是一个抛物线,其开口方向由二次函数的系数a的正负决定。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
3.二次函数的顶点:二次函数的顶点是抛物线的最低点(当a>0时)或最高点(当a<0时)。
顶点的坐标为(-b/2a,f(-b/2a))。
4.二次函数的对称轴:二次函数的对称轴是通过顶点的直线,其方程为x=-b/2a。
5. 二次函数的零点:二次函数的零点是函数图象与x轴的交点。
可以通过解二次方程ax² + bx + c = 0来求得二次函数的零点。
6. 二次函数的判别式:对于二次函数ax² + bx + c,判别式的值为D = b² - 4ac。
判别式的值可以用来判断二次函数的零点情况。
当D > 0时,二次函数有两个不相等的实数根;当D = 0时,二次函数有两个相等的实数根;当D < 0时,二次函数没有实数根。
7.二次函数的最值:当a>0时,二次函数的最小值为函数的顶点值;当a<0时,二次函数的最大值为函数的顶点值。
可以通过求解二次方程f'(x)=0来找到最值点。
8. 二次函数的平移:对于一般式为f(x) = ax² + bx + c的二次函数,横向平移h个单位和纵向平移k个单位后的函数为f(x-h) + k。
9. 二次函数的因式分解:对于一般式为f(x) = ax² + bx + c的二次函数,若可以因式分解成f(x) = a(x-x₁)(x-x₂)的形式,则x₁和x₂为f(x)的零点。
10. 二次函数的导数:对于二次函数f(x) = ax² + bx + c,其导数f'(x) = 2ax + b。
二次函数所有知识点
二次函数所有知识点二次函数是一种二次方程的形式,可以表示为y = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
它是初中数学的一个重要内容,也是高中数学的一个基础概念。
下面将介绍二次函数的所有知识点,包括定义、图像、性质、解析式、求解、应用等方面。
一、定义和图像:1. 二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c是常数,且a不等于0。
2.二次函数的图像:二次函数的图像是一条抛物线,开口的方向由a 的正负决定,开口向上对应a大于0,开口向下对应a小于0。
抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为二次函数的解析式。
二、性质和变换:1. 零点和根:对于二次函数y = ax^2 + bx + c,其零点即为使得函数值等于0的x值,可以用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求出。
2.对称轴:二次函数的对称轴为过顶点的直线,其方程为x=-b/2a。
3.对称性:二次函数关于对称轴有轴对称性,即函数值的符号关系和x关于对称轴的关系相同。
4.极值和最值:对于开口向上的二次函数,其顶点是最小值点,对于开口向下的二次函数,其顶点是最大值点。
5.平移和伸缩:二次函数可以通过平移和伸缩变换得到,平移可以改变顶点的位置,伸缩可以改变开口的大小。
6.切线和法线:二次函数的切线是与抛物线仅有一个交点的直线,法线是与切线垂直的直线,通过切点可求出切线和法线的斜率。
三、解析式和方程:1. 一般式和顶点式:二次函数的解析式可以有多种表示方法,常见的有一般式和顶点式。
一般式为y = ax^2 + bx + c,顶点式为y = a(x - h)^2 + k,其中(h, k)为顶点的坐标。
2.平方完成和配方法:求解二次方程可以使用平方完成、配方法和求根公式等方法。
平方完成是将一般式转化成顶点式的过程,配方法是将一般式变形成可用求根公式求解的形式。
数学二次函数知识点总结【通用6篇】
数学二次函数知识点总结【通用6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲致辞、法律文书、心得体会、岗位职责、鉴定评语、实习文案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, legal documents, personal experiences, job responsibilities, appraisal comments, internship copywriting, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学二次函数知识点总结【通用6篇】作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。
《二次函数》知识点解读
《二次函数》知识点解读二次函数是数学中的一种重要函数类型,它在图形学、物理学、经济学等多个学科中广泛应用。
本文将从定义、性质、图像、最值、应用等几个方面对二次函数进行解读。
一、定义二次函数是一种形如y = ax^2 + bx + c的函数,其中a、b、c是常数,且a ≠ 0。
函数中的x的最高次数为2,因此称为"二次"函数。
a决定了函数的开口方向和形状,b决定了函数在x轴上的平移,c决定了函数图像在y轴上的平移。
二、性质1.对称性:二次函数的图像关于与顶点的纵轴对称。
2.单调性:当a>0时,二次函数向上开口,凹上凸下;当a<0时,二次函数向下开口,凹下凸上。
3. 零点:二次函数的零点是函数与x轴的交点,即满足ax^2 + bx+ c = 0的解。
4.最值:当a>0时,函数的最小值为顶点的纵坐标;当a<0时,函数的最大值为顶点的纵坐标。
三、图像二次函数的图像通常为开口向上或向下的抛物线。
根据函数的a值的正负关系,可以得到不同形状的抛物线。
当a>0时,抛物线开口向上,顶点在最低点;当a<0时,抛物线开口向下,顶点在最高点。
函数的b值影响了抛物线在x轴方向上的平移,c值影响了抛物线在y轴方向上的平移。
四、最值对于二次函数y = ax^2 + bx + c,根据函数的开口方向和抛物线的顶点位置,可以知道函数的极值。
当a > 0时,函数是最小值,即抛物线的顶点是函数的最低点;当a < 0时,函数是最大值,即抛物线的顶点是函数的最高点。
五、应用1.物理学中,二次函数可以用于描述自由落体运动、抛体运动等。
2.经济学中,二次函数可以用于描述成本、利润等与产量的关系。
3.图形学中,二次函数可以用于生成平滑的曲线和曲面。
六、解题技巧1.求二次函数的顶点坐标:二次函数的顶点坐标可以通过公式x=-b/2a和y=c-b^2/4a来求得。
2. 求二次函数的零点:二次函数的零点可以通过求解ax^2 + bx +c = 0的解来得到,可以使用因式分解、配方法、求根公式等方法进行求解。
二次函数的知识点归纳
二次函数的知识点归纳二次函数是高中数学中的一个重要的内容,大致包括以下几个方面的知识点:一、二次函数的定义及性质:1.二次函数的定义:二次函数是指一个自变量的平方是唯一的函数表达式。
2. 二次函数的普通形式:y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
3.二次函数的图象特点:二次函数的图象为开口向上或向下的抛物线,其顶点是最低点或最高点,对称轴为x=-b/2a。
4.二次函数的对称性:二次函数关于对称轴对称。
5.二次函数的奇偶性:若a=0,则二次函数为一次函数,是奇函数;若a≠0,则二次函数既有奇偶函数性质,对于a>0是偶函数,对于a<0是奇函数。
二、二次函数的图象及相关概念:1.抛物线的几何性质:对称性、顶点、准线、焦点等。
2.顶点坐标的求法:通过对称轴的坐标可以求得顶点的坐标。
3.准线与焦点:对于横轴为x轴的抛物线,准线为y=c-b^2/(4a),焦点为(a,c-1/(4a));对于纵轴为y轴的抛物线,准线为x=c-b^2/(4a),焦点为(c-1/(4a),a)。
4. 与坐标轴的交点:抛物线与$x=0$相交的点为$a$;与$y=0$相交的点为$x_1、x_2$,可以通过求根公式(-b±√(b^2-4ac))/2a求得。
三、二次函数的性质与求值:1.单调性:对于抛物线开口向上,那么在对称轴左侧,函数递减;在对称轴右侧,函数递增。
2.极值与最值:对于抛物线开口向上,函数的最小值为顶点的纵坐标;对于抛物线开口向下,函数的最大值为顶点的纵坐标。
3.零点:二次函数与$x$轴的交点为零点或根,可以通过求根公式得到。
4.方程的解:二次函数与$y$轴的交点称为方程的解,可以通过将函数的等于0进行求解得到。
四、二次函数的拟合与应用:1.拟合抛物线:根据已知的点坐标,可以通过构造方程组来确定二次函数,从而拟合出抛物线。
2.抛物线在生活中的应用:抛物线的形状在现实生活中有很多应用,如建筑设计中的拱门、喷泉的喷水形状等。
二次函数必备知识点
二次函数必备知识点
二次函数是一个非常重要的数学概念,其定义是形如y=ax²+bx+c(其中a, b, c为常数,且a≠0)的函数。
以下是二次函数的一些必备知识点:
1. 顶点和对称轴:二次函数的顶点可以通过公式法或配方法找到。
公式法是将二次函数的一般式化为顶点式,从而得到顶点的坐标和对称轴的方程。
配方法是先将二次函数的一般式化为完全平方的形式,从而得到顶点的坐标和对称轴的方程。
2. 开口方向和开口大小:二次函数的开口方向由系数a决定,a>0时,开口方向向上;a<0时,开口方向向下。
而a的绝对值决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
3. 最值:对于开口向上的二次函数,其最小值出现在顶点处;对于开口向下的二次函数,其最大值出现在顶点处。
4. 二次函数与一元二次方程的关系:一元二次方程的根是使二次函数值为0的x的值。
因此,一元二次方程的解与二次函数的零点有关。
5. 应用题:在实际问题中,经常会涉及到求最值、判断规则、建立模型等问题,这些问题都可以通过二次函数来解决。
例如,在物理中,加速度、速度和位移之间的关系可以用二次函数表示;在经济中,成本、收入和利润之间的关系也可以用二次函数表示。
以上是二次函数的一些必备知识点,掌握这些知识点可以帮助我们更好地理解和应用二次函数。
二次函数知识点归纳
知识点归纳:一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ¹)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ¹,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+ 的性质: 上加下减。
`3. ()2y a x h =-的性质: 左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:a 的符号开口方向 顶点坐标对称轴性质0a > 向上()00,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号开口方向 顶点坐标对称轴性质0a > 向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标对称轴性质0a > 向上()0h ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.0a < 向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()h k ,X=h x h >时,y 随x 的增大而增大;x h<时,y 随x 的增大而减小;x h =时,y 有最小值k . 0a < 向下 ()h k , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴2y ax bx c =++沿y 轴平移:向上(下)平移m 个单位,2y ax bx c =++变成2y ax bx c m =+++(或2y ax bx c m =++-)⑵2y ax bx c =++沿轴平移:向左(右)平移m 个单位,2y ax bx c =++变成2()()y a x m b x m c=++++(或2()()y a x m b x m c =-+-+)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x aa 骣-琪=++琪桫,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a 骣-琪-琪桫,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a 时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a 骣-琪-琪桫,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ¹);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ¹);3. 两根式:12()()y a x x x x =--(0a ¹,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -?时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ¹.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴2bx a=-在y 轴左边则0ab >,在y 轴的右侧则0ab <,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac D=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ¹,其中的12x x ,是一元二次方程()200ax bx c a ++=?的两根.这两点间的距离2214b acAB x x a-=-=.② 当0D=时,图象与x 轴只有一个交点; ③ 当0D<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++?本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系 0D> 抛物线与x 轴有两个交点 二次三项式的值可正、可零、可负 一元二次方程有两个不相等实根0D= 抛物线与x 轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根0D< 抛物线与x 轴无交点 二次三项式的值恒为正一元二次方程无实数根.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形式为 .
3.二次函数 的图像是对称轴平行于(包括重合) 轴的抛物线.
4.二次函数 用配方法可化成: 的形式,其中 .
5.二次函数由特殊到一般,可分为以下几种形式:① ;② ;③ ;④ ;⑤ .
6.抛物线的三要素:开口方向、对称轴、顶点.
9.抛物线 中, 的作用
(1) 决定开口方向及开口大小,这与 中的 完全一样.
(2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线
,故:① 时,对称轴为 轴;② (即 、 同号)时,对称轴在 轴左侧;③ (即 、 异号)时,对称轴在 轴右侧.
(3) 的大小决定抛物线 与 轴交点的位置.
【巩固练习】
1.已知二次函数 ,当 时 .
2.下列各式中,y是x的二次函数的是( )
A. B. C. D. .
3.若 是二次函数,则m=.
4.若函数 是关于x的二次函数,则m的取值范围为.
5.已知函数 是二次函数,则m=.
题型二:一般式化为顶点式
例4分别运用公式法和配方法将二次函数y=x2-4x+ 6化为y=(x—h)2+k的形式:y=___________.
用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立条件,根据不同条件选择不同的设法:
(1)设一般式:y=ax2+bx+c(a≠0)
若已知条件是图像上的三个点,则设所求二次函数为Байду номын сангаас=ax2+bx+c,将已知条件代入,求出a,b,c的值。
(2)设交点式:y=a( )( )(a≠0)
若已知二次函数图像与x轴的两个交点的坐标为( ,0),( ,0),设所求二次函数为
【巩固练习】
分别用配方法和公式法把二次函数y=x2-4x+5化成y=(x—h)2+k的形式.
题型三:二次函数的性质
例5抛物线 与 的形状相同,则a=
例6二次函数 的图象,如图所示,根据图象可得a、b、c与0的大小关系是()
A.a>0,b<0,c<0 B.a>0,b>0,c>0C.a<0,b<0,c<0D.a<0,b>0,c<0
y=a( )( ),将第三点(m,n)的坐标(其中m、n为已知数)或其他已知条件代入,求出待定系数a,最后将解析式化为一般形式。
(3)设顶点式:y=a( ) +k(a≠0)
若已知二次函数图像的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为
y=a( ) +k(a≠0),将已知条件代入,求出待定系数,最后将解析式化为一般形式。
(6)抛物线与 轴两交点之间的距离:若抛物线 与 轴两交点为 ,由于 、 是方程 的两个
题型一:二次函数的定义相关
例1下列函数中,是二次函数的是.
① ;② ;③ ;④ ;
⑤ ;⑥ ;⑦ ;⑧ .
例2如果函数y=(k-3) +kx+1是二次函数,则k的值一定是_______.
例3二次函数y=x2+2x-7的函数值是8,那么对应的x的值是()A.3 B.5 C.-3和5 D.3和-5 .
① 的符号决定抛物线的开口方向:当 时,开口向上;当 时,开口向下;
相等,抛物线的开口大小、形状相同.
②平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 .
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
8.求抛物线的顶点、对称轴的方法
12.直线与抛物线的交点
(1) 轴与抛物线 得交点为(0, ).
(2)与 轴平行的直线 与抛物线 有且只有一个交点( , ).
(3)抛物线与 轴的交点
二次函数 的图像与 轴的两个交点的横坐标 、 ,是对应一元二次方程 的两个实数根.抛物线与 轴的交点情况可以由对应的一元二次方程的根的判别式判定:
①有两个交点 抛物线与 轴相交;
例10二次函数y=(x-1)(x+2)的顶点为_________,对称轴为________.
例11二次函数 的顶点坐标为.
例12二次函数y=-x2+6x-5,当x时,y随x的增大而减小.
例13已知点A(2, ),B(4, )在二次函数 的图像上,则 .
(1)公式法: ,∴顶点是 ,对称轴是直线 .
(2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
二次函数知识点讲解
学生编号:年级:九年级课时数:2
学生姓名:辅导科目:数学学科教师:
课题
授课日期及时段
教学目的
教学内容
【知识点梳理归纳】
1.定义:一般地,如果 是常数, ,那么 叫做 的二次函数.
2.二次函数 的性质
(1)抛物线 的顶点是坐标原点,对称轴是 轴.
(2)函数 的图像与 的符号关系.
①当 时 抛物线开口向上 顶点为其最低点;
②有一个交点(顶点在 轴上) 抛物线与 轴相切;
③没有交点 抛物线与 轴相离.
(4)平行于 轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 ,则横坐标是 的两个实数根.
(5)一次函数 的图像 与二次函数 的图像 的交点,由方程组 的解的数目来确定:①方程组有两组不同的解时 与 有两个交点;②方程组只有一组解时 与 只有一个交点;③方程组无解时 与 没有交点.
当 时, ,∴抛物线 与 轴有且只有一个交点(0, ):
① ,抛物线经过原点;② ,与 轴交于正半轴;③ ,与 轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 轴右侧,则 .
10.几种特殊的二次函数的图像特征如下:
函数解析式
开口方向
对称轴
顶点坐标
当 时
开口
当 时
开口
11.二次函数的解析式的求法
例7二次函数y=2(x+3)(x-1)的x轴的交点的个数有_______个,交点坐标为_____________.
例8y=x2-3x-4与x轴的交点坐标是__________,与y轴交点坐标是____________.
例9二次函数y=-x2+6x+3的图象顶点为_________对称轴为_________.