南京市2019-2020年度七年级下学期期末数学试题(I)卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市2019-2020年度七年级下学期期末数学试题(I)卷

姓名:________ 班级:________ 成绩:________

一、单选题

1 . 如图所示,下列推理正确的是()

A.因为∠1=∠4,所以BC∥AD B.因为∠2=∠3,所以AB∥CD

C.因为AD∥BC,所以∠BCD+∠ADC=180°D.因为∠1+∠2+∠C=180°,所以BC∥AD

2 . 4的平方根是()

A.8B.2C.±2D.±

3 . 如图,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2008”在()

A.射线OA上B.射线OB上C.射线OD上D.射线OF上

4 . 已知等式3x=2y+1,则下列变形不一定成立的是()

A.3x﹣2y=1B.3x﹣m=2y+1﹣m

C.3mx=2my+1

D.x=y+

5 . 下列说法正确的是()

A.了解某班同学的身高情况适合用全面调查

B.数据2、3、4、2、3的众数是2

C.数据4、5、5、6、0的平均数是5

D.甲、乙两组数据的平均数相同,方差分别是=3.2,=2.9,则甲组数据更稳定

6 . 中国古代的《孙子兵法》中记载了一道广为人知的数学问题:现有一百匹马,一百片瓦,大马一匹可以驮三片瓦,小马三匹可以驮一片瓦,问有多少匹大马和多少匹小马?设有大马x匹,小马y匹,则下列方程正确的是()

A.B.

D.

C.

二、填空题

7 . 已知有理数,满足,则=______.

8 . 在中,,于点,为的中点,若,则______,

______.

9 . 若不等式,的解集为,那么的值等于____.

10 . 已知方程租与有相同的解,则m+n=_____.

11 . 己知y=x2+px+q,当x=1时,y=3;当x=-3时,y=7.求当x=-5时,y的值为________.

12 . 如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2017的直角顶点的坐标为

_______________.

三、解答题

13 . 已知,如图,在平面直角坐标系中,A(-3a,0),B(0,4a),△ABO的面积是6.

(1)求B的坐标.

(2)在x轴的正半轴上有一点C,使∠BAO=2∠BCA,AB=5,动点P从A出发,沿线段AC运动,速度为每秒1个单位长度,设点P的运动时间为t,△BCP的面积为S,用含t的式子来表示S .

(3)在(2)的条件下,在P出发的同时,Q从B出发。沿着平行于x轴的直线,以每秒2个单位长度的速度匀速向右运动,在y轴上是否存在一点R,使△PQR为以PQ为腰的等腰直角三角形,求出满足条件的t,并直接写出点R 的坐标.

14 . 解不等式组.

15 . 某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如下表:

线下线上

规格

单价(元/个)运费(元/个)单价(元/个)运费(元/个)

甲240021020

乙300025030

(1)如果在线下购买甲、乙两种书架共30个,花费8280元,求甲、乙两种书架各购买了多少个?

(2)如果在线上购买甲、乙两种书架共30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.

16 . 某校开展以“我们都是追梦人”为主题的校园文化节活动,活动分为球类、书画、乐器、诵读四项内容,要求每位学生参加其中的一项.校学生会为了解各项报名情况,随机抽取了部分学生进行调查,并对调查结果进行了统计,绘制了如下统计图(均不完整):

请解答以下问题:

(1)图1中,“书画”这一项的人数是.

(2)图2中,“乐器”这一项的百分比是,“球类”这一项所对应的扇形的圆心角度数是.(3)若该校共有2200名学生,请估计该校参加“诵读”这一项的学生约有多少人.

17 . 甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2019+(﹣ b)2018.

18 . 解不等式组,并把解集在数轴上表示出来.

19 . 计算:(1)(+)(﹣)﹣(+3)2;(2).

20 . 如图,,平分,.

(1)求的度数;

(2)求的度数.

21 . 4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.

(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?

(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.

①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?

②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?

22 . 如图,已知△ABC经过平移后得到△A1B1C1,点A与A1,点B与B1,点C与C1分别是对应点,观察各对应点坐标之间的关系,解答下列问题:

(1)分别写出点A与A1,点B与B1,点C与C1的坐标;

(2)若点P(x,y)通过上述的平移规律平移得到的对应点为Q(3,5),求P点坐标.

23 . 如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE=45°,∠BAC=∠D =90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).

(1)当α为度时,AD∥BC,并在图3中画出相应的图形;

(2)在旋转过程中,试探究∠CAD与∠BAE之间的关系;

(3)当△ADE旋转速度为5°/秒时,且它的一边与△ABC的某一边平行(不共线)时,直接写出时间t的所有值.

相关文档
最新文档