结构力学习题集矩阵位移法习题及答案老八校

合集下载

结构力学(9.14.1)--矩阵位移法习题2

结构力学(9.14.1)--矩阵位移法习题2

5kN m
8m 8m
8m
三 . 整体分析
12. 试求图示结构 ( 不计轴变 ) 的荷载列阵 ( 先处理法 ).
1(1,0,2) 2(1,0ቤተ መጻሕፍቲ ባይዱ3) 3(1,0,3)
X1
X2
4(0,0,0)
P


X
1
0
X
2

0
四 . 求杆端力
1. 连续梁在一般荷载作用下 , 单元杆端力由下式计算 . 是否正确 ?
6
48

4
2
1(0,0,0)
12
1 6
k



6
48

4(1,0,3)
3
2(0,0,0)
3
1
2

3
例 . 不计轴变 , 作弯矩图
已知 : 各杆长均为 12m, 线刚度均为 12
P 10kN, q 5kN / m
P 10kN, q 5kN / m
解 : 1 6 1 6
k
1


6
1
48 6
6 1
24

6

6
24
6
48

3(1,0,2)
2
1
1 6 1 6 1 0

k
1

6 1
48 6
6 1
24

2
0
63 1
6 24
EI
EI
EA 2l

2 2
l
l
三 . 整体分析
4(1,0,0)
5(1,0,0)

结构力学习题详解

结构力学习题详解

第9章矩阵位移法典型题1. 用矩阵位移法计算图9.1a连续梁,并画M图,EI=常数。

图9.6解:(1)建立坐标系,对单元和结点编号如图9.6b,单元刚度矩阵单元定位向量λ①=(01)T,λ②=(12)T,λ③=(20)T(2)将各单元刚度矩阵中的元素按单元定位向量在K中对号入座,得整体刚度矩阵(3)连续梁的等效结点荷栽(4)将整体刚度矩阵K和等效结点荷载P代人基本方程(5)求杆端力并绘制弯矩图(图9.6c)。

2. 图9.2a结构,荷载只在(1),(3)杆上作用,已知(1),(3)杆在局部坐标系(杆件箭头方向)中的单元刚度矩阵均为(长度单位为m,角度单位为rad,力单位为kN)杆件(2)的轴向刚度为EA=1.5×l06kN,试形成结构的整体刚度矩阵。

图9.2解:(1)结构的结点位移编号及局部坐标方向(杆件箭头方向)见图9.1b。

(2)单元(1),(3)的局部与整体坐标方向一致,故其在整体坐标系中的单元刚度矩阵与局部坐标系中的相同。

(3)桁架单元(2)的刚度矩阵桁架单元只有轴向的杆端力和杆瑞位移,(3)定位向量单元(1):单元(2):单元(3):(4)整体刚度矩阵=3. 求图9.3a结构整体刚度矩阵。

各标EI相同,不考轴向变形。

图9.3解:(1)单元结点编号(图9.8b)(2)单元的定位向量(0051)T(0054)T(5354)T(5200)T (3)单元刚度矩阵(4)整体刚度矩阵第10章结构动力计算典型题1. 判断图10.1自由度的数量。

图10.12. 列出图10.2a结构的振动方程,并求出自振频率。

EI=常数。

图1解:挠度系数:质点m的水平位移y为由惯性力和动荷载共同作用引起:。

自振频率:3. 图10.3a简单桁架,在跨中的结点上有集中质量m。

若不考虑桁架自重,并假定各杆的EA相同,试求自振频率。

图10.3分析:结构对称,质量分布对称,所以质点m无水平位移,只有竖向位移,为单自由度体系。

结构力学考研《结构力学习题集》位移法

结构力学考研《结构力学习题集》位移法

第六章 位移法一、是非题1、位移法未知量的数目与结构的超静定次数有关。

2、位移法的基本结构可以是静定的,也可以是超静定的。

3、位移法典型方程的物理意义反映了原结构的位移协调条件。

4、结 构 按 位 移 法 计 算 时 , 其 典 型 方 程 的 数 目 与 结 点 位 移 数 目 相 等 。

5、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。

6、超 静 定 结 构 中 杆 端 弯 矩 只 取 决 于 杆 端 位 移 。

7、位 移 法 可 解 超 静 定 结 构 ,也 可 解 静 定 结 构 。

8、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。

/2/22l l θθC9、图示梁之EI =常数,固定端A 发生顺时针方向之角位移θ,由此引起铰支端B 之转角(以顺时针方向为正)是 -θ/2 。

10、用位移法可求得图示梁B 端的竖向位移为ql EI 324/。

q l11、图 示 超 静 定 结 构 , ϕD 为 D 点 转 角 (顺 时 针 为 正), 杆 长 均 为 l , i 为 常 数 。

此 结 构 可 写 出 位 移 法 方 程111202i ql D ϕ+=/。

二、选择题1、位 移 法 中 ,将 铰 接 端 的 角 位 移 、滑 动 支 承 端 的 线 位 移 作 为 基 本 未 知 量 : A. 绝 对 不 可 ; B. 必 须 ;C. 可 以 ,但 不 必 ;D. 一 定 条 件 下 可 以 。

2、AB 杆 变 形 如 图 中 虚 线 所 示 , 则 A 端 的 杆 端 弯 矩 为 :A.M i i i l AB A B AB =--426ϕϕ∆/ ;B.M i i i l AB A B AB =++426ϕϕ∆/ ;C.M i i i l AB A B AB =-+-426ϕϕ∆/ ;D.M i i i l AB A B AB =--+426ϕϕ∆/。

李廉锟《结构力学》(上册)配套题库【课后习题】(矩阵位移法)【圣才出品】

李廉锟《结构力学》(上册)配套题库【课后习题】(矩阵位移法)【圣才出品】

第10章矩阵位移法复习思考题1.矩阵位移法的基本思路是什么?答:矩阵位移法的基本思路:(1)单元分析单元分析是指将结构先分解为有限个较小的单元,即离散化,在较小的范围内分析单元的内力与位移之间的关系,建立单元刚度矩阵或单元柔度矩阵。

(2)整体分析整体分析将将单元分析中的各单元集合成原来的结构,要求各单元满足原结构的几何条件(包括支承条件、结点处的变形连续条件)和平衡条件,建立整个结构的刚度方程或柔度方程,以求解原结构的内力和位移。

(3)支承条件引入支承条件,修改结构原始刚度方程。

(4)求解解算结构刚度方程,求出结点位移,计算各单元杆端力。

2.试述矩阵位移法与传统位移法的异同。

答:矩阵位移法与传统位移法的异同点:(1)相同点传统位移法的基本原理,是以在小变形的基础的结构体系中,内力是可以叠加的,位移也是可以叠加的,而矩阵位移法是按传统位移法的基本原理运用矩阵计算内力和位移的方法。

因此矩阵位移法和传统位移法的基本原理在实质上是一致的。

(2)不同点①矩阵位移法中一般考虑杆件轴向变形的影响,传统位移法忽略杆件的轴向变形;②矩阵位移法一般在计算机上进行计算,可以解决大型复杂问题;传统位移法的计算手段一般是手算,只用来解决简单问题。

3.矩阵位移法中,杆端力、杆端位移和结点力、结点位移的正负号是如何规定的?答:杆端力沿局部坐标系的、的正方向为正,杆端弯矩逆时针为正;杆端位移的正负同杆端力和弯矩。

结点力沿整体坐标系x、y的正方向为正,结点力偶逆时针为正;结点位移的正负同结点力和力偶。

4.为何用矩阵位移法分析时,要建立两种坐标系?答:因为单元刚度矩阵是建立在杆件的局部坐标系上的,但对于整体结构,各单元的局部坐标系可能不尽相同,在研究结构的几何条件和平衡条件时,需要选定一个统一的坐标系即为整体坐标系,另外按局部坐标系建立的单元刚度矩阵可以通过坐标转换到整体坐标系中,从而得到整体坐标系中的单元刚度矩阵。

故建立两种坐标系使矩阵位移法的思路更清晰,物理意义更明确,且不会影响计算结果。

习题课1 矩阵位移法(含答案作业)_518706462

习题课1  矩阵位移法(含答案作业)_518706462

4
5
6
7
8
k
i = 2,3 (1) 54
+ k
i = 2,3 (1) 55
(2) (3) (3) (3) k16 k15 k16 k14 0 (2) (3) (3) (3) k26 k25 k26 k24 0 (2) (3) (3) (3) k36 k34 k35 k36 0
+ k
+
(i ) 33
k
3EIa 2 a 3 + b3
A
3EIab a 3 + b3
B A
3EIab a 3 + b3
3EIb 2 a 3 + b3
B
3EIa a 3 + b3
e θA =1
−3EIa a 3 + b3
3EIb a 3 + b3
e θB =1
−3EIb a 3 + b3
[k ]
e
=
a2 ab
ab b2
e
3EI a 3 + b3
{F }
u2
v2 θ 2 θ 3 ]
−M 0 ]
[0 M 0
0 0 2M 0
T
4
3
3
4
5
0
0
6
2 2 2 2 2 2 k12 k13 k14 k15 k16 k11
2 2 2 2 2 2 k22 k24 k25 k21 k23 k26 2 2 2 2 2 2 k32 k34 k35 k31 k33 k36 2 2 2 2 2 2 k42 k45 k44 k41 k46 k43
y
x
解: T 用位移法求解,未知量为 {∆} = [θ 2 v3 ] 。 1) 杆端弯矩表达式

第8章矩阵位移法例题 结构力学

第8章矩阵位移法例题 结构力学

0
K
(2)
0

0 0.0142

0 0.060 0.3396
2.8285 0 0
2.8285
0 0.0142
0.060 0
0.0142
0
0.060
0.
1698
0
105
0.060
0.3396
4.列出整体坐标表示的单元刚度矩阵
单元(1)(3)的单元坐标和整体坐标一致,所以
4 0
0 4 0
l
1 ql
1 ql
2
2
p
1 pl 8
1 pl 8
l
l
2
2
1p
1p
2
2
第8章矩阵位移法
例题 2 (1)求各单元在局部坐标系中固端力向量
例题 2
第8章矩阵位移法
(2)将
转换成
单元①
单元②
例题 2
第8章矩阵位移法
(3)利用单元定位向量,将
中元素反号后叠加集成
第8章矩阵位移法
例题 3
图示桁架,已知结点位移列阵
0
0
0.04 0.12
0
0.04 0.12
K
(1)
K
(3)
0
0.48
0 4
0.12 0
0.24 0
105
对 称
0.04 0.12
0.48
单元(2)的单元坐标和整体坐标不一致,必须经过以下变换
第一种方法: 直接代入公式:
2 1 2i 2 BCx l2 Cy
(e)
K
1 2i (B l2 )CxC y
0
0
1
第8章矩阵位移法

9矩阵位移法习题.docx

9矩阵位移法习题.docx

第9章矩阵位移法习题解答习题9・1是非判断题(1)矩阵位移法既可计算超静定结构,又可以计算静定结构。

(T )(2)矩阵位移法棊木未知量的数冃与位移法棊木未知量的数冃总是相等的。

(|T*) F(3)单元刚度矩阵都具有对称性和奇界性。

(F )(4)在矩阵位移法中,整体分析的实质是建立各结点的平衡方程。

(T )(5)结构刚度短阵与单元的编号方式冇关。

(F )(6)原荷载与对应的等效结点荷载使结构产生相同的内力和变形。

(F )【解】(1)正确。

(2)错误。

位移法中某些不独立的杆端位移不计入基本未知量。

(3)错谋。

不计结点线位移的连续梁单元的单刚不具奇异性。

(4)正确。

(5)错误。

结点位移分量统-•编码会影响结构刚度矩阵,但单元或结点编码则不会。

(6)错误。

二者只产生相同的结点位移。

习题9.2填空题(1) ______________________________________________________________ 矩阵位移法分析包含三个基本环节,其一是结构的___________________________________ ,其二是_________ 分析,-其三是______ 分析。

(2)已知某单元©的定位向量为[3 5 6 7 8 9]丁,则单元刚度系数紜应叠加到结构刚度矩阵的元素—中去。

(3) ________________________________________________________________________ 将非结点荷载转换为等效结点荷载,等效的原则是____________________________________ o(4)矩阵位移法屮,在求解结点位移之前,主要工作是形成_____________________ 矩阵和_______________ 列阵。

(5)用矩阵位移法求得某结构结点2的位移为J2=[w2V2 ft]T=[O.S 0.3 0.5]丁,单元①的始、末端结点码为3、2,单元定位向量为= [0 0 0 3 4 5]T,设单元与兀轴之间的夹角为« = |,则(6 )用短阵位移法求得平面刚架某单元在单元坐标系中的杆端力为戸=[7.5 -48 -70.9 -7.5 48 -121.09]7,则该单元的轴力F* _______________________ k N。

结构力学位移法题及答案34862说课材料

结构力学位移法题及答案34862说课材料

结构力学位移法题及答案34 8 6 2超静定结构计算位移法一、判断题:1、判断下列结构用位移法计算时基本未知量的数目(1)PC EA= oo DEl=EI EIEA--- ------------- o2、位移法求解结构内力时如果 M P 图为零,则自由项R 1P 一定为零3、位移法未知量的数目与结构的超静定次数有关。

4、 位移法的基本结构可以是静定的,也可以是超静定的。

5、 位移法典型方程的物理意义反映了原结构的位移协调条件。

、计算题:i 相同EIEI 2 EI iAFEI =8 GEl iH(4)(5)2EI4EI2EIEA 4EIEI=2EI4EI(3)El=13、用位移法计算图示结构并作 M 图。

E I =常数14、 求对应的荷载集度q 。

图示结构横梁刚度无限大。

已知柱顶的水平 位移为 512/(3EI)。

q 二 ElElEI 8m_——I —―— —12m12m------------------ -P -------------------- ---15、 用位移法计算图示结构并作 M 图。

EI =常数。

1P !1 P12EI2EI EI4 I/2 I/2T1- I1 ------ d ------- 1 -----------In _ l20kN19、20、23、A16kN/mC E4m4m4m用位移法计算图示结构并作2ii用位移法计算图示结构并作6m6m 6mh- +用位移法计算图示结构并作l ql2图。

图。

图。

各杆El =常数,q =20kN/m。

El =常数。

32、用位移法作图示结构 M 图。

E I =常数36、用位移法计算图示对称刚架并作 M 图。

各杆EI =常数38、用位移法计算图示结构并作 M 图。

EI =常数21 I2I29、用位移法计算图示结构并作 M 图。

设各杆的EI 相同-hql/2l/2■■i IVlA r 148、已知B 点的位移,求PAB■;! ------------------------------------XI/2PEI=常数I/2—— -------------1.5 IIlli------ 1 ------------ 1 ----------- 1 -----42、用位移法计算图示结构并作 M 图 43、用位移法计算图示结构并作 M 图。

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)-CAL-FENGHAI.-(YICAI)-Company One120 第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.M C.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M kM p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

Aa a21 9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l ll/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/219、求图示结构A、B两截面的相对转角,EI=常数。

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

第七章 矩阵位移法一、就是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间得关系。

2、单元刚度矩阵均具有对称性与奇异性。

3、局部坐标系与整体坐标系之间得坐标变换矩阵T 就是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间得关系。

5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。

6、结 构 刚 度 矩 阵 就是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。

7、结构刚度方程矩阵形式为:,它就是整个结构所应满足得变形条件。

8、在直接刚度法得先处理法中,定位向量得物理意义就是变形连续条件与位移边界条件。

9、等效结点荷载数值等于汇交于该结点所有固端力得代数与。

10、矩阵位移法中,等效结点荷载得“等效原则”就是指与非结点荷载得结点位移相等。

11、矩阵位移法既能计算超静定结构,也能计算静定结构。

二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号就是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下得单元刚度矩阵,就其性质而言,就是:A.非对称、奇异矩阵;B.对称、奇异矩阵;C.对称、非奇异矩阵;D.非对称、非奇异矩阵。

3、单元i j 在图示两种坐标系中得刚度矩阵相比:A.完全相同;B.第2、3、5、6行(列)等值异号;C.第2、5行(列)等值异号;D.第3、6行(列)等值异号。

4、矩阵位移法中,结构得原始刚度方程就是表示下列两组量值之间得相互关系:A.杆端力与结点位移;B.杆端力与结点力;C.结点力与结点位移;D.结点位移与杆端力。

结构力学自测题(第八单元)矩阵位移法

结构力学自测题(第八单元)矩阵位移法
A
q M
10kN/m 2EI 6m
y
l
y
M, x
l
七、图 a 所示结构,整体坐标见图 b,图中圆括号内数码为
结点定位向量(力和位移均按水平、 竖直、 转动方向顺序排列 )。求等效结点荷载列阵 PE 。(不考虑轴向变形)
于: A. 6 ; C.10 ;
20kN/m M1 1 Y1 2m 2 4m 3 y M, x
e
T K
e

(
)
二、选择题(将选中答案的字母填入括弧内) 1、已知图示刚架各杆 EI=常数,当只考虑弯曲变形,且各
杆单元类型相同时,采用先处理法进行结点位移编号,其正 确编号是:
是:
附:
EA l 0 0 EA l 0 0
0 12EI l 6 EI l 0 12EI l 6 EI l
2 3 2 3
0 6 EI
2

EA l 0 0 EA l 0 0
0 12EI l 6 EI l
2 3
l 4 EI l 0 6 EI l 2 EI l
(1,0,2) i 6m ② (0,0,0) 6m (a) y M, x (b) i ① (1,0,3)
1 3 1m 1m
y 5
M, x
十、试用矩阵位移法解图示连续梁,绘弯矩图。EI=已知常
数。
50 kN. m B EI 4m 20 kN C 2m D x M,
六、求图示结构的自由结点荷载列阵 P 。
A. 2(0,1,2) 1(0,0,0) 4(0,0,0) 3(0,1,3) C. 2(1,0,2) 1(0,0,0) 4(0,0,0) 3(1,0,3) 1(0,0,0) D. 2(0,1,2) 4(0,0,0) 1(0,0,0) B. 2(1,2,0) 4(0,0,0) 3(0,0,3) y M, x

结构力学课后答案第8章矩阵位移法

结构力学课后答案第8章矩阵位移法

习 题8-1 试说出单元刚度矩阵的物理意义及其性质与特点。

8-2 试说出空间桁架和刚架单元刚度矩阵的阶数。

8-3 试分别采用后处理法和先处理法列出图示梁的结构刚度矩阵。

(a)解:(a )用后处理法计算 (1)结构标识(2)建立结点位移向量,结点力向量[]T44332211 θνθνθνθν=∆[]Ty M F M F M F M F F 4y43y32y211 =θ(3)计算单元刚度矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=2222322211211462661261226466126122EI 21 l l -l l l -l -l l -l l l l - l k k k k k ①①①①①⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222233332232223 33 6 3632336 362EI 21 l l - l l l - l -l l -l l l -l l k k k k k ②②②②②lll⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222234443343323 33 6 3632336 362EI 2 1 l l - l l l - l -l l -l l l -l l k k k k k ③③③③③(4)总刚度矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++=222222222234443343333322322222112112 3300003 6 3 6 000 03403003601236000 0 3632600 363186120000 26460 0 0 06126122EI 0 0 00 0 0 4 3 2 1 4 3 2 1 l l -l l l - l - - l l -l l l l - l - - l l -l l -l l l l - -l -- l l -l l l l - l k k k k k k k k k k k k k ③③③③②②②②①①①①θ (5)建立结构刚度矩阵支座位移边界条件[][]00004311 θ θ θν=将总刚度矩阵中对应上述边界位移行列删除,得刚度结构矩阵。

结构力学习题集矩阵位移法习题及答案老八校

结构力学习题集矩阵位移法习题及答案老八校

1文档收集于互联网,已整理,word 版本可编辑.第八章 矩阵位移法 – 老八校一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。

2、单元刚度矩阵均具有对称性和奇异性。

3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。

5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。

6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。

7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。

8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。

9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。

10、矩阵位移法既能计算超静定结构,也能计算静定结构。

11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: 二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。

13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。

EI ,EA 均为常数。

14、计算图示结构整体刚度矩阵的元素665544,,K K K 。

E 为常数。

15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。

16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。

,cos α=C ,sin α=S ,C C A ⋅= S S D S C B ⋅=⋅=,,各杆EA 相同。

2文档收集于互联网,已整理,word 版本可编辑.17、计算图示刚架结构刚度矩阵中的元素8811,K K (只考虑弯曲变形)。

设各层高度为h ,各跨长度为l h l 5.0,=,各杆EI 为常数。

18、计算图示结构原始刚度矩阵的元素4544,K K 。

第九章 矩阵位移法

第九章 矩阵位移法
的。 ( )
1
2
3
12、在矩阵位移法中整体分析的实质是结点平衡。 ( ) 13、已知图示刚架各杆 EI=常数,当只考虑弯曲变形,且各杆单元类型相同时,采 用先处理法进行结点位移编号,其编号正确。( )
1 ( 0,0,0 )
2( 0,1,2 )
4 (0,0,0 )
3 ( 0,1,3)
14、单元刚度方程所表示的是_______两组物理量之间的关系。
Δ1
EI
l
Δ2
Δ3
EI
l
34、图示结构结点 2 的等效荷载列阵{P}等于{__________}T。
20kNxθyFra bibliotek1 4m
30kN 2
10kN/m
3
3m
3m
158
D:[3 2 4 0 0 1]T。
3
6
2
5
2
4
7
11
3
22、已知某单元定位向量为[0 3 5 6 7 8]T,则单元刚度系数 k36 应叠加到整
155
体刚度矩阵的_______中去。
A. k36 ; B. k56 ; C. k03 ; D. k58 。
23、图示结构整体刚度矩阵[K]中元素 k22 等于( )
5、结构的刚度方程[F] {∆}={P}表示结构全部节点的位移条件。( ) 6、整体坐标系中的杆端力,即是杆端力 N、Q 和 M。( ) 7、 用矩阵位移法计算连续梁时无需对单元刚度矩阵作坐标变换。 ( )
8、 结构刚度矩阵是对称矩阵,即有 kij = k ji ,这可由位移互等定理得到证明。
() 9、 结构刚度矩阵反映了结构结点位移与荷载之间的关系。 ( ) 10、单元刚度矩阵都具有对称性和奇异性。( ) 11、图示结构,按矩阵位移法求解时,将结点 1 和 3 的转角作为未知量是不可以

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

《结构力学习题集》(含答案)

《结构力学习题集》(含答案)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M kM p21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

aa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

qlll /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

ll l /32 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m3m3m14、求图示刚架B 端的竖向位移。

q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l ll/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/2219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 矩阵位移法 – 老八校一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。

2、单元刚度矩阵均具有对称性和奇异性。

3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。

5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。

6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。

7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。

8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。

9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。

10、矩阵位移法既能计算超静定结构,也能计算静定结构。

11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: 二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。

13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。

EI ,EA 均为常数。

14、计算图示结构整体刚度矩阵的元素665544,,K K K 。

E 为常数。

15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。

16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。

,cos α=C ,sin α=S ,C C A ⋅= S S D S C B ⋅=⋅=,,各杆EA 相同。

17、计算图示刚架结构刚度矩阵中的元素8811,K K (只考虑弯曲变形)。

设各层高度为h ,各跨长度为l h l 5.0,=,各杆EI 为常数。

18、计算图示结构原始刚度矩阵的元素4544,K K 。

19、用先处理法写出图示梁的整体刚度矩阵[]K 。

20、用先处理法写出图示梁的结构刚度矩阵[]K 。

21、已知图示结构在整体坐标系中的单元刚度矩阵。

用先处理法集成结构刚度矩阵[]K 。

(用子块形式写出)。

22、用先处理法写出图示结构的结构刚度矩阵[]K 。

E =常数。

23、用先处理法写出图示刚架的结构刚度矩阵[]K ,只考虑弯曲变形。

24、用先处理法写出图示结构的结构刚度矩阵[]K 。

各杆长度为l ,EA 、EI 为常数。

25、用先处理法写出图示结构的结构刚度矩阵[]K 。

各杆长度为 l 。

26、用先处理法写出以子块表示的图示结构的结构刚度矩阵[]K 。

27、用先处理法写出图示桁架的结构刚度矩阵[]K 。

已知各杆EA =常数。

[][]kkEA l ①②==--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥1010*********000,整体坐标系中的单元刚度矩阵:28、用先处理法写出图示刚架结构刚度矩阵[]K 。

已知: 29、计算图示结构结点3的等效结点荷载列阵{}P 3E 。

30、计算图示结构结点2的等效结点荷载列阵{}P 2E 。

31、计算图示结构结点2的等效结点荷载列阵{}P 2E 。

32、计算图示结构的综合结点荷载列阵{}P 。

33、计算图示连续梁对应于自由结点位移的荷载列阵{}P 。

34、计算图示连续梁对应于自由结点位移的荷载列阵{}P 。

35、用先处理法计算图示连续梁的结点荷载列阵{}P 。

36、计算图示结构的综合结点荷载列阵元素431,,P P P 。

37、用先处理法计算图示结构的综合结点荷载列阵{}P 。

38、计算图示结构结点荷载列阵中的元素654,,P P P 。

39、计算图示结构综合结点荷载列阵中的元素431,,P P P 。

40、计算图示结构综合结点荷载列阵{}P 中的元素9873,,,P P P P 。

41、计算图示刚架对应于自由结点位移的综合结点荷载列阵{}P 。

42、计算图示刚架对应自由结点位移的综合结点荷载列阵{}P 。

各杆长度为 4m 。

43、计算图示结构结点2的综合结点荷载列阵{}P 2。

44、计算图示刚架考虑弯曲、轴向变形时的综合结点荷载列阵{}P 。

45、若考虑弯曲、轴向变形,用先处理法写出图示结构综合结点荷载列阵{}P 。

46、考虑弯曲、轴向变形,计算图示结构综合结点荷载列阵{}P 。

47、考虑弯曲、轴向变形时,用先处理法计算图示结构综合结点荷载列阵{}P 。

48、用先处理法计算图示结构的综合结点荷载列阵{}P 。

49、用先处理法计算图示桁架的综合结点荷载列阵{}P 。

50、计算图示结构的自由结点荷载列阵{}P 。

51、计算图示结构中杆12的杆端力列阵中的第6个元素。

已知杆12的杆端位移列阵为{}[]δ120=---- 0 0.3257 0.0305 0.1616 0.1667T。

52、计算杆14的轴力。

已知图示桁架EA =1kN ,结点位移列阵为:{}[]∆=--01726504007 0 2.5677 0.0415 1.0415 1.3673 1.6092 1.6408 0 1.2084 T..。

53、计算杆23的杆端力列阵的第2个元素。

已知图示结构结点位移列阵为: {}[]∆=0 0 0 -0.1569 -0.2338 0.4232 0 0 0T。

54、计算图示结构中杆34的杆端力列阵中的第3个元素和第6个元素。

不计杆件的轴向变形。

已知图示结构结点位移列阵为:{}[]∆=---0 0 0 0.2 0 0.1333 0.2 0.2 0.3333 0 0.3667 0 0.7556 0.2 0.6667T 。

55、已知图示桁架的结点位移列阵(分别为结点2、4沿x 、y 方向位移)为:{}∆=(/())1EA ×[]342322. 1139.555 137.680 1167.111T ---,设各杆EA 为常数。

计算单元①的内力。

56、已知图示桁架杆件①的单元刚度矩阵为式(a),又已知各结点位移为式(b),则杆件①的轴力(注明拉力或压力)应为N ①= 。

57、已求得图示结构结点2、3的结点位移为式(a)、(b)并已知单元②的整体坐标的单元刚度矩阵为式(c)。

计算单元②2端的弯矩。

(长度单位m ,力单位kN ,角度单位弧度)58、计算单元①的轴力。

已知图示结构结点1、3的结点位移为:[][]u v u v Pl EA 1133 5 1 2 3TT=-⋅/。

59、已知各杆的E A =⨯=-21101042.kN /m , m 22,{}[] T∆21009524025689⨯=-..。

计算图示桁架单元①的杆端力列阵。

60、计算图示结构单元③的杆端力列阵{}③F,已知各杆,cm 300 ,kN/cm 101.2424=⨯=I E ,cm 202=A cm l 100=,结点2位移列阵{}[][]T2T2222rad 5313.0 cm 4596.0 cm 4730.0101 --⨯⨯==∆-θv u 。

61、考虑杆件的轴向变形,计算图示结构中单元①的杆端力{}F①。

已知:I =(/),124m 4E =⨯3107kN /m 2, m 2A =05.。

结点1的位移列阵{}[]δ16110370022710151485=⨯⨯---...m m rad T。

62、计算图示刚架单元①在局部坐标下的杆端力{}F①。

已知各杆E 、A 、I 、l 均为常数,{}[]∆=--ql EIl l 2100002727 0 5 19 0 0T,不考虑杆件的轴向变形。

63、已知图示梁结点转角列阵为{}[]∆=056516822 -/ /Tql i ql i ,EI =常数。

计算B 支座的反力。

第八章 矩阵位移法(参考答案)1、(O)2、(X)3、(O)4、(X)5、(X)6、(O)7、(O)8、(X) 9、(O) 10、(O) 11、(A)12、i K l EI i i K l EA k k l i K 4,/,12,/,/361333222====+= 13、K EA l EI l K EI l K 223342151260=+==//,/, 14、K EA l K EI l EA l K EI l 4455366336412==+=/,//,/ 15、[][][][][][]K K K K K K 222222222421=++=①②③③,16、K EAl 77241=+⎛⎝ ⎫⎭⎪⎪, K EAl7824=- 17、K EI l K EI l 1138828820==/,/18、lEA lEI K +=34412 045=K 2134(1,2,3)(10,11,12)(7,8,9)(4,5,6)(4,5,0)① ② ③(7,8,0)19、20、[]K i i i i i i i =⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥840012216612 0 对称,i EI l =/21、[][][][][][][][]K K K K K K K K =+++⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥22222112112222①③③③③②④22、23、[]⎥⎦⎤⎢⎣⎡=336l EI K24、 25、26、、k k k k k k 221112212222①②②②②③++⎡⎣⎢⎢⎤⎦⎥⎥ 27、28、29、{}P 3E kN kN kN m =-⋅⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪212230、{}P ql ql ql 2E =--⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪//22231、{}P ql ql 2E =-⎧⎨⎩⎫⎬⎭224/ 32、{}P ql ql ql ql =--⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪2222242524248////33、{}[]P M Pl Pl ql ql =---(/)(//)/88121222 T34、{}[]P =-7 34 0T35、36、P ql P ql P ql 1324224===-,/,37、{}P ql ql ql =-⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪ ///222524238、P ql P ql P ql 45622212==-=/,/,/39、P p l P P ql P M P l ql 11334128812=-=--=-+,,40、2685、P ql P ql P ql P 327891112220==-=-=/,/,/, 41、{}[]P =---6 22 14 5 12 18T42、{}[]P =---4 10 4 0 6 4T43、{}P P P Pl 2 =--⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪///2323444、45、46、{}[]P T40 -32 -14=47、{}P =--⋅⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪ kN 10kN 10kN m 1048、{}TPl ql ql P P ⎥⎦⎤⎢⎣⎡+--=812,2,2,0,0249、{}P =⎧⎨⎩⎫⎬⎭8kN 6kN50、{}[]kN P T40,30,20,10--=51、4319.066-==F S 52、N 1400587=-.kN 53、F 202336=.kN54、F F 3603330333=⋅=-⋅.,.kN m kN m55、{}[]F ①=-85581.kN 85.581kN T56、3P (压力) 57、M 28925②=-.kN 58、N P ①=3(压 力 ) 59、60、 61、 62、63、R ql B =↑067857.()。

相关文档
最新文档