延迟焦化反应

合集下载

延迟焦化反应部分

延迟焦化反应部分

02
CATALOGUE
应机理主要涉及自由 基链式反应,包括链引发、链增 长和链终止等阶段。
02
在链引发阶段,原料中的轻组分 在高温下形成自由基,引发反应

链增长阶段是自由基与原料中的 烃分子发生反应,生成焦炭和气 体。
03
链终止阶段则是自由基之间的相 互结合或淬灭,终止反应。
通过化学反应使活性组分在载体 上沉淀,再经干燥、焙烧得到催
化剂。
溶胶-凝胶法
通过溶胶-凝胶过程将活性组分 与载体结合,再经干燥、焙烧得
到催化剂。
催化剂的选择与优化
根据反应原料和目标产物的不 同选择合适的催化剂种类。
根据催化剂的性能参数(如活 性、选择性、稳定性)进行催 化剂的优化组合。
通过实验研究探索最佳的催化 剂制备条件和使用条件,提高 催化剂的性能和寿命。
特点
延迟焦化具有处理重质油的能力 ,能够将重油转化为有价值的产 品,且工艺简单、投资少、操作 灵活。
延迟焦化的历史与发展
起源
发展趋势
延迟焦化技术起源于20世纪40年代, 最初用于处理石油工业中的重质油料 。
未来延迟焦化技术将朝着提高转化率 、降低能耗、减少污染物排放等方向 发展。
发展历程
随着技术的不断进步和市场需求的变 化,延迟焦化工艺经历了多次改进和 优化,提高了产品的质量和产率。
04
CATALOGUE
延迟焦化反应设备
反应器的结构与特点
反应器类型
延迟焦化反应器通常为立式或卧式结构,根据工 艺需求选择。
材质选择
反应器内壁材料应具备耐高温、耐腐蚀、抗磨损 等特性,如不锈钢、合金钢等。
加热方式
反应器通常采用电热、燃气热或油热等加热方式 ,根据工艺要求选择。

延迟焦化介绍 (2)

延迟焦化介绍 (2)

延迟焦化原则流程
焦碳塔
加热炉
原料
气体
汽油
柴油 轻蜡油 蜡油
延迟焦化物料分布情况
原料:减压渣油
产品: 干气
液化气 汽油 柴油 蜡油 甩油 焦碳
流量(t/h) 150
10.5~13.5 3~3.75 19.5~27 37.5~48 15~22.5 1.5~4.5
37.5~49.5
收率பைடு நூலகம் 100
7~9 2~2.5 13~18 25~32 10~15
采用高效的梯型浮阀塔板,提高分馏的操作弹性,更适 合优化分馏塔的操作工况。设柴油、中段油、蜡油和原 料渣油的换热器,尽可能的利用分馏塔的过剩热来加热 原料,提高热利用率。同时由于原料和中段油、蜡油、 柴油均有换热,便于分馏塔取热比例的调整和换热后渣 油温度的控制。在工艺流程设计中,采用分馏塔内直接 换热和馏分油外循环的技术调节循环比。
茂名延迟焦化工艺技术特点
采用一炉二塔的工艺路线。加热炉采用国内先进的双辐 射室多火嘴卧管立式炉,并采用双面辐射、多点注汽、 双向烧焦及在线清焦等技术。加热炉的热效率可达91%。 加热炉火嘴采用扁平焰低NOX火嘴,以减少对环境的污 染。焦炭塔实现大型化,采用的直径达Φ8600。
分馏塔底部分换热循环,并加强过滤除去焦粉,缓和炉 管结焦及塔底油温度稳定。
低温热利用没有,影响能耗降低。
操作影响因素
延迟焦化主要影响因素有三个,影响到 焦化产品分布和质量,也就是加热炉出 口温度、焦化塔顶压力、循环比。
温度
在一定的温度和循环比下,石油焦的收 率随反应温度升高而降低。 部分较重烃 类分子在低温下会留在焦化塔内转化为 石油焦,当温度升高时会变为油气由塔 顶逸出。 事实上,温度可调范围很小。 延迟焦化是一个绝热反应,炉出口温度 是焦化反应温度的控制点。

焦化车间反应和分馏岗位题库(含答案)

焦化车间反应和分馏岗位题库(含答案)

焦化车间反应和分馏岗位题库一、名词解释1、什么是延迟焦化?答:渣油在加热炉的入口处注入一定量的软化水,以使油品在炉管内的流速达到一定的值,使其焦化反应延迟到焦炭塔内进行。

2、什么叫“三门一板”?答:是指油门、气门、风门、和烟道挡板。

3、什么叫管程?答:管程是指流体介质在炉管内的流动路程。

4、什么叫加热炉的转油线?答:常用来指连通任意两个盘管管段的中间连接管线。

5、什么是焦化反应操作压力?答:是指焦炭塔塔顶压力。

6、什么是循环比?答:是循环油量与新鲜原料油量的比值。

7、什么是顶回流?答:即塔顶循环回流,是从塔顶的下面几块塔盘上抽出的液体经冷却后,返回塔的最上一层塔盘从而满足塔中要有液相回流的要求。

8、什么是海绵焦?答:是由高树脂――沥青质含量的原料所生成的焦炭,杂质高,导电率差,故不适合作电极焦,外观上这种焦炭含有小孔,小孔的壁特别的厚,以至于各小孔之间没有通道。

9、什么是弹丸焦?答:特重的原料油进行焦化尤其低压低循环比操作条件下生成一种球形的弹丸,焦粒径5mm 的小球有的大如篮球。

10、什么是蜂窝焦?答:是由沥青质-胶质含量较低的原料油生成的焦炭。

内部具有定向的,分布均匀的椭圆形孔,焦炭的断面呈蜂窝状。

11、什么是针状焦?答:用高芳烃含量的渣油和特定条件生产焦炭,焦内的孔隙呈细长的椭圆形孔,而且是均匀定向的。

焦块断裂时呈针状结晶。

12、什么是汽水共沸?答:在玻璃液位计内炉水上下翻腾起泡沫,波动冲击剧烈,蒸汽夹带水量较多,管道内发生水积等,由于排污不当使炉水含盐量偏高。

13、什么是蒸汽发生器?答:把工艺液流发生蒸汽的设备称为蒸汽发生器。

14、什么是过热蒸汽?答:温度高于该压力下所对应的饱和温度的蒸汽。

15、什么是操作温度?答:一般是指焦化加热炉出口温度或焦炭塔塔顶温度。

16、什么是操作压力?答:是指焦炭塔塔顶压力。

17、什么是安全阀?答:当容器内介质压力超过规定数值时,能自动开启排泄介质,防止设备或管路破坏,压力正常后又能自动闭合。

分析延迟焦化装置工艺技术特点及其应用

分析延迟焦化装置工艺技术特点及其应用

分析延迟焦化装置工艺技术特点及其应用
延迟焦化是一种石化工艺,它将重油迅速加热至高的温度和压力下进行裂解,生成烯
烃和芳香烃。

它的工艺技术特点主要体现在以下几个方面:
1. 裂解时延迟:延迟焦化采用了反应器之外的加热装置,将液态重油迅速加热至高
温度,并在反应器中加入催化剂,让重油进行裂解。

这种工艺使得反应时间延迟,可以增
加裂解产物的芳香烃和烯烃含量。

2. 高温高压:延迟焦化反应器内部的温度和压力非常高,通常需要在1000℃以上和1.5 MPa以上的条件下操作。

高温高压环境才能促进重油的裂解,同时也会增加反应物中
间体的生成和分解,从而增加了反应物转化率。

3. 重油先热解再裂解:在延迟焦化中,重油首先经过热解阶段,使得重油中的大分
子化合物转化为小分子烃,主要为液化气,成分为丁烷、丙烷和乙烷等。

热解反应所生成
的烃类会随后进入裂解阶段,利用催化剂进一步裂解为烯烃和芳香烃。

4. 高效催化剂:延迟焦化需要使用高效催化剂,以提高重油的裂解效率和选择性。

目前常用的催化剂有氢氧化镁、氢氧化钠和氢氧化钾等。

延迟焦化可以处理各种成分的重油,包括低成分的重油、深层储层的油田油和油砂等。

它能够生产高品质的清洁燃料,如芳香烃和烯烃,被广泛应用于石化工业领域中。

同时,
使用延迟焦化可以降低重油的处理成本,提高原油利用率和产品质量,具有很高的经济效
益和社会效益。

延迟焦化的原理

延迟焦化的原理

延迟焦化的原理延迟焦化是一种将煤在高温条件下进行加热处理的方法,以改变其物理和化学性质的过程。

它是一种提高煤炭质量和利用效率的重要技术手段。

延迟焦化的原理可以简单地解释为,在高温下,煤中的挥发分会发生热解反应,生成焦炭和其他气体产物。

然而,在焦炭生成的初期阶段,焦炭并不稳定,容易在高温下继续燃烧,并产生更多的热量和气体。

而延迟焦化技术则通过调整煤的加热速率和温度分布,使焦炭在高温下发生结焦反应,生成稳定的焦炭,并降低焦炭的易燃性。

为了实现延迟焦化,需要控制煤料在高温下的停留时间。

一般来说,延迟焦化过程分为两个阶段,即挥发分热解阶段和焦炭结焦阶段。

在挥发分热解阶段,煤中的挥发分会通过热解反应产生气体和焦油等产物。

而在焦炭结焦阶段,焦炭会从这些产物中析出,并形成具有良好结焦性能的焦炭。

延迟焦化的关键是要保持适当的煤料加热速率和温度分布。

一方面,过高的加热速率会导致焦炭产生过多的热量,从而使焦炭继续燃烧。

另一方面,过低的加热速率则会延缓焦炭结焦的速度,降低焦炭的质量。

因此,在控制煤料加热速率的同时,还需要合理设计加热炉的温度分布,以确保焦炭能够在适当的温度范围内进行结焦反应。

延迟焦化技术在煤炭加工中具有重要的应用价值。

首先,通过延迟焦化,可以降低焦炭的易燃性,提高其稳定性,减少在炼焦过程中产生的煤气和煤焦油的损失,提高炼焦煤的利用效率。

其次,延迟焦化还可以改善煤炭的物理和化学性质,提高煤炭的品位和品质,增加其市场竞争力。

在实际应用延迟焦化技术时,还需要注意一些操作要点。

首先,要根据煤料的特性和工艺要求,合理选择延迟焦化的加热条件和设备参数。

其次,在延迟焦化过程中,要注意控制煤料的停留时间,避免过长或过短。

此外,还要定期对加热炉进行维护保养,确保其正常运行,避免出现故障或事故。

总之,延迟焦化技术是一种提高煤炭质量和利用效率的重要手段,其原理是通过调整煤的加热速率和温度分布,控制焦炭在高温下的结焦反应。

合理应用延迟焦化技术,可以降低焦炭的易燃性,提高煤炭的利用效率,改善煤炭的品位和品质。

延迟焦化

延迟焦化

延迟焦化延迟焦化石油裂化的一种方法。

其主要目的是将高残碳的残油转化为轻质油。

所用装置可进行循环操作,即将重油的焦化馏出油中较重的馏分作为循环油,且在装置中停留时间较长。

可提高轻质油的收率和脱碳效率。

有操作连续化、处理量大、灵活性强、脱碳效率高的优点。

延迟焦化是一种石油二次加工技术,是指以贫氢的重质油为原料,在高温(约500℃)进行深度的热裂化和缩合反应,生产气体、汽油、柴油、蜡油、和焦炭的技术。

所谓延迟是指将焦化油(原料油和循环油)经过加热炉加热迅速升温至焦化反应温度,在反应炉管内不生焦,而进入焦炭塔再进行焦化反应,故有延迟作用。

是一种半连续工艺过程。

一般都是一炉(加热炉)二塔(焦化塔)或二炉四塔,加热炉连续进料,焦化塔轮换操作。

它是目前世界渣油深度加工的主要方法之一。

原料油(减压渣油或其他重质油如脱油沥青、澄清油甚至污油)经加热到495~505℃进入焦炭塔,待陆续装满(留一定的空间)后,改进入另一焦炭塔。

热原料油在焦炭塔内进行焦化反应,生成的轻质产物从顶部出来进入分馏塔,分馏出石油气、汽油、柴油和重馏分油。

重馏分油可以送去进一步加工(如作裂化原料)也可以全部或部分循环回原料油系统。

残留在焦炭塔中的焦炭以钻头或水力除焦卸出。

焦炭塔恢复空塔后再进热原料。

该过程焦炭的收率随原料油残炭而变,石油气产量一般10%(质量)左右,其余因循环比不同而异,但柴/汽比大于1。

延迟焦化装置主要由8个部分组成:(1)焦化部分,主要设备是加热炉和焦炭塔。

有一炉两塔、两炉四塔,也有与其它装置直接联合的。

(2)分馏部分,主要设备是分馏塔。

(3)焦化气体回收和脱硫,主要设备是吸收解吸塔,稳定塔,再吸收塔等。

(4)水力除焦部分。

(5)焦炭的脱水和储运。

(6)吹气放空系统。

(7)蒸汽发生部分。

(8)焦炭焙烧部分。

国内选定炉出口温度为495~500℃,焦炭塔顶压力为0.15~0.2 Mpa。

焦化原料油所含烃类的分子很大,并有相当数量的芳烃1. 延迟焦化工艺流程:本装置的原料为温度90℃的减压渣油,由罐区泵送入装置原料油缓冲罐,然后由原料泵输送至柴油原料油换热器,加热到135℃左右进入蜡油原料油换热器,加热至160℃左右进入焦化炉对流段,加热至305℃进入焦化分馏塔脱过热段,在此与来自焦炭塔顶的热油气接触换热。

延迟焦化的原理

延迟焦化的原理

延迟焦化的原理什么是焦化焦炭是一种重要的煤化工产品,它在钢铁、铝、铜等行业中被广泛使用。

焦化是将煤炭加热到高温下,使其发生化学反应,生成有机质和焦炭的过程。

这个过程主要是通过热解、驱逐和焦化三个步骤来完成的。

延迟焦化的概念延迟焦化是一种改进的焦化工艺,它在传统的焦化工艺基础上进行了优化。

延迟焦化的主要原理是将煤炭加热的过程分为高温阶段和低温阶段,延长低温阶段的时间,使煤炭中的挥发分得到充分释放,从而提高焦炭的质量。

延迟焦化的原理延迟焦化的原理可以分为以下几个方面:1. 煤炭的化学反应煤炭在高温下会发生一系列的化学反应,主要包括热解、驱逐和焦化。

延迟焦化通过调整煤炭的加热速率和加热温度,使煤炭中的挥发分在低温阶段得到充分释放,从而提高焦炭的质量。

2. 煤炭的结构转变煤炭的结构是由多种有机物质组成的复杂网络结构,这种结构会随着温度的升高而发生转变。

延迟焦化通过调整加热温度和加热时间,使煤炭中的结构转变得到控制,从而提高焦炭的机械强度和耐磨性。

3. 煤炭的热传导特性煤炭作为一种多孔介质,具有较好的热传导特性。

延迟焦化通过调整煤炭的加热速率和加热方式,使煤炭中的热量传导得到控制,减少煤炭的不完全燃烧和熔融现象,从而提高焦炭的质量。

延迟焦化的优势延迟焦化相比传统的焦化工艺具有以下几个优势:1. 提高焦炭的质量延迟焦化可以使煤炭中的挥发分得到充分释放,提高焦炭的质量。

焦炭的质量是衡量焦化工艺的重要指标,优质的焦炭可以提高炼钢过程中的效率和产品的质量。

2. 降低能耗延迟焦化通过调整加热方式和加热速率,减少了煤炭的不完全燃烧和熔融现象,降低了焦化过程中的能耗。

这不仅可以减少企业的生产成本,还可以提高能源利用率,减少对环境的影响。

3. 减少环境污染焦化过程中会产生大量的废气、废水和固体废弃物。

延迟焦化通过优化焦化工艺,减少了焦化过程中的废气和废水排放,降低了对环境的污染,保护了生态环境。

延迟焦化的应用前景延迟焦化作为一种改进的焦化工艺,具有广阔的应用前景。

延迟焦化工艺过程

延迟焦化工艺过程

3.2.1 延迟焦化工艺过程延迟焦化工艺是焦炭化过程(简称焦化)主要的工业化形式,由于延迟焦化工艺技术简单,投资及操作费用较低,经济效益较好,因此,世界上85%以上的焦化处理装置都采用延迟焦化工艺。

延迟焦化工艺基本原理就是以渣油为原料,经加热炉加热到高温(500℃左右),迅速转移到焦炭塔中进行深度热裂化反应,即把焦化反应延迟到焦炭塔中进行,减轻炉管结焦程度,延长装置运行周期。

焦化过程产生的油气从焦炭塔顶部到分馏塔中进行分馏,可获得焦化干气、汽油、柴油、蜡油、重蜡油产品;留在焦炭塔中的焦炭经除焦系统处理,可获得焦炭产品(也称石油焦)。

减压渣油经焦化过程可以得到70%左右的馏分油。

焦化汽油和焦化柴油中不饱和烃含量高,而且含硫、含氮等非烃类化合物的含量也高。

因此,它们的安定性很差,必须经过加氢精制等精制过程加工后才能作为发动机燃料。

焦化蜡油主要是作为加氢裂化或催化裂化的原料,有时也用于调和燃料油。

焦炭(也称石油焦)除了可用作燃料外,还可用作高炉炼铁之用,如果焦化原料及生产方法选择适当,石油焦经煅烧及石墨化后,可用于制造炼铝、炼钢的电极等。

焦化气体含有较多的甲烷、乙烷以及少量的丙烯、丁烯等,它可用作燃料或用作制氢原料等石油化工原料。

从焦化过程的原料和产品可以看到焦化过程是一种渣油轻质化过程。

作为轻质化过程,焦化过程的主要优点是它可以加工残炭值及重金属含量很高的各种劣质渣油,而且过程比较简单、投资和操作费用较低。

它的主要缺点是焦炭产率高及液体产物的质量差。

焦炭产率一般为原料残炭值的1.4~2倍,数量较大。

但焦炭在多数情况下只能作为普通固体燃料出售,售价还很低。

尽管焦化过程尚不是一个很理想3的渣油轻质化过程,但在现代炼油工业中,通过合理地配置石油资源和优化装置结构,它仍然是一个十分重要的提高轻质油收率的有效途径。

近年来,对用于制造冶金用电极,特别是超高功率电极的优质石油焦的需求不断增长,对某些炼油厂,生产优质石油焦已成为焦化过程的重要目的之一。

焦化反应机理及延迟焦化装置的工艺原理流程

焦化反应机理及延迟焦化装置的工艺原理流程

第二章焦化反应机理及延迟焦化装置地工艺原理流程2.1 石油烃类地热化学反应2.1.1 烃类热裂化地反应机理烃类热加工过程包括减粘裂化、热裂化和焦化等多种工艺过程,其反应机理基本上是相同地,只是反应深度不同而己.重质渣油地组成十分复杂,除了各种烃类之外,还含有较多地胶质和少量沥青以及碱金属、重金属、氮化物等杂质.所以,其热转化反应机理十分复杂.b5E2RGbCAP热转化机理可用自由基理论来解释,烃分子热裂化是在高温下键能较弱地化学键断裂生?和C?等较小地自由基可以从其他烃分子抽取一个氢自由基而生成氢HCHH?、成自由基532气或甲烷及一个新地自由基.较大地自由基不稳定,会很快再断裂成为烯烃和小地自由基.这一系列地连锁反应最终生成小分子地烯烃和烷烃.除了甲基自由基外,其他自由基虽然也能从烃类中抽取氢自由基<或甲基自由基)生成烷烃,但是速度很慢.约有10﹪地自由基互相结合生成烷烃,终止反应.以下分别用烷烃、芳香烃说明热转化地反应机理.p1EanqFDPw(1>烷烃地热转化①大烃分子地C—C键断裂生成两个自由基:CH→2CH? 1734168②生成地大分子自由基在β位地C—C键再继续断裂成更小地自由基和烯烃:CH?→H+CH? 9841784 CH?→H+CH? 594422CH?→H+CH? 34396 CH?→CH+H? 4522③小地自由基<例如甲基自由基,氢自由基)与其他分子碰撞生成新地自由基和烃分子:CH?+CH→CH+CH? 3316334416H?+CH→H+CH? 333421616④大地自由基不稳定,再断裂生成小地自由基和烯烃: CH?→CH+CH? 1716163388⑤自由基结合生成烷烃连锁反应终止:H?+H?→HCH+H?→CH4→CH 181788CH?+CH→CH 2093817异构烷烃地热转化反应机理与正构烷烃基本相同.3CH?+H?(2>芳烃地热转化在热转化过程中,带侧链芳烃中地烷基侧链会发生与烷烃相似地键断裂,但芳环不断裂,形成稳定地芳环自由基.芳环自由基可以再断裂或发生缩合反应生成多环芳烃和稠环芳烃.DXDiTa9E3d①芳烃地大分子侧链分裂:CHCH1→CHCH?+CH? 172665810254②生成地自由基再分裂:CHCH?→CH+CH? 524465622个或多个苯环<萘环,蒽环)缩合物,逐步转化为稠环芳烃.缩合程度越深,环上地氢原子数越少.裂化气中含,正构烷烃热分解时,例如.自由基反应机理可以解释烃类热反应地许多现象.C、C低分子烃较多,所以很难生成异构烷烃和民构烷烯烃等.RTCrpUDGiT各种烃类地热化学反应212.1.2烃类在高温<400~550℃)地作用下主要发生两类反应:一类是裂解反应,它是吸热反应;另一类是缩合反应,它是放热反应.至于异构化反应,在不使用催化剂地条件下一般是很少发生地.5PCzVD7HxA(1>烷烃烷烃地热化学反应主要有两类:①C—C键断裂生成较小分子地烷烃和烯烃.②C—H键断裂生成碳原子数不变地烯烃及氢.上述两类反应都是强吸热反应.烷烃地热反应行为与其分子中地各键能大小有密切地关系.表2-1-1列出了各种键能<kj/mol)地数据.jLBHrnAILg表2-1-1烷烃中地键能断裂地键键能/<kJ/mol)断裂地键键能/<kJ/mol)CH—H 431 CH—CH335 5 2523CH—H 410 CH—CH339 3 7523CH—H 398 CH—CH 335 372235n-CH—H 394n-CH-n-CH318 7 79334i-CH—H 390 n-CH-n-CH310 9 99444t-CH—H 373 i-CH-n-CH364 9 94449CH—CH 360 33由表2-1-1地键能数据可以看出烷烃热分解反应地一些规律性:①C—H键地键能大于C—C键地,故C—C键更易断裂.②长链烷烃中,越靠近中央地C—C键能较小,越易断裂.③随烷烃分子增大,烷烃中地C—H键及C—C键地键能都呈减小趋势,即它们地热稳定性逐渐下降.④异构烷烃中地C—H键和C—C键地键能都小于正构烷烃,说明异构烷烃更易断链和脱氢.因此产物中异构烷烃量远远少于正构烷烃.xHAQX74J0X⑤烷烃分子中步碳上地氢最容易脱除,其次是仲碳上地,而伯碳上地氢最难脱除.从热力学判断,在500℃左右,烷烃脱氢反应进行地程度不大.(2>环烷烃环烷烃地热稳定性比烷烃高,裂解时主要是烷基侧链断裂和环烷环地断裂,前者生成较小分子地烯烃或烷烃,且侧链越长,断裂地速度越快;后者生成较小分子地烯烃及二烯烃.LDAYtRyKfE单环环烷烃地脱氢反应须在600℃以上才能进行,但双环环烷烃在500℃左右就能进行脱氢反应,生成环烯烃,再进一步脱氢生成芳烃.Zzz6ZB2Ltk<3)芳香烃芳香烃是各种烃类中热稳定性最高地一种.各种芳烃分解难易程度地顺序是:带侧链地芳烃>带甲基地芳烃>无侧链地芳烃.一般条件下芳环不会断裂,但在较高温度下会进行脱氢缩合反应,生成环数较多地芳烃,直至生成焦炭.烃类热反应生成地焦炭是H/C原子比很低地稠密环芳烃,具有类石墨状结构.dvzfvkwMI1带烷基侧链地芳烃在受热条件下主要是发生侧链断裂或脱烷基反应.至于侧链地脱氢反应则须在更高地温度<650~700℃)时才能发生.rqyn14ZNXI环烷芳香烃地反应按照环烷环和芳香环之间地联接方式而异.联苯型环烷芳烃分子裂解时首先是在环烷环和芳环之间地键断裂,生成环烯烃和芳香烃,在更苛刻地条件下,环烯烃能环烷环脱,缩合型分子地热反应主要有三种:环烷环断裂生成苯地衍生物.进一步破裂开环氢生成荼衍生物,以及缩合生成高分子地多环芳香烃.EmxvxOtOco<4)烯烃虽然在直馏馏分油和渣油中几乎不含有烯烃,但是从各种烃类热反应中可能产生烯烃.这些烯烃在加热地条件下进一步裂解,同时与其他烃类交叉地进行反应,于是使反应变得极其复杂.SixE2yXPq5在温度不高时,烯烃裂解成气体地反应远不及缩合成高分子叠合物地反应来得快.但是,由于综合作用所生成地高分子叠合物也会发生部分裂解,这样,缩合反应和裂解反应就交叉地进行,使烯烃地热反应产物地馏锃范围变得很宽,而且在反应产物中存在有饱和烃、环烷烃和芳香烃.烯烃在低温、高压下,主要进行叠合反应.当温度升高到400℃以上时,裂解反应开始变得重要,碳链断裂地位置一般在烯烃双键地β位置.6ewMyirQFL烯烃地分解反应有两种形式:大分子烯烃→小分子烯烃+小分子烯烃大分子烯烃→小分子烯烃+小分子二烯烃其中二烯烃非常不稳定,其叠合反应具有链锁反应地性质,生成分子量更大地叠合物,甚至缩合成焦炭.当温度超过600℃时,烯烃缩合成芳香烃、环烷烃和环烯烃地反应变得更为明显.<5)胶质和沥青质胶质、沥青历在高温条件下除了缩合反应生成焦炭外,还会发生断侧链子、断链桥等反应,生成较小地分子.由以上地讨论可知,烃类在加热地条件下,反应基本上可以分成裂解与缩合<包括叠合)两个方向.裂解方向产生较小地分子,而缩合方向则生成较大地分子.烃类地热反应是一种复杂地平行顺序反应.这些平行地反应不会停留在某一阶段上,而是不断地进行下去.随着反应时间地处长,一方面由于裂解反应,生成分子越来越小、沸点越来越大地稠环芳香烃.高度缩合地结果就产生胶质、沥青质,最后生成碳氢比很高地焦炭.kavU42VRUs<6)含硫化合物原油中含硫化合物主要有硫醇、硫醚、二硫化物和噻吩等,在重油中噻吩类硫含量约点总硫含量地三分之二.硫醚类化合物中C—S键能远比C—C键为小,因此它们地热稳定性低于同碳数地烃类,在受热条件下C—S键很容易断裂,这是延迟焦化过程能部分脱硫地原因之一.y6v3ALoS89不同结构硫醚地热稳定性不同,芳基硫醚比较稳定,环硫醚<硫杂环烷)次之,烷基硫醚最不稳定.烷基硫醚和环硫醚受热转化地产物主要是不饱和烃类和HS如:M2ub6vSTnP—S—CHCHRˊ→RCH=CH+RˊCH=CH+HS 222222R—2RCH和芳香环相类似,噻吩环地热稳定性相当高,一般情况下环不易破裂.重质油中含有噻吩衍生物,而且多半属于苯并噻吩系、二苯并噻吩系和萘并噻吩系,受热条件下它们会产生烷基或环烷取代基地断裂反应,而芳香环和噻吩环并合地稠环系则基本保留.所以重质油热转化过程所生成地渣油中地硫大部分为噻吩硫.延迟焦化所生成地高硫石油焦中硫地前身也应该是噻吩硫.0YujCfmUCw<7)含氮化合物渣油中地氮含量也是比较高地,所含地氮化物主要存在于五员地吡咯系或六员地吡啶系地杂环中,它们具有芳香性,这种热稳定环不易破裂.渣油中地氮杂环一般是与苯环或萘环相并合地.在热转化条件下,它们往往会缩合为更大地芳香环系,从而富集于热反应后地残渣油中.eUts8ZQVRd它们和一般烷基芳香烃一样会发,在受热时.这些含氮环系分子上大多还带有烷基侧链生侧链断裂反应.由于氮地存在,与氮杂环并合地芳香环上地烷基侧链与芳香环之间地C—C键会被活化,从而使侧链更容易断裂,导致重质油热转化反应速率地增大.sQsAEJkW5T<8)含氧化合物原油中所含地氧主要存在于羧基和酚基中,羧酸主要是环烷酸.此外,还有少量地脂肪酸和芳香酸.羧酸对热不稳定,容易发生脱羧基反应生成烃类和CO,如:GMsIasNXkA→RH+CO 2综上所述,渣油地烃类和非烃类在热反应过程中都是朝着两个方向进行,一个是2RCOOH裂解,一个是缩合.前者为较大分子经热分解和脱烷基后成为较小地分子;后者则为较小地分子脱氢缩聚成为较大地分子.TIrRGchYzg2.1.3反应热烃类地热反应包括分解、脱氢等吸热反应以及叠合、缩合等放热反应.由于分解反应占据主导地位,因此,烃类地热反应通常表现为吸热反应.7EqZcWLZNX渣油地热转化反应地反应热通常是以生成每千克汽油或每千克“汽油+气体”为计算基准.反应热地大小随原料油地性质、反应深度等因素地变化而在较大范围内变化,其范围在500~2000kJ/kg 之间.重质原料油比轻质原料油反应热<指吸热效应)大,而在反应深度增大时吸热效应降低.lzq7IGf02E2.2延迟焦化过程地反应机理延迟焦化过程地反应机理复杂,无法定量地确定其所有地化学反应.但是,可以认为在延迟焦化过程中,渣油热转化反应是分三步进行地:zvpgeqJ1hk①原料油在加热炉中很短时间内被加热至450~510℃,少部分原料油气化发生轻度地缓和和裂化.②从加热炉出来地、已经部分裂化地原料油进入焦炭塔.根据焦炭塔内地工艺条件,塔内物流为气-液相混合物.油气在塔内继续发生裂化.NrpoJac3v1③焦炭塔内地液相重质轻,在塔内地温度、时间条件下持续发生裂化、缩合反应直至生成烃类蒸气和焦炭为止.2.2.1焦炭地生成机理焦化过程中,渣油中地沥青质、胶质和芳烃分别按照以下两种反应机理生成焦炭:①沥青质和胶质地胶体悬浮物,发生“歧变”形成交联结构地无定形焦炭.这些化合物还发生一次反应地烷基断裂,这可以从原料地胶质-沥青质化合物与生成地焦炭在氢含量上有很大差别得到证实<胶质—沥青质地炭氢比为8~10,而焦炭地炭氢比为20~24).胶质-沥青质生成地焦炭具有无定形性质和杂质含量高,所以这种焦炭不适合制造高质量地电极焦.1nowfTG4KI②芳烃叠合和缩合,由芳烃叠合反应和缩合反应所生成地焦炭具有结晶地外观,交联很少,与由胶质-沥青质生成地焦炭不同.使用高芳烃、低杂质地原料,例如热裂化焦油、催化裂化澄清油和含胶质-沥青质较少地直馏渣油所生成地焦炭,再经过焙烧、石墨化后就可得到优质电极焦.fjnFLDa5Zo选用不同性质地焦化原料油就可以生产不同性质和产率地焦炭.例如几种焦化原料按不同比例调合,改变原油品种或调整原油地混合比例,就可以改变焦化原料地性质.根据焦化装置地设计条件,可以在一定程度上通过改变操作条件来调整焦炭地产率及其性质.在设计新地焦化装置时,应考虑原料地性质和焦炭地可能用途来设定装置地操作参数.tfnNhnE6e5焦化原料油地康氏残炭值是测定生焦倾向地最主要性质.康氏残炭值与生焦量地相对关系如图2-2-1.实验室测得地残炭值就是渣油在蒸发和裂解过程生成地含炭残渣.这种残渣在化学结构上与延迟焦化过程生成地焦炭相似.各种烃和非烃物质在反应过程生成焦炭地相沥青质生成地无定形焦炭比例-由胶质,随着原料康氏残炭值地增大.中2-2-1对量也示于图也逐渐增大.例如对于康氏残炭什为8﹪地原料,无定形焦炭约占总生焦量地16﹪;对康氏残炭什为24﹪地原料,此值约为40﹪.HbmVN777sL应该指出,图2-2-1中生焦线所示地焦炭产率略高于常规延迟焦化装置地生焦率.关于焦炭收率地计算参见本书6.1地内容.V7l4jRB8Hs2.2.2热转化反应地集总模型已经发表地许多预测焦化反应产品分析地经验公式,均有一定地使用局限性和误差.若要求精确预测减压渣油在不同反应条件下地热转化产物分布,就必须采用研究复杂地反应动力学所使用地集总方法.于是,把减压渣油分为6个反应集总组分<饱和烃、轻芳烃、重芳烃、软胶质、硬胶质和沥青质),把热转化产物分为5个集总组分<气体、汽油、瓦斯没1、瓦斯油2和焦炭),就可以建立减压渣油热转化11集总反应动力学模型.这套反应动力学模型地假设包括:83lcPA59W9①饱和烃之外地5个集总组分生成瓦斯油2和焦炭;②6个反应集总组分之间不相互发生反应;③所有地反应均符合一级反应动力学方程;④饱和烃集总组分裂解生成地中间馏分油与其他5个集总组分生成地中间馏分油进一步裂解时反应性能并不相同;⑤不同渣油地各个组分热转化动力学特性是接近于恒定地.减压渣油11集总反应动力学模型网络共包括了28个反应动力学参数.用大庆、鲁宁管输减压渣油地饱和烃、轻芳烃、重芳烃、较胶质、硬胶质和沥青质6个组分为原料,分别进行热转化反应实验.然后用实验地结果求取11集总反应动力学模型地参数,就可以用计算机预测热转化过程地产品分布.mZkklkzaaP用大庆、鲁宁管输减压渣油为原料,进行热裂解反应实验.比较实验结果与用集总模型计算结果证实,两种结果十分吻合.AVktR43bpw2.3延迟焦化地工艺流程延迟焦化装置由焦化、分馏<包括气体回收)、焦炭处理和放空系统几个部分组成.2.3.1焦化—分馏部分典型延迟焦化装置地焦化—分馏部分工艺流程如图2-3-1.焦化原料油先与焦化瓦斯油换热,然后进入焦化主分馏塔底问好地缓冲段,在塔底与循环油混合.由此用加热炉进料泵送入加热炉.混合原料在炉中被迅速加热并有部分汽化和轻度裂化.为保持所需地流速、控制停留时间和抑制炉管内结焦,需向炉管内注入蒸汽.加热炉出料后快速进入处于生焦过程地焦炭塔中.焦炭塔内地油蒸汽发生热裂化反应,重质液体则连续发生裂化和缩合反应,最终转化为轻烃和焦炭.全部油气从焦炭塔顶部逸出并进入主分馏塔.焦炭塔为间歇操作,交替进行生焦、除焦操作.需要有两组<2台或4台)焦炭塔进行轮换操作,即一组焦炭塔为生焦过程;另一组为除焦过程.ORjBnOwcEd从焦炭塔顶出来地油气进入焦化主分馏塔底部地缓冲段,用从上部洗涤段来地重瓦斯油冲洗和冷却,使循环油冷凝下来,循环油与新鲜原料油在塔底混合,用泵送入加热炉.焦化主分馏塔下部设重瓦斯油循环回流段,从循环回流塔盘抽出重瓦斯油,取出地回流热量用于预热原料油,发生蒸汽和<或)作为气体回收部分重沸器地热源.主分馏塔上部为轻瓦斯油精馏段从此抽出轻瓦斯油,经过在汽提塔内用蒸汽汽提后作为产品.塔顶产品为石脑油和焦化富气经过冷凝冷却和油水分离后,分出地富气经过焦化富气压缩机升压后送入气体回收部分,分离为液化石油气及燃料气.分离出地石脑油除了用做塔顶回流外,其余部分作为焦化石脑油产品送出装置.为了有效回收热量,也可用上部循环回流代替塔顶冷回流.分离出地含硫污水送至污水处理场进行处理.2MiJTy0dTT除焦周期地操作包括切换、吹汽、水24h.~16每一切换周期为,焦炭塔为周期操作冷、放水、开盖、切焦、闭盖、试压、预热和切换几道工序.gIiSpiue7A焦炭塔采用水力除焦,使用使用15~30Mpa地高压水进行焦炭层地钻孔、切割和切碎.将焦炭由塔底排入焦炭池中,经过脱水后运出装置.uEh0U1Yfmh焦化加热炉是装置地关键设备,对提高装置地运行周期、降低装置能耗起着重要作用.大型焦化加热炉分为几个管程.每组炉管设有独立地燃烧器和独立地流量温度控制系统等措施来保证加热炉地正常运转和延长操作周期.IAg9qLsgBX焦化气体回收一般采用吸收-稳定流程,其任务是进行油气分离,脱硫得到焦化干气、液化石油气和焦化石脑油<汽油).WwghWvVhPE来自焦化主分馏塔顶回流油罐地油气经过用富气压缩机压缩后,送入吸收脱吸塔回收液+化石油气和石脑油.吸收脱吸塔用石脑油吸收富气中地C组分.吸收脱吸塔顶地物料是<C23++轻烃,也含水量少量地C组分,故需要在再吸收塔中用轻油吸收C组分.再吸收塔顶物料为33焦化干气<<C轻烃),累过胺液脱硫后作为炼厂燃料气送出装置.吸收脱吸塔底地物料直接2进入脱丁烷塔.塔顶地液化石油气经过用胺液脱硫后送出装置或是再用C/C分离塔把C/C4334组分分离开来.脱丁烷塔底部地焦化石脑油<汽油)经过冷却后直接作为产品送出装置.典型地气体回收部分工艺流程见图2-3-2asfpsfpi4k2.3.2放空系统放空系统用于处理焦炭塔切换过程中从塔内排出地油气和蒸汽.为控制污染和提高气体收率,延迟焦化装置设有气体放空系统.典型地密闭式放空系统流程图如图2-3-3.焦炭塔生焦完毕后,开始除焦之前,需泄压并向塔内吹蒸汽,然后再注水冷却.此过程中从焦炭塔汽提出来地油气、蒸汽混合物排入放空系统地放空塔下部,用经过冷却地循环油从混合气体中回收重质烃经脱水后,可以将之送回焦化主分馏塔或作焦炭塔急冷油.放空塔顶排出地油气和蒸汽混合物经过冷凝、冷却后,在沉降分离罐内分离出污油和污水,分别送出装置.沉降分离罐分出地轻烃气体经过压缩后送入燃料气系统.ooeyYZTjj12.3.3焦炭处理系统<1)直接装车从焦炭塔排出地焦炭和除焦水直接落入装运焦炭地铁路货车中,除焦水和焦炭粉末从车底部流入污水池.污水由此进入澄清池从水中除去焦粉,净化后地水再循环使用.图2-3-4为直接装车和脱水系统地流程.BkeGuInkxI<2)焦池装车焦池装车系统流程如图2-3-5.除焦过程排出地焦炭和水经过溜槽排入一个混凝土制地储焦池中,在储焦池一侧设一个集水坑,流出地水经过一些可拆卸地篮筐<内装焦炭)把水中地焦粉收集下来.另外用循环水总产搅拌集水坑内地焦粉,用泥浆泵把集水坑内地粉浆排出.最后从折流沉降出地洁净水送入除焦水缓冲罐,以使循环使用.储焦池中经过脱水地焦炭用吊车装车外运.储焦池地尺寸根据焦炭塔地个数和出焦量确定.PgdO0sRlMo<3)储焦坑装车除焦过程排出地焦炭和水直接排入地下式混凝土储焦坑中.储焦坑地一侧或两侧有除焦水排出口.在排水口之前地底层焦炭起着过滤焦粉地作用,以便把从储焦坑排出水中地大部分焦粉过滤出去.然后,水中残存地焦粉在折流池内进行最后净化.净化地水送回除焦水罐,再重复使用.储焦坑内经过脱水地焦炭用高架式抓斗起重机装车运出.储焦坑地容量根据焦炭塔地生焦能力和需要地储焦天数设计.储焦坑装车系统流程见图2-3-6.3cdXwckm15上述几种焦炭处理系统均为敞开式系统,操作条件差,环境污染严重.<4)脱水罐脱水罐为全封闭焦炭脱水系统.焦炭塔排出地焦炭和除焦水首先经过焦炭塔下部地粉碎.分离出地水经过净化后循环使用.或直接落入)脱水罐进行沉降脱水<然后送入,机形成泥浆.脱水后地焦炭从脱水罐中放出,经过运输机送入运焦车中.根据焦炭塔和脱水罐相对位置地不同,可有两种布置形式:h8c52WOngM①泥浆式脱水罐.焦炭塔和脱水罐为并列式布置.从焦炭塔底部排出地焦炭和水经过粉碎机破碎成焦粉后直接排入位于焦炭塔下部地泥浆池中.由此再用泥浆泵把焦粉和水形成地泥浆送入与焦炭塔并列布置地脱水罐中.焦炭在脱水罐内沉降下来,分离出来地水排入泥浆池.系统内需用大量地水进行循环.脱水地焦炭最后从脱水罐底部经输送机运出或直接装车.在一台澄清罐内从水中最后分出残余地焦粉.净水再用于除焦.泥浆式脱水罐系统流程见图2-3-7.v4bdyGious②重力式脱水罐.焦炭塔排出地焦炭和除焦水经粉碎后直接靠重力流入位于焦炭塔下部地脱水罐内.焦炭和水混合物在罐内沉降后,水被排出.脱水地焦炭从脱水罐地底部排出,经带式运输机运出装车.排出地水仍含少量地焦粉.在澄清罐中进行最后地净化.重力式脱水罐系统流程见图2-3-8.J0bm4qMpJ9上述两种形式地脱水罐均为密闭式地洁净操作规程,污染少.其差别是泥浆式脱水罐需使用泥浆泵,用大流量循环水.重力式脱水罐则不需用泥浆泵,不需要大流量地循环水.但是,需要很高地焦炭塔框架构筑物.重力式脱水罐系统和泥浆式脱水罐地竖向布置分别见图2-3-9和图2-3-10.XVauA9grYP。

延迟焦化知识

延迟焦化知识
16、热传导
传热是物体较热部分的分子因振动而与相邻分子碰撞,将热能从热端传到冷端的传热方式
17、爆炸下限
可燃物质的蒸汽或粉尘在空气中哪够发生爆炸的最低浓度
18、排烟温度
加热炉燃烧所产生的烟气排入大气时的温度称为排烟温度。
19、沸点
一定外界压力下,液相受热升温时,其蒸汽压随着温度升高而增加,当蒸汽压升到和外压相等时,液体内部产生气泡而沸腾汽化,此时的温度称为该物质在该压力下的沸点
用上升气体速度的最大允许值与最小允许值之比表示,它是用来衡量塔与塔之间的综合性能好坏的参数。
37、塔板效率
理想塔板数与实际塔板数之比称为塔板效率
38、相平衡
在一定压力和温度下,保持汽液两相共存,此时汽液两相的相对量以及组分在两相中的浓度分布都不再变化,称为相平衡
39、回流比
是回流量与产品量之比
13、回火
当瓦斯、空气混合物出火嘴时的流速低于火焰的传播速度时,火焰回到喷咀内部燃烧的现象。
14、对流传热
对流传热是指借液体或气体质点互相变动位置的方法,将热量自空间的一部分传到其他部分的传热方式
15、辐射传热
辐射传热是一种由电磁波来传递能量的传热方式,热能不借任何传递介质。
41、什么叫物理吸收和化学吸收
吸收过程中,若气体溶解后与溶剂或与预先溶于溶剂里的其他物质进行化学反应则称为化学吸收;反之,气体单纯的溶解于液相的物理过程,称为物理吸收
42、什么叫等温吸收和非等温吸收
当气体溶于液体时,要放出溶解热,伴有化学反应时,要放出反应热,使操作温度显著升高,这种吸收称为非等温吸收;反之,在吸收过程中温度变化不明显的称为等温吸收。
33、馏分脱空

延迟焦化的原理

延迟焦化的原理

延迟焦化的原理延迟焦化是一种常见的化学工艺,用于将高分子聚合物转化为较低分子量的产物。

延迟焦化的原理是通过控制温度和时间来实现聚合物的分解,从而获得所需的产物。

下面将详细介绍延迟焦化的原理和工艺。

延迟焦化的原理主要是通过加热聚合物到一定温度,使其发生热分解反应,从而产生较低分子量的产物。

在延迟焦化过程中,温度是控制反应速率和产物选择性的关键因素。

通常情况下,延迟焦化反应需要在高温下进行,以使聚合物分解得更彻底。

然而,过高的温度可能导致产物失去活性或产生不良产物。

为了控制温度,通常会采用加热炉或反应釜等设备来提供恒定的加热源。

在加热的过程中,需要根据聚合物的特性和所需的产物选择合适的温度范围。

此外,还需要根据反应速率和产物选择性的要求来控制加热时间。

一般来说,延迟焦化反应的时间较长,需要几个小时甚至几天才能完成。

在延迟焦化过程中,聚合物分解产生的产物可以是液体、气体或固体。

这些产物可以进一步用于制备化学品、燃料或其他应用。

由于延迟焦化可以将高分子聚合物转化为低分子量产物,因此被广泛应用于塑料回收和资源利用等领域。

延迟焦化的工艺需要严格控制温度和时间,以确保反应的效果和产物的质量。

此外,还需要考虑聚合物的种类和性质,选择合适的反应条件和催化剂。

延迟焦化还需要进行反应过程的监控和控制,以避免温度过高或反应速率过快导致的安全问题。

延迟焦化是一种将高分子聚合物转化为低分子量产物的化学工艺。

其原理是通过控制温度和时间,使聚合物发生热分解反应,从而获得所需的产物。

延迟焦化的工艺需要严格控制反应条件和监控反应过程,以确保反应效果和产物质量的稳定性。

延迟焦化在塑料回收和资源利用等领域具有重要的应用价值。

延迟焦化

延迟焦化

焦炭脱水储运
焦炭的脱水和储运。
吹气放空系统
吹气放空系统。
蒸汽发生
发生蒸汽的热源一般采用分馏塔侧线柴油、重蜡油、塔底循环油。
焦炭焙烧
焦炭焙烧部分。国内选定炉出口温度为495~500℃,焦炭塔顶压力为0.15~0.2 Mpa。
发展趋势
发展趋势
正是由于延迟焦化的上述优点,使得延迟焦化在中国得到了迅速的发展,这主要是因为:
在延迟焦化过程中,通常使用水平管式加热炉在高流速、短停留时间的条件下将物料加热至490~510℃的反 应温度后进入焦炭塔,在焦炭塔内的一定的温度、停留时间和压力条件下,物料发生裂解和缩合反应生成气体、 汽油、柴油、蜡油和焦炭。由于物料在加热炉管中停留时间很短,仅发生浅度热裂化反应,物料在快速通过加热 炉炉管并获得反应所需要的能量后,它的裂化和缩合生焦反应被“延迟”到加热炉下游的焦炭塔内发生,故该过 程被称为“延迟焦化”。
由高压水泵输送的高压水,经上水线,水龙带,钻杆到水力切焦器喷嘴,由切焦器喷嘴喷出的高压水,形成 高压射流,利用高压射流强大的冲击力,将石油焦切割下来。钻杆不断地升降和转动,直到把焦除完为止
水力除焦主要设备
(高压水泵)、(除焦控制阀)、润滑油系统、气动阀、绞车及滑轮组、 (新型除焦胶管)、(水涡轮减 速器)、(自动切换联合钻孔切焦器)、(塔顶盖自动装卸机)、(塔底盖装卸机)、(电梯)、(钻杆组件) 和(抓斗起重机)。
简介
重质油品经管式加热炉加热到焦化反应所需要的温度,并使之迅速离开加热炉管,在焦炭塔内油品进行裂解 和缩合反应,生成的油气由焦炭塔顶逸出,生成的焦炭留在塔内。在这一过程中,焦化反应被推迟到焦炭塔中进 行,因此称为延迟焦化。
装置
装置
延迟焦化装置是炼油厂提高轻质油收率和生产石油焦的主要加工装置。它将减压渣油、常压渣油、减黏渣油、 重质原油、重质燃料油和煤焦油等重质低价值油品,经深度热裂化反应转化为高价值的液体和气体产品,同时生 成石油焦。

延迟焦化装置分馏岗位技术问答

延迟焦化装置分馏岗位技术问答

延迟焦化装置分馏岗位技术问答延迟焦化装置分馏岗位技术问答1、什么是延迟焦化?答:重质油品经管式加热炉加热到焦化反应所需要的温度,并使之迅速离开加热炉管,在焦炭塔内油品进行裂解和缩合反应,生成的油气由焦炭塔顶逸出,生成的焦炭留在塔内。

在这一过程,焦化反应被推迟到焦炭塔中进行,因此,称为延迟焦化过程。

2、系统压力对延迟焦化反应有何影响?答:系统压力直接影响焦炭塔顶压力的变化,焦炭塔的压力下降使液相油品易于蒸发,也缩短了气相油品在塔内的停留时间,从而降低了反应深度。

压力降低会使蜡油产率增大,而汽、柴油的收率、气体及焦炭的产率都会降低。

如果要取得较高的汽、柴油收率,就应采用较高的操作压力,而要取得较高的液体收率则应采用较低的操作压力。

一般来说操作中焦炭塔的压力控制在0.13~O.24MPa。

3、循环比对延迟焦化反应有何影响?答:循环比对装置的处理能力、产品性质及其分布都有重要的影响。

循环比增大之可使焦化汽、柴油收率增加,焦化蜡油收率减少,焦炭和焦化气体的收率增加。

循环比对装置处理量也有较大的影响。

在焦化加热炉能力确定的情况下,增大循环比将使装置的处理能力减小;降低循环比就可加大新鲜原料的处理能力.近年来延迟焦化工艺的发展趋向是尽量降低循环比,其目的是通过增产焦化蜡油来扩大催化裂化、加氢裂化的原料油量,降低生焦量,提高处理量。

4、原料性质对延迟焦化反应有何影响?答:对于焦化原料来说,日常分析的主要数据有:残炭、硫含量及密度。

其中,最重要的指标是残炭,因为残炭与原料的生焦倾向和生焦量关联性很好,如果残炭较高,则焦炭、气体收率高,液体收率较低,反之亦然。

硫含量主要是影响产品的质量,如果原料的硫含量高,则产品中硫含量也相应上升,特别是石油焦中含硫量会大大上升,同时以焦化产品为原料的后续脱硫装置,处理能力会受到影响。

原料的密度与残炭变化的趋势基本一致,密度增大后,原料泵的排量会受影响,严重时会影响装置的处理量。

5、分析原料渣油的残炭有何意义?答:渣油的康氏残炭值是最常用的预测相对生焦倾向的指标。

延迟焦化介绍

延迟焦化介绍
速率高,生成的二硫化物大部分能液化聚结分离。 碱液富氧常温氧化结合二硫化物分离塔使用,碱液中二硫
化物含量一般可以控制在800ppm左右。再生碱液质量高、 碱液循环使用周期长,碱渣率大幅度降低。环保效益明显。 常温氧化再生工艺不需要蒸汽加热和循环水冷却,节能降 耗。
焦化液化气液膜脱硫介绍
原料:胺洗后焦化液化气(脱除H2S后)、硫醇硫,以S 计正常值3500-5000ppm,最大值8000ppm、流量15t/h。
切焦水处理采用高速离心分离、过滤、罐式贮存等技术, 减少占地和环境污染。
吸收稳定采用典型的四塔流程
茂名焦化工艺流程
原料部分 分馏系统 加热炉系统 焦碳塔系统 压缩机系统 吸收稳定系统 冷切焦水系统 放空、吹汽系统 除焦系统
延迟焦化生焦周期
典型焦碳塔生焦周期采用24小时生焦,国内惠州炼油420万吨/年采用18 小时生焦。国外普遍采用18、16小时生焦。茂名两套焦化采用20小时。 203:40 AM小时与24小时对比处理能力增加20%。
采用高效的梯型浮阀塔板,提高分馏的操作弹性,更适 合优化分馏塔的操作工况。设柴油、中段油、蜡油和原 料渣油的换热器,尽可能的利用分馏塔的过剩热来加热 原料,提高热利用率。同时由于原料和中段油、蜡油、 柴油均有换热,便于分馏塔取热比例的调整和换热后渣 油温度的控制。在工艺流程设计中,采用分馏塔内直接 换热和馏分油外循环的技术调节循环比。
低温热利用没有,影响能耗降低。
操作影响因素
延迟焦化主要影响因素有三个,影响到 焦化产品分布和质量,也就是加热炉出 口温度、焦化塔顶压力、循环比。
温度
在一定的温度和循环比下,石油焦的收 率随反应温度升高而降低。 部分较重烃 类分子在低温下会留在焦化塔内转化为 石油焦,当温度升高时会变为油气由塔 顶逸出。 事实上,温度可调范围很小。 延迟焦化是一个绝热反应,炉出口温度 是焦化反应温度的控制点。

延迟焦化中间产物的热裂化反应性能

延迟焦化中间产物的热裂化反应性能

第 2 卷 第 4期 7
王 宝 石等 .延迟 焦 化 中问 产物 的热 裂化 反应 性 能
35 0
1实验部分
11实验 装置及反 应 .
在 小型管 式连续 反应装 置上 进行焦 化 中间产物 的
热裂化 反应研 究 ,实验装置如 图 1 所示 。m图可知 ,该
装置 主要 由裂解 系统 、反 应器 防结焦 清洗 系统和仪 表 控 制 系 统 3 分 组 成 。裂 解 系 统 包 括 进 料 泵 、 加 热 部 炉 、体积为 10 0 mL 0 的不锈钢管式 反应器 、冷凝 器和 气 液分离 器等 ;反应器 防 结焦清洗 系统包 括清洗 剂泵
和_ 1次反应 的混 合物 ,但基于连 串反虑的特点 , 仍可用 _业延 迟焦化装置 的液体产 品为原料 研究焦化中 T
间产物的化的中间产物 ,如焦
化汽油 、 焦化柴 油和 焦化蜡油 的二次反应从整体反应过程 中分离} 米 , 中问产物 的二 次热裂化反应性能 f { 对
工艺 L等 。近 年来 ,国 内延迟焦化技 术取 得 了较快发展 ,2 0 2 j 0 9年我 国延迟焦化装 置超过 9 0套 ,总加工能 力超过 90 0万吨/ 。在装 置的大型化方而 , H前国 内焦炭】 的直径 已高达 98m;针对 延迟 焦化工艺 , 0 年 { : } .
出现了多产轻质汕品的延迟焦化技术p 】 及可灵活调节循环比[ 】 等多项新技术;国内还丌发了阻焦剂抑¥l J  ̄n J
第 2 卷第 4 7 期 2 1 年 8月 01
化学 反应 工 程与 _ 艺 T
Ch m i a a to e cl Re cin Engn e i ndT c oog ie rnga e hn l y

延迟焦化的特点是什么

延迟焦化的特点是什么

1.延迟焦化的特点是什么?
延迟焦化的特点是,原料油一很高的流速在高温强度下通过加热炉管,在短时间内加热到焦化反应所需要的温度,并迅速离开炉管进到焦炭塔,使原料的裂化/缩合等反应延迟到焦炭塔中进行,以避免在炉管内大量结焦,影响装置的生产周期。

2.什么是延迟焦化?
延迟焦化是将渣油以很高的流速在高热强度的条件下,在强烈湍流状态下快速通过加热炉管,在短时间内通过渣油的临界裂解温度范围,达到焦化反应温度(约500℃左右),并迅速离开加热炉管进入焦炭塔的反应空间,使裂化/缩合等反应延迟到焦炭塔内进行。

3.延迟焦化装置的工作过程
延迟焦化装置是以贫氢的重质油为原料,在高温下(约500℃左右)进行深度的热裂化和缩合反应,生成气体/汽油/柴油/蜡油和焦炭,它采用国内成熟的延迟焦化工艺,将焦化油(原料油和循环油)经加热炉加热迅速升温至焦化反应温度,进入焦炭塔进行焦化反应,生成的焦炭留于塔内,生成的油气从塔顶出来进入分馏塔进一步分离。

4.焦化反应的类型
焦化反应实在高温/低压/无催化剂条件下主要进行裂解反应,缩合反应,其次是脱氢反应,加氢反应,环化反应等
渣油中的大分子的烷烃/环烷烃大部分裂解,生小分子烷烃/烯烃/氢烃。

延迟焦化--沈本贤

延迟焦化--沈本贤


②.大量吹汽改放空
汽提完毕把新、老塔分开,新塔循环阀关 死,堵焦阀关好并给上汽封,老塔出口改到放 空塔去,自塔底开始大量吹汽。目的是:用大 量蒸汽冷却焦层;汽提部分油气,改善焦炭质 量。方法是:先打开一下放空阀,关小新塔循 环阀,老塔稍为憋压时,迅速关新塔循环阀, 同时迅速打开老塔去放空塔的放空阀,老塔底 大量吹汽,大量吹汽时间一般为3h左右。

③给水及放水
给水是冷却焦层一个有效办法,用蒸汽冷却到老 塔出口270-280℃左右温度,就再不容易下降了。这时 准备给水,先将水泵启动并建立正常循环,然后关小 給汽阀慢开给水阀,水和汽一同进塔,靠汽的高速流 动把水携带进去,注意水阀不能开得过大,防止水击, 注意老塔给水压力上涨,以后再逐渐关掉汽阀开大水 阀,控制住给水时塔的压力不大于0.2Mpa。 水在焦层被汽化同时带走热量,当水到一定程度 后,塔里装满水溢流出来,焦炭塔压力突然上涨 0.05Mpa左右。这时应将流程改到沉淀池去。当塔顶温 度下降到不高于70℃时,就停泵停水。开塔底放水阀 放水,开焦炭塔顶呼吸气阀,接通大气,以免塔内负 压,水放不出来。
2.加热炉操作
燃料的正常燃烧:火焰石燃料正常燃烧的标志,火焰好事正常 燃烧的标志。 火焰好坏的判断方法:燃烧完全,炉膛明亮清晰,炉墙炉管 表面没有显著明暗阴影;瓦斯火焰呈蓝白色,油火焰呈淡黄色; 火焰高度一致,不干扰、不偏斜,不打圈、不扑炉管,做到多嘴、 短焰、齐火苗;烟囱冒烟无色或呈淡蓝色。 正常燃烧的影响因素:①燃料性质变化,主要影响燃烧的发 热量;②燃料压力变化,影响发热量,从而影响炉温的波动;③ 燃料中的杂质是否带水,如果燃料油带水会使火焰冒火星、喘息, 甚至熄火,同时因水汽化吸热,火焰温度降低。④燃料和空气的 混合,立式炉无论烧油还是烧瓦斯,均需适量的雾化蒸汽,使瓦 斯与空气混合良好。配汽量过小雾化不好,火焰尖端发软发飘无 力,呈暗红或黄色,燃烧不完全。配汽量过大火焰发白,短小有 力,容易灭火,浪费燃料和蒸汽。⑤入炉空气量的变化,空气量 太小,燃烧不完全,炉膛发暗,火焰发红。入炉空气量过大,炉 膛虽呈淡黄色,但火焰上烟气乱窜,炉管氧化脱皮厉害。入炉空 气量是通过风门和烟道挡板开度大小来调节的。

延迟焦化操作规范

延迟焦化操作规范

延迟焦化操作规程目录第一章延迟焦化概述第一节工艺基本原理及主要操作因素一、工艺原理焦化是将重油品加热裂解,变成轻质油、中间馏份油和焦炭的热加工过程。

延迟焦化是将重质油在管式加热炉中加热,采用高流速和高强热度,使油品在加热炉中短时间达到焦化反应所需的温度后,离开加热炉进入焦炭塔,从而使焦化反应基本不在加热炉中进行,而延迟到焦炭塔中进行的加工过程,延迟焦化属炼油厂重要二次加工工艺。

渣油是一种含有芳族类的复杂混合物,它的沸点高,平均分子量大,在高温作用下一方面裂解成小分子的气体、轻油、另一方面又缩合成焦炭。

在焦化反应过程中,烷烃及环烷烃主要发生裂解——脱氢反应,反应产物多为较小的烷烃和烯烃;芳烃是生焦的基础,主要发生断侧链—脱氢—缩合反应;烯烃在渣油中含量很少,但在各类裂解反应中,均产生烯烃,这些烯烃可以进一步分解,并与芳烃发生交叉反应,其结果如下:烷烃烯烃缩合物胶质沥青质炭素质(焦炭)芳整个延迟焦化过程可认为是分三步进行的,一是经过加热炉时,原料油部分汽化并发生缓和裂化,二是经过焦炭塔时发生裂化,三是在焦炭塔内分出的重质油继续裂解缩合,直到转化为油气中焦炭。

裂解反应示例:环烷烃:各类烃裂解易难顺序为:烷烃>烯烃>环烷烃缩合反应示例:一般来说,裂解反应和缩合反应往往是同时进行的,芳烃单独进行裂解时,不仅裂解反应速度低,而且生焦速度也低,如果将芳烃和烷径或烯烃混合后再进行反应,则生焦速度大大提高焦化过程进行的裂解为吸热反应,缩合为放热反应,总反应表现为吸热反应。

二、延迟焦化的产品延迟焦化装置共生产五种产品,即富气、汽油、柴油、蜡油及焦炭。

富气中的液化气、干气经脱硫后可作为燃料或化工原料;蜡油可作为催化或加氢裂化原理,汽柴油由于含硫较高不饱合烃多,必须经过加氢精制或化学精制。

气体液体固体产品收率预测,产品产率预测康氏残炭是原料成焦倾向的标志。

焦炭产率(w%)=1.6×康氏残炭(CCR),气体产率%=7.8+0.144×CCR,汽油产率(w%)=11.29=0.343×CCR,柴油生产率+蜡油产率(w%)=100-焦化产率-气体产率-汽油产率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R· +CH2=CH-R’→R-CH2CH· -R’
④自由基异构化反应:· CH2-CH2-CH3→CH2-· CH2-CH3
(3) 链终止
①复合反应:H·+H·→H2 H·+R·→RH
R·+R’·→RR’ R·+R·→RR ②歧化反应:· CnH2n+1+· CmH2m+1→CnH2n+2+CmH2m
各种烃类在焦化过程中的反应是不相同的。
烷烃在400~600℃下易裂解为小分子烷烃与烯 烃。环烷烃可裂解成烯烃或脱氢转化为芳烃。裂 解反应示例如下:
1.断链
2.裂环
3.脱氢
缩合反应示例如下:
芳香烃不易裂解,而易发生缩合反应,成为大 分子的多环或稠环烃,并可与烯烃缩合生成石油焦。 石油焦的组成和普通焦炭相似,也叫焦炭。
管内的停留时间,注水量约为原料油的2%左右。
进入焦炭塔的高压渣油,需在塔内停留足够时间,
以便进行充分反应。
4.原料在焦炭塔内反应生成焦炭,聚积在焦炭塔 内,油气从焦炭塔顶出来进入分馏塔,与原料油
换热后,经过分馏得到气体、汽油、柴油和蜡油。
塔底循环油和原料一起再进行焦化反应。
焦化生成的焦炭留在焦炭塔内,通过水力除焦从
目前工业主要应用:流化焦化、灵活焦化与延迟焦化
工艺。
延迟焦化:渣油在炉管内高温裂解并迅速通过,
将焦化反应延迟到焦炭塔内进行,数台焦化塔切换
操作。 主要优点:可以减少重质渣油产量并提高轻、中 馏分油产率,并且可以生产低硫石油焦。 不足:间歇操作,需要两台焦化塔轮流进行焦化、
除焦。
• 延迟焦化装置的作用:将重质油馏分经裂解,聚 合,生成油气、轻质油,中间馏分油和焦炭。 • 工作原理:由于重质油在管式炉中加热,采用高
石油气6%~8%; 焦炭(也称石油焦)15%~20%。 焦化所得的气体烃和液体油品中含较多的烯 烃,安定性较差,故往往作为其他装置的原料或 经加氢精制等处理后成为产品。
工艺原理
一、焦化反应化学原理
焦化原料油所含烃类的分子很大,并有相当 数量的芳烃。 1.裂解反应:在高温(400~550℃)条件下,大分 子烃类裂解生成小分子烃类,使渣油转化为气体 烃和轻质油品; 2.缩合反应:烃类发生缩合反应,使渣油转化成 焦炭。 是指小分子烃类相互作用生成较大分子的 化合物,同时还生成其它小分子的化合物。
塔内排出。
焦炭塔是两台一组。
每套延迟焦化装置中有的是一组(两台),有的是 两组(四台)焦炭塔。
两组塔既可单独操作,又可并联操作,在每组塔 中,一台塔在反应生焦时,另一台则处于除焦阶 段。即当一台塔内焦炭积聚到一定高度时(一般 为塔高的2/3左右高度时)进行切换,切换后通入 蒸气除去轻质烃类并注水冷却,然后除焦。 每台塔的切换周期一般为48小时,其中结焦24小 时,除焦及其它辅助操作24小时。
焦碳收率增加,能耗增加。 低效洗涤段,洗涤区内不装填料,所得焦化蜡油含焦粉较多, 但蜡油循环比较小,装置负荷小,石油焦收率低。 超低循环比分馏塔:洗涤段喷淋式空塔,喷淋段下设挡板以
阻止焦粉被携带到上层蜡油,但挡板经常结焦,需要停工时
清扫,蜡油质量差。
问题讨论
1、分馏塔底循环的作用是什么? a. 保证塔底油品能够流动 b. 防止塔底结焦 c. 过滤出塔底的焦粉 2、什么是新塔,老塔,生产塔? 新塔指经过除焦尚未进料生产的空塔; 老塔指已完成进料生产正在冷焦或待除焦的焦炭塔; 生产塔是正在进料的焦炭塔。
循环油 25t/h
柴油原料 油换热器
蜡油原料 油换热器
中段回流原 料油换热器
缓原 原料油 冲 料 62.5t/h 罐 油
90℃
160℃
230℃
缓加 冲热 罐炉
270℃
加热炉
出口压力 1.4Mpa
88.79t/h
出口压力 1.5Mpa
原料油泵
辐射进料泵
返回
1.1Mpa过热蒸汽
原料油 270℃1.25Mpa
插入,从而融合并形成由多个小球体组成的复球,经多次融
合,复球越来越大,逐渐变成流动的整体中间相,最后再固 化成为焦炭。
三、工艺流程
延迟焦化装置的生产工艺分为焦化和除焦两 部分,焦化为连续操作,除焦为间隙操作。由于 工业装置一般设有两个或四个焦炭塔,所以整个 生产过程仍为连续操作。
延迟焦化装置的工艺流程有不同的类型,就
CH2
176 CH CH2 CH2 α 键 β 键
CH CH2
与双键相连的C-H、C-C比在烷烃中相应键能大得多; 与双键形成共轭的键,键能大大减小,β位易断裂。
③芳烃
427
H
381
CH3
368
CH2
260
CH3
105 CH CH
C 46C
C芳-H,C芳-C比烷烃C-H、C-C牢固; C芳-R:R越大,C芳-C更易断裂;
(2)链的增长
①自由基夺氢:R· +R’H→RH+R’· H· +R’H→H2+R’· 夺氢难易程度:叔碳氢>仲碳氢>伯碳氢 ②自由基分解反应:分为为一个烯烃和小的新自由基
R·→R’·+烯烃或R·→H·+烯烃
β断链规则:· CH2-(α)CH2-(β)CH3→CH2=CH2+· CH3 β键易断裂,若自由基碳上无氢,β位上可以发生脱氢: · C(CH3)2-CH2-CH3→C(CH3)2-CH=CH2 ③自由基反应:与烯烃加成
延迟焦化装置所产气体、汽油,分别用气体 压缩机和泵送入吸收稳定部分进行分离得到
干气及液化气,并使汽油的蒸汽压合格;柴
油需要加氢精制;蜡油可作为催化裂化原料
或燃料油。
延迟焦化装置的主要矛盾在于:使用的原料为重 质油,容易结焦,但希望它在焦炭塔中结焦,而 不希望它在加热炉、转油线、焦炭塔馏出线和分 馏塔底等处结焦。这个矛盾解决了,就可以操作 平稳,延长开工周期。
2 中间相成焦机理
描述热反应中液相反应物的缩合过程。重质油在热反
应中,虽然断裂与缩合反应同时进行,但断裂反应生成的
小分子烃很快逸出反应系统,导致链烃逐渐减少,稠环芳 烃不断增多,以致重质油形成含有胶质、沥青质等成分的
渣油或焦油。随着缩合程度的增加,最终形成焦炭。
缩骤步骤:油分→胶质→沥青质→碳青质→油焦质。
(至390~395 ℃ 左右)。(天元) 3.原料油和循环油一起从分馏塔底抽出,用热油泵打进加热 炉辐射段,加热到焦化反应所需的温度(500 ℃ 左右),再 通过四通阀由下部进入焦炭塔,进行焦化反应。(天元)
为防止油在炉管内反应结焦,需向炉管内注水,
以加大管内流速(一般为2m/s以上),缩短油在
为了解决这个矛盾,在流程设计上就要考虑采取 措施。如: 在原料油进加热炉辐射管之前,注入蒸汽或 软化水,以加大原料油在炉管中的流速; 在分馏塔底设循环油泵,并在泵入口加过滤 器,滤掉焦炭塔油气带来的粉焦。
焦化分馏塔
一般分为精馏段与洗涤段。
精馏段:将油气精馏分离为不同规格的馏分。此段一般为 条形浮阀、导向浮阀或填料。
二、反应机理
主要化学反应:一种是大分子转化成小分子 的吸热反应,称作断裂,另一种是小分子转化成 大分子的放热反应,称作缩合,总称为热转化。 因此,焦化反应过程中,主要是自由基反应 机理来解释断裂的化学现象,中间相成焦机理来 阐明缩合的化学现象。
1
自由基反应机理
烃类在热反应时,某些易反应分子首先在键能较弱的化
的流速(在炉管中注水)及高的热强度(炉出口温度
500℃) ,使油品在加热炉中短时间内达到焦化反
应所需的温度,然后迅速进入焦炭塔,使焦化反
应不在加热炉中而延迟到焦炭塔中去进行,因此,
称之为延迟焦化。
延迟焦化约生产70%的液体产品,其中:
汽油10%~20%;
柴油25%~35%;
裂化原料(蜡油)25%~35%;
① 烷烃
H-H
CH3-H C2H5-H CH3-CH3 C2H5-C2H5
离解能kJ/mol
435
431 410 360 335
烷烃的脱氢、断链都是强吸热反应。
C-H键能>C-C键能,C-C键容易均裂;
键中部键能小,容易断链,均裂形成自由基。; 叔碳上氢最易均裂>仲碳氢>伯碳氢; 碳键断裂由易到难顺序:C叔-C叔>C叔-C仲>C仲-C伯>C伯 -C伯。
• 一方面由于原料重,含相当数量的芳烃,另一 方面焦化的反应条件更加苛刻,因此缩合反应 占很大比重,生成焦炭多。
炼油工业中曾经用过的焦化方法主要是釜式焦化、平
炉焦化、接触焦化、延迟焦化、流化焦化和灵活焦化
等。
釜式焦化、平炉焦化已经淘汰。
接触焦化工艺技术复杂,投资运行费用高,技术发展
缓慢,还不成熟。
1.1Mpa饱和蒸汽 对流注水 0.5t/h
返回
对流注水 0.5t/h
3.0Mpa蒸汽
对流出口 1.05Mpa320℃ 原料油 0.2Mpa443℃
3.0Mpa蒸汽
防爆门(三层) 看火孔(二层)
燃料气1500m3/h
炉膛温度≯800℃ 炉膛温差≯40℃ 炉膛负压2~5mmH2O
随着芳香烃缩骤程度增加,稠环芳烃体系之间的π-π分子间的
作用力使稠环芳烃片状分子相互作用而堆积在一起,体系中
出现一个有明显界面、类似液晶的新相。新相具有各向异性 的晶体特性与能够流动的流体特性,称为中间相。
由于表面张力的作用,中间相常呈球状的小球体,刚生成时
体积仅10-2μm,但在高温下能够溶于母液中,在低温下又能 够析出。随后,这些小球体逐渐吸收体系中带有稠环芳烃结 构的分子,不断长大,最大的直径可达几百μm。 各个小球体相遇后,会由于表面张力的作用而发生芳烃层片
生产规模而言,有一炉两塔(焦炭塔)流程、两
相关文档
最新文档