一元一次方程应用(一)-水箱变高了与打折销售(提高)巩固练习

合集下载

2023-2024学年北师大版七年级数学上册同步检测卷(附解析)5

2023-2024学年北师大版七年级数学上册同步检测卷(附解析)5

第五章一元一次方程5.3 应用一元一次方程-水箱变高了一、选择题1. 某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A. 54-x=20%×108B. 54-x=20%(108+x)C. 54+x=20%×162D. 108-x=20%(54+x)2. 某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A. 22+x=2×26B. 22+x=2(26-x)C. 2(22+x)=26-xD. 22=2(26-x)3. 甲数是2013,甲数是乙数的还多1.设乙数为x,则可列方程为()A. 4(x-1)=2013B. 4x-1=2013C. x+1=2013D. (x+1)=20134. 学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,设有x辆汽车,可列方程()A. 45x-28=50(x-1)-12B. 45x+28=50(x-1)+12C. 45x+28=50(x-1)-12D. 45x-28=50(x-1)+125. 我校初一所有学生参加2012年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A. 30x-8=31x+26B. 30x+8=31x+26C. 30x-8=31x-26D. 30x+8=31x-266. 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A. 1.2×0.8x+2×0.9(60+x)=87B. 1.2×0.8x+2×0.9(60-x)=87第1页共9页C. 2×0.9x+1.2×0.8(60+x)=87D. 2×0.9x+1.2×0.8(60-x)=877. 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A. 6x+6(x-2000)=150000B. 6x+6(x+2000)=150000C. 6x+6(x-2000)=15D. 6x+6(x+2000)=158. 希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A. 2(x-1)+x=49B. 2(x+1)+x=49C. x-1+2x=49D. x+1+2x=499. 为创建园林城市,盐城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A. 6(x+22)=7(x-1)B. 6(x+22-1)=7(x-1)C. 6(x+22-1)=7xD. 6(x+22)=7x10. 一个饲养场里的鸡的只数与猪的头数之和是70,鸡、猪的腿数之和是196,设鸡的只数是x,依题意列方程为()A. 2x+4(70-x)=196B. 2x+4×70=196C. 4x+2(70-x)=196D. 4x+2×70=19611. 一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A. (1+50%)x×80%=x-28B. (1+50%)x×80%=x+28C. (1+50%x)×80%=x-28D. (1+50%x)×80%=x+2812. 甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程()A. 98+x=x-3B. 98-x=x-3C. (98-x)+3=xD. (98-x)+3=x-313. 甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A. 7x=6.5x+5B. 7x+5=6.5x第2页共9页C. (7-6.5)x=5D. 6.5x=7x-514. 某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A. (1+50%)x•80%-x=8B. 50%x•80%-x=8C. (1+50%)x•80%=8D. (1+50%)x-x=815. 王大爷存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,若这种储蓄的年利率为x,那么可得方程()A. 2500(1+x)=2650B. 2500(1+x%)=2650C. 2500(1+x•80%)=2650D. 2500(1+x•20%)=2650二、填空题16. 某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列方程为______.17. 小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程______.18. “比a的2倍小3的数等于a的3倍”可列方程表示为:______.19. 一台电脑的进价为2000元,原标价为3000元,现打折销售,要使利润率保持20%,那么需要在原标价的基础上打几折?设需要打x折.可列方程为______.20. 七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为______.三、解答题21. 在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)第3页共9页。

北师大版数学七年级上册:5.3 应用一元一次方程——水箱变高了 同步练习(附答案)

北师大版数学七年级上册:5.3 应用一元一次方程——水箱变高了  同步练习(附答案)

3 应用一元一次方程——水箱变高了1.把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形相比( )A .面积与周长都不变化B .面积相等但周长发生变化C .周长相等但面积发生变化D .面积与周长都发生变化2.根据图中给出的信息,可得正确的方程是( )A .π×(82)2×x =π×(62)2×(x +5) B .π×82×x =π×62×5C .π×(82)2×x =π×(62)2×(x -5) D .π×82×x =π×62×(x -5)3.有一个底面半径为10 cm ,高为30 cm 的圆柱形大杯中存满了水,把水倒入一个底面直径为10 cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6 cmB .8 cmC .10 cmD .12 cm4.要锻造直径为16 cm 、高为5 cm 的圆柱形毛坯,设需截取横截面边长为6 cm 的方钢(横截面为正方形的钢材)x cm ,则可得方程为 .5.一个长方体合金底面长为80 mm 、宽为60 mm 、高为100 mm ,现要锻压成新的长方体合金,其底面是边长为40 mm 的正方形,则新长方体合金的高为 .6.将一个底面半径为6 cm 、高为40 cm 的“瘦长”圆柱形钢材锻压成底面半径为12 cm 的“矮胖”圆柱形零件毛坯,请问毛坯的高是多少?7.在“爱护环境,建我家乡”的活动中,七(1)班学生回收饮料瓶共10 kg ,男生回收的重量是女生的4倍,设女生回收饮料瓶x kg ,根据题意,可列方程为( )A .4(10-x)=xB .x +14x =10 C .4x =10+x D .4x =10-x8.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多55人.设到雷锋纪念馆的人数为x 人,可列方程为 .9.李明和他父亲年龄的和为55岁,又知父亲的年龄比他年龄的3倍少1岁,求李明和他父亲的年龄分别为多少岁?10.有一根钢管长12米,要锯成两段,使第一段比第二段短2米,求每段长各多少米?11.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有女子善织,日自倍,五日织五尺.问日织几何?译文:一位善于织布的妇女,每天织的布都是前一天的2倍,她5天共织了5尺布,问在这5天里她每天各织布多少尺?设她第一天织布为x尺,以下列出的方程正确的是( )A.x+2x=5 B.x+2x+4x+6x+8x=5C.x+2x+4x+8x+16x=5 D.x+2x+4x+16x+32x=512.用长为1米、直径为50毫米的圆钢可以拉成直径为1毫米的钢丝米.13.一个两位数,个位数字与十位数字的和是9.若将个位数字与十位数字对调后所得的新数比原数小9,则原来的两位数为.14.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为平方厘米.(1毫升=1立方厘米)15.用长为10 m的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1 m,求长方形的面积.16.在一个底面直径为5 cm,高为18 cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6 cm,高为10 cm的圆柱形玻璃杯中,能否完全装下?若装不下,则瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.17.如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为 .18.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?1.C2.A3.C4.(162)2π×5=62·x . 5.300_mm .6.解:设毛坯的高为x cm ,根据题意,得π×62×40=π×122·x.解得x =10.答:毛坯的高是10 cm.7.D8.2x +55=589-x .9.解:设李明的年龄为x 岁,则他父亲的年龄为(3x -1)岁,可列方程为 3x -1+x =55,解得x =14.则3x -1=41.答:李明的年龄为14岁,他父亲的年龄为41岁.10.解:设第二段长为x 米,则第一段长为(x -2)米.根据题意,得x +(x -2)=12.解得x =7.答:第一段长为5米,第二段长为7米.11.C12.2_500.13.54.14.25.15.解:设宽为x m,则长为(x+1)m.根据题意,得2x+(x+1)=10.解得x=3.所以x+1=4.故长方形的面积为3×4=12(m2).答:长方形的面积为12 m316.解:设圆柱形瓶内的水倒入玻璃杯中水的高度为x cm.由题意,得(52)2π×18=(62)2πx.解得x=12.5.因为12.5>10,所以不能完全装下.设瓶内水还剩y cm高.由题意,得(52)2π×18=(52)2πy+(62)2π×10.解得y=3.6.答:瓶内水还剩3.6 cm 高.17.44_cm 2.18.解:设这批书共有3x 本.根据题意,得 2x -4016=x +409.解得x =500.所以3x =1 500.答:这批书共有1 500本.。

一元一次方程:水箱变高了、打折销售

一元一次方程:水箱变高了、打折销售

一元一次方程应用题(一)知识梳理:复习回顾:1.解一元一次方程的步骤有哪些?2.解下列方程:(1)43(20)4x x --=- 758(2)143x x -+-=一、水箱变高了:圆柱的体积=2π⨯⨯半径高例1:某居民楼顶有一个底面直径和高均为4m 的圆柱形储水箱。

现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m 减少为3.2m 。

那么在容积不变的前提下,水箱的高度将由原先的4m 增高为多少米?等量关系:旧水箱的容积=新水箱的容积根据等量关系,列出方程: ()()224x ππ⨯⨯=⨯⨯ 解得:x=答:变式练习:将一个底面直径是20厘米,高为9厘米的“矮胖”形圆柱锻压成底面直径是10厘米的“瘦长”形圆柱,高变成了多少?这个问题中的等量关系是:解:例2:用一根长为10m 的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4m ,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8m,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比、面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?例3:(1)小明的爸爸想用10米铁线在墙边围成一个鸡棚,使长比宽大4米,问小明要帮他爸爸围成的鸡棚的长和宽各是多少呢?(2)若小明用10米铁线在墙边围成一个长方形鸡棚,使长比宽大5米,但在宽的一边有一扇1米宽的门,那么,请问小明围成的鸡棚的长和宽又是多少呢?二、打折销售例4:算一算:(1)原价100元的商品打8折后价格为元;(2)原价100元的商品提价40%后的价格为元;(3)进价100元的商品以150元卖出,利润是元,利润率是;(4)原价X元的商品打8折后价格为___ 元。

(5)原价X元的商品提价40%后的价格为元;(6)原价100元的商品提价P %后的价格为(7)进价A元的商品以B元卖出,利润是元,利润率是例5:(1)我是按成本价提高40%后标的价,你按8折销售,我已算过了,每件可赚15元。

七年级上应用一元一次方程 水箱变高了训练题(有解析北师大版)

七年级上应用一元一次方程 水箱变高了训练题(有解析北师大版)

七年级上应用一元一次方程水箱变高了训练题(有解析北师大版)七年级上应用一元一次方程-水箱变高了训练题(有解析北师大版)第一部分:北京师范大学七年级数学第一册《一元一次方程的应用——水箱变高》的最新指导案例最新北师大版七年级数学上册《应用一元一次方程-水箱变高了》导学案第二部分:【最新】北京师范大学版七年级数学第一册学习计划:一元一阶方程的应用——水箱变高最新北师大版七年级数学上册《应用一元一次方程-水箱变高了》学案学习目标、重点和难点【学习目标】1.通过分析图形问题中的数量关系,用方程解决问题用方程解决问题的关键是掌握等价关系,理解方程的重要性2.通过对“变化中的不变量”的分析,提高分析问题、解决问题的能力.[重点和难点]寻找面体积问题中的等量关系。

知识概览图―新课程指导图5―4―1是一筒状的地膜示意图,其内圆半径和外圆半径分别为R=10厘米,R=20厘米,高度h=50厘米如果膜厚为0.005厘米,则能计算出这些地膜的总长度是多少吗?教材的本质知识点1相关公式长方体体积=长×宽×高圆柱体积=πrh(h为圆柱的高,r为底面半径).矩形周长=2×(长+宽),矩形面积=长×宽知识点2形积变化问题对于这类问题,虽然形状、面积和体积可能会发生变化,但在应用问题中仍然存在一个相等的关系。

通过分析问题的意义与问题中的数量之间的关系,找出能够代表应用问题整体意义的等价关系,然后根据等价关系列出等式。

此类问题常见的情况如下:(1)形状发生了变化,而体积没变.此时,等量关系为变化前后体积相等.(2)形状和面积发生了变化,但周长此时没有变化,等效关系是变化前后周长相等(3)形状、体积不同,但根据题意能找出体积之间的关系,把这个关系作为等量关系.课堂检测十二篇三:北师大版七年级上册第五章一元一次方程5.3应用一元一次方程――水箱变高了同步测试题含答案北京师范大学版七年级第1卷第5章一元一次方程式5.3应用一元一次方程式-水箱变高,并提出同步测试问题1.把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形比较()a、面积和周长不变。

第20讲 一元一次方程应用(一)-水箱变高了与打折销售(基础)巩固练习

第20讲 一元一次方程应用(一)-水箱变高了与打折销售(基础)巩固练习

【巩固练习】一、选择题1.有一个底面半径为10cm,高为30cm的圆柱形大杯中存满了水,把水倒入一个底面直径为10cm的圆柱形小杯中,刚好倒满12杯,则小杯的高为()A.6cm B.8cm C.10cm D.12cm2.请根据图中给出的信息,可得正确的方程是()A.B.C.D.3.图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为()A.B.C.42 D.444.(阜新)商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元 B.180元 C.200元 D.220元5.某个体商贩在一次买卖中同时卖出两件上衣, 每件售价均为135元, 若按成本计算, 其中一件盈利25%, 一件亏本25%, 则在这次买卖中他 ( )A.不赚不赔 B.赚9元 C.赔18元 D.赚18元6.(大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元二、填空题7.用长为1米,直径是40毫米的圆钢能锻拉成直径为4毫米的圆钢丝米.8.一只直径为90毫米的圆柱形玻璃杯中装满了水,把杯中的水倒入一个底面积为131×131平方毫米、高为81毫米的长方体铁盒中,当铁盒装满水时,玻璃杯中水的高度大约下降了多少设大约下降了x毫米,则可列方程.9.如图,将一个正方形纸片剪去一个宽为4cm的长条(阴影部分)后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,若两次剪下的长条面积正好相等,则每一个长条的面积为cm2.10.(孝义市三模)五一期间,某商厦为了促销,将一款每台标价为1635元的空调按标价的八折销售,结果仍能盈利9%,则是这款空调机每台的进价为元.11.五•一期间,某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了折优惠.12.商场打折促销时,张老师买了一件衣服和一条裤子,共用了284元.其中衣服按标价打六折,裤子按标价打八折,衣服的标价为300元,则裤子的标价应为元.三、解答题13.(泰州)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?14.若进货价降低8%,而售出价不变,那么利润可由目前的p%增加到(p+10)%,求p.15.在一次春游中,小明、小亮等同学随家人一同到江郎山游玩.如图所示是购买门票时,小明与他爸爸的对话:问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.【答案与解析】一、选择题1.【答案】C【解析】设小杯的高为x ,根据题意得:π×102×30=π×12×(10÷2)2x 解得:x=102.【答案】A【解析】等级变形问题,形变体积不变.3.【答案】C【解析】设每一份为x ,则图②中白色的面积为8x ,灰色部分的面积为3x ,由题意,得 8x+3x=33,解得:x=3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42.4.【答案】C ;【解析】解:设原价为x 元,根据题意可得:80%x=140+20,解得:x=200.所以该商品的原价为200元;故选:C .5.【答案】C【解析】成本分别为:135108125%=+,135180125%=-; 盈亏:13513510818018+--=-6.【答案】A .【解析】设1月份每辆车售价为x 元,则2月份每辆车的售价为(x ﹣80)元,依题意得 100x=(x ﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.二、填空题7.【答案】100【解析】设能锻拉成直径为4毫米的圆钢丝x 米,则22201=2x ππ⨯⨯⨯⨯,解得:x =100.8.【答案】 【解析】等级变形问题,形变体积不变.9.【答案】80【解析】解:设正方形的边长是xcm ,则根据题意得:4x=5(x ﹣4),解得:x=20.故长方条的面积为4x=80cm 2.10.【答案】1200;【解析】解:设这款空调机每台的进价为x 元,根据题意,得:1635×0.8﹣x=9%x ,解得:x=1200,∴这款空调机每台的进价为1200元,故答案为:1200.11.【答案】九【解析】设用贵宾卡又享受了x折优惠,依题意得:10000﹣10000×80%×=2800,解之得:x=9.12.【答案】130【解析】设裤子标价为x元.由题意得:300×60%+80%x=284,解得:x=130.三、解答题13.【解析】解:设每件衬衫降价x元,依题意有120×400+(120﹣x)×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.14.【解析】解:设进货价为x,则下降后的进货价为0.92x.则(1+p%)x= [1+(10+p)%]0.92x,即(1+0.01p)x= [1+0.01(p+10)] 0.92x,解得: p=15.答:p为15.15.【解析】解:(1)设小明他们一共去了x个成人,则去了(11-x)个学生,根据题意得:40x+0.5×40×(11-x)=360.解得x=7.所以11-x=4.答:小明他们一共去了7个成人,4个学生.(2)若按14人购买团体票,则需要花费:14×40×60%=336(元),360-336=24(元).答:买团体票更省钱,可节省24元.。

七年级数学 第五章 一元一次方程 5.3 应用一元一次方程水箱变高了练习

七年级数学 第五章 一元一次方程 5.3 应用一元一次方程水箱变高了练习
[解析] 设小杯的高为 x cm. 根据题意,得π×102×30=π×(10÷2)2×x×12, 解得 x=10,则小杯的高为 10 cm. 故选 C.
12/7/2021
3 角应用一元一次方程——水箱变高了
3.用 1 米长的直径为 50 毫米的圆钢可以拉成直径为 1 毫米的 钢丝__2_5_00____米.
12/7/2021
3 角应用一元一次方程——水箱变高了
C 拓广探究创新练
15.如图 5-3-2 是由六块正方形拼成的一个长方形.已 知最小的正方形面积为 1,则此长方形的面积是__1_4_3____.
图 5-3-2
12/7/2021
3 角应用一元一次方程——水箱变高了
[解析] 因为最小的正方形面积为 1,所以其边长为 1.设最大的正方 形的边长为 x,那么其他正方形按从大到小的顺序,边长依次是 x-1,x -2,x-3,x-3,
12/7/2021
3 角应用一元一次方程——水箱变高了
4.某种钢锭的截面是正方形,其边长是 20 厘米,要锻造成长、 宽、高分别为 40 厘米、30 厘米、10 厘米的长方体,则应截取这种 钢锭多长?
解:设应截取这种钢锭 x 厘米. 由题意,得 202x=40×30×10, 解得 x=30. 答:应截取这种钢锭 30 厘米长.
为 4 厘米、高为 x 厘米的圆柱体的体积的 5 倍,则下列方程正确
的是( D ) A.5π×42×x=π×102×7
B.π×42×x=5π×102×7
C.5π×(42)2×x=π×(52)2×7 D.5π×(42)2×x=π×52×7
12/7/2021
3 角应用一元一次方程——水箱变高了
2.有一个底面半径为 10 cm,高为 30 cm 的圆柱形大杯中存满了水, 把水倒入一个底面直径为 10 cm 的圆柱形小杯中,刚好倒满 12 杯,则小杯的高为( C ) A.6 cm B.8 cm C.10 cm D.12 cm

北师大版七年级数学一元一次方程应用水箱变高了与打折销售

北师大版七年级数学一元一次方程应用水箱变高了与打折销售

一元一次方程应用水箱变高了与打折销售【学习目标】1.能分析简单问题中的数量关系,并建立方程解决问题;体会利用方程解决问题的关键是寻找等量关系.2.进一步经历运用方程解决实际问题的过程,体会数学的应用价值. 【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点进阶:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚. 要点二、水箱变高了(等积变形问题)“等积变形”是以形状改变而体积不变为前提.常见类型:①形状面积变了,周长没变;②原体积=变化后体积.常用的面积、体积公式:长方形的周长公式:(长+宽)×2;面积公式:长×宽长方体的体积公式:长×宽×高正方形的周长公式:边长×4; 面积公式:边长×边长正方体体积公式:边长×边长×边长圆的周长公式:C=2d r ππ=;面积公式:2S r π=;圆柱的体积公式:V 柱=底面积×高;圆锥的体积公式:V 锥=13×底面积×高 要点进阶:寻找等量关系的方法,抓住两个等量关系:第一,形变体积不变;第二,形变体积也变,但重量不变.要点三、打折销售(利润问题) (1)-=100%=100%⨯⨯利润售价成本利润率成本成本(2) 标价=成本(或进价)×(1+利润率)(3) 实际售价=标价×打折率(4) 利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.要点进阶:寻找等量关系的方法,抓住价格升降对利润的影响来考虑.要点四、方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.【典型例题】类型一、水箱变高了(等积变形问题)例1.据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把一块长100米,宽50米的长方形土地,分为两块小长方形土地,分别种植这两种作物,是否存在一种划分这块土地的方法,使甲乙两种作物的总产量的比是3:4?请说明理由.类型二、打折销售(利润问题)例2.某商店在一笔交易中卖了两个进价不同的随身听,售价都为132元,按成本计算,其中一个盈利20%,另一个盈利10%,则该商店在这笔交易中共赚了元.举一反三:【变式】某种商品的标价为900元,为了适应市场竞争,店主打出广告:该商品九折出售,并返100元现金.这样他仍可获得10%的利润率(相对于进货价),问此商品的进货价是多少?(用四舍五入法精确到个位)例3.商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价比A型冰箱高出10%,但每日耗电量却为0.55度.现将A型冰箱打折出售(打一折后的售价为原价的110),问商场将A型冰箱打几折,消费者买A型冰箱10年的总费用与B型冰箱10年的总费用相当(每年365天,每度电按0.40元计算).类型三、方案设计问题例4.某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获利润2000元,该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂某领导提出了两种可行方案:方案1:尽可能多的制成奶片,其余直接销售鲜牛奶;方案2:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?举一反三:【变式】(2015春•绿园区期末)某移动公司开设了两种通讯业务:“全球通”使用者缴费50元月租费,然后每通话1min再付话费0.4元;“快捷通”不缴月租费,每通话1min付话费0.6元(本题的通话均指市内通话).若一个月通话xmin,两种方式的费用分别为y1元和y2元.(1)用含x的式子分别表示y1和y2,则y1= ,y2= ;(2)某人估计一个月通话300min,选择哪种业务合算?(3)每个月通话多少分钟时,两种方式所付的费用一样多?【巩固练习】一、选择题1. 小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d ,把矿石完全浸没在水中,测出杯中水面上升的高度为h ,则小明的这块矿石体积是( )A . 4πd 2hB . 2πd 2h C . πd 2h D . 4πd 2h2. 已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满几个大纸杯( )A . 64B . 100C . 144D . 2253. 如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB=?( )A . 5:3B . 7:5C . 23:14D . 47:294.小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是( )A .25斤B .20斤C .30斤D .15斤5. 受季节影响,某种商品开始实行优惠措施,按原价降低10%后,又降低a 元,现在每件售价b 元,那么该商品每件的原售价为( )A . 110%a b +-B . -110%b a - C . (1﹣10%)(a+b ) D . (1﹣10%)(a ﹣b )6.超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与上两次相同的物品应付款( )A .288元B .332元C .288元或316元D .332元或363元7.爷爷病了,需要挂100毫升的药液,小明守候在旁边,观察到输液流量是每分钟3毫升,输液10分钟后,吊瓶的空出部分容积是50毫升(如图),利用这些数据,计算整个吊瓶的容积是毫升.8.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,则甲的容积为.9.矩形ABCD被分成6个正方形,其中最小的正方形边长为1,则矩形ABCD的面积为.10.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.11.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次去购书享受八折优惠,他查看了所买书的定价,发现两次共节约了34元.则该学生第二次购书实际付款______________元.12. 中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.某人两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款 .13. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按40%的利润定价,乙服装按50%的利润定价,在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装的成本各是多少元?14.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.15. 从2014年8月1日起,浙江省城乡居民生活用电执行新的电价政策,小聪家今年安装了新的电表,他了解到安装”一户一表”的居民用户,按用抄见电量(每家用户电表所表示的用电量)实行阶梯式累进加价,其中低于50千瓦时(含50千瓦时)部分电价不调整;51﹣200千瓦时部分每千瓦时电价上调0.03元;超过200千瓦时的部分每千瓦时电价再上调0.10元.已知调整前电价统一为每千瓦时0.53元.(1)若小聪家10月份的用电量为130千瓦时,则10月份小聪家应付电费多少元?(2)已知小聪家10月份的用电量为m千瓦时,请完成下列填空:①若m≤50千瓦时,则10月份小聪家应付电费为元;②若50<m≤200千瓦时,则10月份小聪家应付电费为元;③若m>200千瓦时,则10月份小聪家应付电费为元.(3)若10月份小聪家应付电费为96.50元,则10月份小聪家的用电量是多少千瓦时?。

5.3 应用一元一次方程-水箱变高了(分层练习)(解析版)

5.3 应用一元一次方程-水箱变高了(分层练习)(解析版)

第五章 一元一次方程5.3 应用一元一次方程--水箱变高了精选练习一、单选题1.(2021·黑龙江·绥棱县教师进修学校期末)三角形三边比是3:4:5,周长是72,那么,最长边是( )A .30B .24C .18D .122.(2023·福建·泉州五中三模)明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注: 明代时 1 斤=16 两,故有“半斤八两”这个成语).设总共有 x 个人,根据题意所列方程正确的是( )A .7x - 4 = 9x +8B.7x +4 = 9x -8C .4879x x +-=D .4879x x -+=【答案】B【分析】直接根据题中等量关系列方程即可.【详解】解:根据题意,7x +4 = 9x -8,故选:B .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.3.(2022·全国·七年级课时练习)在一个底面直径为6cm ,高为9cm 的圆柱形瓶内注水,使水柱的高为5cm ,向瓶中放入一块长、宽、高分别为2cm ,2cm ,4cm 的长方体铁块,则此时水柱的高为( )(p 取3)A .559cmB .14527cmC .539cmD .15127cm4.(2022·四川·三台博强蜀东外国语学校七年级阶段练习)一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为210cm ,请你根据图中标明的数据,计算瓶子的容积是( )3cm .A .80B .70C .60D .50【答案】C 【分析】据“空余容积+水的体积=瓶子的容积”和圆柱的体积公式作答.【详解】解:由左图知,水体积为40 cm 3,在左图中用v 表示瓶子的体积,空余容积为(v-40)cm 3;由右图知空余容积为()751020-´= cm 3,由左右两图得到的空余容积应相等得方程:v-40=20.v=40+20=60故选择:C .【点睛】本题考查列一元一次方程解应用题,掌握列一元一次方程解应用题的方法,关键是分析图形信息找等量关系.5.(2021·湖南·宁远县启慧学校七年级阶段练习)甲乙两桶共有48千克水,如果甲桶给乙桶加乙桶水的一倍,然后乙桶又给甲桶加甲桶剩余水的一倍,那么两桶水的质量相等,问原来甲、乙两桶内各有多少千克水?若设原来乙桶内水的质量为x 千克,则可列方程为( )A .()()()24848x x x x x x --=+---B .()()()2[48248[]48]x x x x x --=----C .()()()2484848x x x x x x --=+----D .()()()()484848x x x x x x x x --++=+----【答案】A【分析】利用列表法,逐渐分析计算判断即可.【详解】根据题意,列表得:根据题意,得()()()24848x x x x x x --=+---,故选A.【点睛】本题考查了一元一次方程的应用,熟练运用列表法分析变化规律,寻找等量关系是解题的关键.6.(2021·陕西·无七年级期末)为了保护生态环境,某山区县将该县某地一部分耕地改为林地,改变后林地和耕地面积共有180平方千米,其中耕地面积是林地面积的25%,若设耕地面积为x 平方千米,则根据题意,列出方程正确的是( )A .18025%x x-=B .()25%180x x =-C .180225%x +=D .180225%x -=【答案】B【分析】首先理解题意找出题中存在的等量关系:林地面积+耕地面积=180km 2,耕地面积是林地面积的25%,若设耕地面积为x 平方千米,则林地面积为(180-x)平方千米,再由耕地面积是林地面积的25%,列方程即可.【详解】解:设耕地面积为xkm 2,则林地面积应该表示为()180x -平方千米,依题意得,()25%180x x =-故选:B【点睛】此类题目的解决需仔细分析题意,找准关键描述语:林地面积和耕地面积共有180km 2,耕地面积是林地面积的25%.进而利用方程即可解决问题.二、填空题7.(2022·江苏·南京民办求真中学七年级阶段练习)比例的两个内项分别为2和5,两个外项分别为x 和2.5,则x 的值为_______.【答案】4【分析】根据比例的基本性质:内项之积等于外项之积,列方程求解即可.【详解】解:由题意得:25 2.5x ´=,解得:4x =,故答案为:4.【点睛】本题考查比例的基本性质:内项之积等于外项之积.8.(2022·湖北襄阳·七年级期末)根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g )的销售瓶数的比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装_______大瓶.【答案】20000【分析】设每份为x 瓶,则大瓶销售了2x 瓶,小瓶销售了5x 瓶,根据大小消毒液的总重量为22.5吨=22500000克建立方程求出其解即可.【详解】解:设每份为x 瓶,则大瓶销售了2x 瓶,小瓶销售了5x 瓶,根据题意得:2x ×500+5x ×250=22500000,解得x =10000,所以大瓶销售了:2×10000=20000瓶,故答案是:20000.【点睛】本题考查了运用比例问题的设每份为未知数的方法建立方程求解的运用,一元一次方程的解法的运用,解答时运用设间接未知数降低解题难度是关键.9.(2022·全国·七年级课时练习)将一根底面积为28.26平方厘米,高为10厘米的圆柱形铁块锻压成底面积为78.5平方厘米的“胖”铁块,此时的高为____________.【答案】3.6厘米.【分析】设“胖”铁块的高为x 厘米,根据锻造前的体积=锻造后的体积列方程求解即可.【详解】设“胖”铁块的高为x 厘米,由题意得78.5x=28.26×10,解之得x=3.6.故答案为3.6厘米.【点睛】本题考查了几何图形中一元一次方程的应用,根据“锻造前的体积=锻造后的体积”得到等量关系是解决本题的关键.10.(2022·全国·七年级课时练习)如图,一个尺寸为3604(´´单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34´为底面)时,箱中液体的高度是________dm .【答案】45.【分析】设当此铁箱竖起来(以34´为底面)时,箱中液体的高度是x dm ,根据等积法列方程求解即得.【详解】设当此铁箱竖起来(以34´为底面)时,箱中液体的高度是x dm由题意得:3603=43x´´´´解得:45x =答:当此铁箱竖起来(以34´为底面)时,箱中液体的高度是45dm故答案为:45.【点睛】本题考查了一元一次方程实际问题,解题关键是熟知前后液体体积不变.三、解答题11.(2021·全国·七年级课时练习)第一块试验田的面积比第二块试验田的3倍还多2100m ,这两块试验田共22900m ,两块试验田的面积分别是多少?【答案】第一块试验田面积为22200m ,第二块试验田面积为2700m .【分析】首先设第二块实验田面积是2m x ,则第一块实验田的面积23100m x +,再根据两块实验田面积总和是22900m ,列出方程即可.【详解】解:设第二块实验田面积是2m x ,由题意得:31002900x x ++=,解得:2700m x =,第一块实验田的面积:237001002200m ´+=.答:两块试验田的面积分别是2700m ,22200m .【点睛】本题主要考查了一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,再列出方程.12.(2022·全国·七年级专题练习)墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?【答案】长为16cm ,宽为10cm .【分析】设长方形的长为cm x ,由梯形与长方形的周长相等列方程可得2(10)10462x +=´+´,再解方程可得答案.【详解】解:设长方形的长为cm x ,根据题意,得2(10)10462x +=´+´.25220,x \=-解得:16,x =所以长方形的长为16cm ,宽为10cm .一、填空题1.(2022·全国·七年级专题练习)根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,则这些消毒液分装成的这两种产品中有______瓶大瓶产品.【答案】20000【分析】设大瓶有2x瓶,小瓶有5x瓶,根据题意列方程求出x,则可知大瓶的数量【详解】换算单位:22.5t=22.5×1000×1000g设大瓶有2x瓶,小瓶有5x瓶,根据题意列方程,得500·2x+250·5x=22.5×1000×1000,解得x=100002x=20000∴大瓶有20000瓶.故答案为:20000【点睛】本题考查了列一元一次方程解应用题,一般情况下题目中出现比值问题,通常设每份为x,掌握以上方法是解题的关键.2.(2022·全国·七年级课时练习)一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.3.(2021·湖北·武汉外国语学校(武汉实验外国语学校)七年级期末)如图,将长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形.若灰色长方形的长与宽之比为7:3,试求AD:AB的值.【答案】9:4【分析】可设灰色长方形的长上摆7x个小正方形,宽上摆3x个小正方形,因为将长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形,可表示出灰色长方形的长和宽,进而求出大长方形的长和宽,从而可求解.【详解】解:设灰色长方形的长上摆7x个小正方形,宽上摆3x个小正方形,根据“长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形”可知:2(7x+3x)=204-4,解得:x=10,则灰色长方形的长上摆了70个小正方形,宽上摆了30个小正方形,∴AD=72个小正方形的边长,AB=32个小正方形的边长,∴AD:AB=72:32=9:4.【点睛】此题考查理解题意能力及一元一次方程的应用,关键是看到灰色长方形的周长和204个小正方形的关系从而求解.4.(2022·全国·七年级专题练习)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x 斗,那么可列方程为_________.【答案】()103530x x +-=【分析】设清酒x 斗,则醐洒酒为(5-x )斗,一斗清酒价值10斗谷子,x 斗清酒价值10x 斗谷子;一斗醐洒酒价值3斗谷子,(5-x )斗醐洒酒价值3(5-x )斗谷子.存在“换x 斗清酒和(5-x )斗醐洒酒共用30斗谷子”的等量关系,根据等量关系可列方程.【详解】解:设清酒x 斗,则醐洒酒为(5-x )斗.()103530x x +-=.故答案为:()103530x x +-=.【点睛】本题主要考查了一元一次方程的实际应用,准确分析出数量关系和等量关系是解决本题的关键.5.(2022·重庆·黔江区育才初级中学校七年级期中)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植A 、B 、C 三种经济作物增加收入,经过一段时间,该村已种植的A 、B 、C 三种经济作物的面积之比为3:2:4,单位面积产值之比为1:2:2,为了进一步提高该村的经济收入,将在该村余下土地上继续种植这三种经济作物,经测算需将余下土地面积的16种植C 经济作物,则C 的种植总面积将达到这三种经济作物种植总面积的38,且A 、B 、C 三种经济作物的总产值提高了13,则该村还需种植A 、B 两种经济作物的面积之比是__________.二、解答题6.(2022·全国·七年级)一圆柱形桶内装满了水,已知桶的底面直径为a,高为b.又知另一长方体形容器的长为b,宽为a,若把圆柱形桶中的水倒入长方体形容器中(水不溢出),水面的高度是多少?7.(2022·全国·七年级课时练习)用一根长为10m的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4m,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8m,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?8.(2022·全国·七年级专题练习)有一个盛水的圆柱体玻璃容器,它的底面直径为12cm(容器厚度忽略不计),容器内水的高度为10cm.(1)如图1,容器内水的体积为______3cm(结果保留p).(2)如图2,把一根底面直径为6cm,高为12cm的实心玻璃棒插入水中(玻璃棒完全淹没于水中),求水面上升的高度是多少?(3)如图3,若把一根底面直径为6cm,足够长的实心玻璃棒插入水中,求水面上升的高度是多少?。

北师大版七年级上册数学应用一元一次方程——水箱变高了1同步练习题

北师大版七年级上册数学应用一元一次方程——水箱变高了1同步练习题

5.3 应用一元一次方程——水箱变高了1.(8分)将一个底面半径是5厘米,高为10厘米的圆柱体冰淇淋盒改造成一个直径为20厘米的圆柱体,若体积不变,高为多少?2.(8分)长方形纸片的长是15cm,长、宽上各剪去1个宽为3cm 的长条,剩下的面积是原面积的.求原面积.【拓展延伸】3(10分)一个长方形的鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?答案解析7.【解析】设圆柱体的高为x厘米.根据题意得:25π×10=100πx,解得:x=2.5.答:高为2.5厘米.8.【解析】设长方形纸片的宽是xcm,原面积是15xcm2,长、宽上各剪去1个宽为3cm的长条,剩下的面积是12(x-3)cm2, 由题意得:15x×=12(x-3),所以9x=12(x-3),解方程得x=12,12×15=180(cm2),所以原面积是180cm2.9.【解析】根据小王的设计可以设宽为x米,则长为(x+5)米,根据题意得:2x+(x+5)=35,解方程得:x=10.因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,故小王的设计不符合实际.根据小赵的设计可以设宽为y米,则长为(y+2)米,根据题意得2y+(y+2)=35,解方程得:y=11.因此小赵设计的长为y+2=11+2=13(米),而墙的长度为14米,显然小赵的设计符合实际,此时鸡场的面积为13×11=143(平方米).构建数学的知识网络学习数学,重要的是要构建一个数学的知识网络,将单一的知识都串联起来,这样有助于对综合型题目的解答。

高效学习经验——把数学的知识点都结合起中考状元XX平日里爱打篮球、爱看球赛,XX给人的第一印象很阳光。

在他看来,他取得高分的最大秘诀就是:基础知识掌握得非常牢固。

北师大版七年级数学上册第五章《应用一元一次方程—水箱变高了》课时练习题(含答案)

北师大版七年级数学上册第五章《应用一元一次方程—水箱变高了》课时练习题(含答案)

北师大版七年级数学上册第五章《3.应用一元一次方程—水箱变高了》课时练习题(含答案)一、单选题1.某阶梯教室开会,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( )A .30x ﹣8=31x ﹣26B .30x+8=31x+26C .30x+8=31x ﹣26D .30x ﹣8=31x+262.有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排4人,将会空出5间宿舍;如果每间宿舍安排3人,就有100人没床位,那么在学校住宿的学生有多少人?若设在学校住宿的学生有x 人,那么根据题意,可列出的方程为( )A .100543x x -+=B .510043x x +-= C .453100x x -=+ D .100543x x +-= 3.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x 度,则所列方程正确的是( )A .6x +6(x -2000)=150000B .6x +6(x +2000)=150000C .6x +6(x -2000)=15D .6x +6(x +2000)=154.某学校组织师生去衢州市中小学素质教育实践学校研学.已知此次共有n 名师生乘坐m 辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①()4015451m m +=-;②()4015451m m -=-;③1514045n n -=-;④1514045n n -=+.其中正确的是( ) A .①③B .①④C .②③D .②④ 5.一个底面半径为10cm 、高为30cm 的圆柱形大杯中存满了水,把水倒入底面直径为10cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6cmB .8cmC .10cmD .12 cm6.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .727.小明用长16cm 的铁丝围成一个长方形,并且长方形的长比宽多2cm ,设这个长方形的长为xcm ,则x 的值为()A .9B .5C .7D .108.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( )A .60-x =20%(120+x)B .60+x =20%×120C .180-x =20%(60+x)D .60-x =20%×120二、填空题9.一个蓄水池可蓄水240吨,现有一个进水管和一个排水管,单独打开进水管8小时可以把水池注满,单独打开排水管6小时可以把满池水排空.若原有满池水,设两管齐开,x 小时可把满池水排空,则可列方程________.10.某小学女生占全体学生52%,比男生多a 人,这个学校一共有______人学生. 11.已知一个两位数,其十位上的数字是个位上数字的3倍还少1,且它们的和是11,那么这个两位数是________.12.如图,一个尺寸为3604(⨯⨯单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34⨯为底面)时,箱中液体的高度是________dm .13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为_______________.14.一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.三、解答题15.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?16.10位同学在植树节这天共种了26棵树苗,其中男生每人种3棵,女生每人种2棵,则男生和女生分别有多少人?17.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)18.足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?19.有一个两位数,它的十位上的数字比个位上的数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要多5,求这个两位数.20.冰墩墩是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,体现了追求卓越、引领时代,以及面向未来的无限可能.某学校购进了一批冰墩墩吉祥物分配给各班,若每班分4个,则剩余2个;若每班分5个,则还缺16个.求这个学校有几个班级?参考答案1.C2.A3.A4.B5.C6.D7.B8.A9.240240240 68x⎛⎫-=⎪⎝⎭10.25a11.8312.45.13.2x+56=589-x14.6.415.解:设长方形的长为cmx,根据题意,得2(10)10462x+=⨯+⨯.25220,x∴=-解得:16,x=所以长方形的长为16cm,宽为10cm.16.解:设男生x人,则女生(10-x)人,根据题意,得3x+2(10-x)=26,解得:x=6,10-x=10-6=4(人),答:男生6人,女生4人.17.解:设支援拔草的有x人,由题意得:31+x=2[18+(20-x)].18.解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程:3x+5x=32,解得:x=4,则黑色皮块有:3x=12个,白色皮块有:5x=20个.答:黑色皮块有12个,白色皮块有20个.19.解:设个位上的数字为x,则十位上的数字为(x+5),那么这个两位数为10(x+5)+x,依题意,可列方程10(x+5)+x=8[ (x+5)+x ]+5.解方程可得:x=1代入可得这个两位数为61.答:这个两位数为61.20.解:设这个学校有x个班级,则+=-,x x42516x=.解得18答:这个学校有18个班级。

一元一次方程应用题水箱变高了题型

一元一次方程应用题水箱变高了题型

一、概述水箱变高了是一个常见的一元一次方程应用题,它涉及到数学在实际生活中的应用,对于学生来说具有一定的教育意义。

在解决这类问题时,需要运用一元一次方程的知识,通过设立未知数、建立方程式、解方程等步骤来求解问题。

本文将通过具体的例题分析,帮助读者更好地理解并掌握解决这类问题的方法。

二、问题描述某地区的一个水箱的水位原来是30米,后来升高了h米。

经过一段时间,水箱的水位降低到了原来的一半,那么水箱升高了多少米?三、问题分析1. 设定未知数:我们可以设未知数x表示水箱升高的高度。

2. 建立方程式:根据题意,可以列出方程式:30 + x = 2(30 + x - h)。

3. 解方程求解:通过解方程来求解出水箱升高的高度x。

四、具体步骤1. 设定未知数:设水箱升高的高度为x米。

2. 建立方程式:根据题意,可以列出方程式:30 + x = 2(30 + x - h)。

3. 解方程求解:通过解方程求出x的值。

4. 检验答案:将得到的结果代入原方程中进行检验。

五、具体计算1. 设定未知数:设水箱升高的高度为x米。

2. 建立方程式:30 + x = 2(30 + x - h)。

3. 解方程求解:通过解方程30 + x = 60 + 2x - 2h,得到x = 30 - 2h。

4. 检验答案:将x = 30 - 2h代入方程30 + x = 2(30 + x - h)中进行检验:30 + (30 - 2h) = 2 * [30 + (30 - 2h) - h]化简得到:30 + 30 - 2h = 60 + 60 - 4h - 2h化简得到:60 - 2h = 120 - 6h化简得到:4h = 60化简得到:h = 15六、问题解答根据计算,水箱升高了15米。

七、总结通过上述的步骤,我们成功地解决了水箱变高了的一元一次方程应用题。

在解决这类问题时,关键在于正确地建立方程式,然后通过解方程的方法求解未知数。

为了确保解答正确,还需要对得到的结果进行检验。

第6课时 应用一元一次方程——水箱变高了

第6课时  应用一元一次方程——水箱变高了
第五章 一元一次方程
第6课时 应用一元一次方程—— 水箱变高了
精典范例(变式练习)
巩固提高
精典范例
例1一个长方体水箱,长40 cm,宽30 cm,箱内水 面高10 cm,放进一个棱长为20 cm正方体铁块后, 铁块是否全在水中?这时水面高多少厘米?
解:设铁块放入后水面高为x cm,根据题意得
解得 x=15. 答:铁块不全在水中,这时水面高为15 cm.
57米
巩固提高
13.在一个底面直径为5 cm、高为18 cm的圆柱形瓷 瓶内装满水,再将瓷瓶内的水倒入一个底面直径为 6 cm、高为10 cm的圆柱形玻璃瓶中,能否完全装 下?若装不下,那么瓷瓶内的水还有多高?若未能装 满,求玻璃瓶内水面离杯口的距离. 解:
所以装不下.设瓷瓶内的水还有x cm高, 根据题意,得
2.一个长方形养鸡场的长边靠墙,墙长13米,其他 三边用竹篱笆围成.现有长为32米的篱笆,小明的 设计方案是长比宽多5米,小颖的设计方案是长比 宽多2米,你认为谁的设计符合实际?
解:按照小明的设计方案,设鸡场的长为x米, 则宽为(x-5)米,根据题意,得x+2(x-5)=32,x=14. 因为14>13,所以此方案不符合实际. 按照小颖的设计方案,设鸡场的长为y米, 则宽为(y-2)米,根据题意,得y+2(y-2)=32,y=12. 因为12<13,所以小颖的设计方案符合实际.
7.一个长方形的长比宽的4倍多2cm,设长为x cm, 则宽为( D )
巩固提高
8.用一根长度固定的铁丝围成一个长方形,围成的
长方形长和宽发生变化时,长方形的 ( D )
A.面积不变化
B.丝围成长方形,发现长比宽多2 cm,围
成正方形时,边长刚好为4cm,则所围成的长方形 的长为_5__cm.

北师大版数学七年级上册第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习

北师大版数学七年级上册第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习

第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.内径为300 mm,内高为32 mm的圆柱形玻璃杯内盛满水,倒入内径为120 mm的圆柱形玻璃杯,刚好倒满,则内径为120 mm玻璃杯的内高为().A.150 mm B.200 mm C.250 mm D.300 mm 2.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣23.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍.设调往甲处植树x人,则可列方程()A.23﹣x=2(17+20﹣x)B.23﹣x=2(17+20+x)C.23+x=2(17+20﹣x)D.23+x=2(17+20+x)4.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350650x x+-=+D.120350506x x+-=+5.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;①60m+10=62m+8;①1086062n n-+=;①1086062n n+-=中,其中正确的有()A.① ①B.① ①C.① ①D.① ①6.中国明代数学著作《算法统宗》中有这样一首古诗:“巍巍古寺在山中,不知寺内有多僧?三百六十四只碗,恰好用尽不用争,三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x ,则得到的方程是( ) A .34364x x +=B .1136434x x +=C .143643x x +=D .133644x x +=7.我国明朝珠算发明家程大位,他完成的古代数学名著《直指算法统宗》,详述了传统的珠算规则,确立了算盘用法.书中记载如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?设大和尚有x 人,则可列方程为( )A .13(100)1003x x +-=B .33(100)100x x +-=C .13(100)1003x x +-=D .1(100)1003x x +-=8.甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x ,可列方程( )A .54+x=2(48﹣x )B .48+x=2(54﹣x )C .54﹣x=2×48D .48+x=2×549.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.用一根铁丝围成一个长24cm ,宽12cm 的长方形,现将它拉成正方形,则这个正方形的边长是( ) A .9cm B .10cmC .18cmD .20cm评卷人 得分二、填空题 11.钢锭的截面是正方形,其边长是20厘米,要锻造成长、宽、高分别为40厘米,30厘米,10厘米的长方体,应截取这种钢锭的长度为________厘米.12.班级筹备运动会,要做直角边分别为0.4米和0.3米的三角形小旗,共做64面,要用长1.6米、宽1.2米的长方形红纸________张.13.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程______.14.某部队开展植树活动,甲队35 人,乙队27 人,现另调28 人去支援,使两队的人数相等,设应调往甲队x 人,依题意列方程为___________15.浙江农村地区向来有打年糕的习俗,糯米做成年糕的过程中重量会增加20%.如果原有糯米a斤,做成年糕后重量为______斤.16.众所周知,中华诗词博大精深,集大量的情景、情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数反而少了20个字.根据题意可知七言绝句有____首.17.某车间原计划用13小时生产一批零件,后来每小时多生产10个,用了12小时,不但完成了任务,而且还多生产零件60个,设原计划每小时生产零件x个,则可列方程为_______.18.将一个底画积为232cm,高为24cm的长方体金属熔铸成一个底面长6cm,宽4cm 的长方体零件毛坯,则这个长方体零件毛坯的高是______cm.19.甲、乙两个图形的面积之和是2150cm,面积之比为7:3,则较大图形的面积是____2cm.评卷人得分三、解答题20.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米;小赵也打算用它围成一个养鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少?21.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”22.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.23.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?24.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库A工地xB工地x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)25.(教材P144T3变式)如图所示,小明将一个正方形纸片剪去一个宽为8cm的长条后,再从剩下的长方形纸片上剪去一个宽为10cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?参考答案:1.B【解析】【详解】试题分析:设内径为120 mm玻璃杯的内高为x mm.由题意本题的等量关系为两个圆柱形玻璃杯容积相同,则可列方程组π×1502×32=π×602x,解得即可.解:设内径为120 mm玻璃杯的内高为x mm.由题意得π×1502×32=π×602x,解得x=200(mm).即内径为120 mm玻璃杯的内高为200 mm.故选B.2.B【解析】【详解】根据题意可得:长方形的宽为(13-x)cm,根据题意可得:x-1=(13-x)+2.故选B.考点:一元一次方程的应用3.C【解析】【分析】设应调往甲处x人,则调往乙处(20-x)人,根据使在甲处植树的人数是乙处植树人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】解:设应调往甲处植树x人,则调往乙处植树(20﹣x)人,根据题意得:23+x=2(17+20﹣x).故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.4.D【解析】根据零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:1203 50506x x+-=+,故选:D.【点睛】本题考查了一元一次方程的应用,根据时间得到相应的等量关系是解决本题的关键.5.A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】解:根据总人数列方程,应是60m+10=62m﹣8,根据客车数列方程,应该为:108 6062n n-+=,故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,能够根据不同的等量关系列方程.6.B【解析】【分析】设和尚的个数为x位,根据共有三百六十四只碗,三人共餐一碗饭,四人共尝一碗羹列出方程.【详解】设和尚的个数为x位.可列方程11364 34x x+=;故答案为B.本题考查由实际问题列一元一次方程,解题的关键是理解题意找出等量关系列方程. 7.A 【解析】 【分析】根据题意, 大和尚有x 人,共分馒头3x 个,小和尚有()100x -人,3人分1个,每人分13个,共分()11003x -个,再根据大小和尚得到的馒头之和为100,列出方程. 【详解】解:设大和尚有x 人,则小和尚有()100x -人, 据题意得,13(100)1003x x +-=.故选:A. 【点睛】本题主要考查一元一次方程解决问题中的分配问题,理解题意,找到数量关系是解答关键. 8.A 【解析】 【详解】解:设从乙班调入甲班x 人,则乙班现有48﹣x 人,甲班现有54+x 人.此时,甲班人数是乙班的2倍,所以所列的方程为:54+x =2(48﹣x ),故选A . 9.A 【解析】 【分析】利用两种不同栽法的总路程都是某一段公路的一侧的长,总长度等于(棵数-1)×每两棵之间的距离,列方程即可 【详解】解:设原有树苗x 棵,每隔5米栽1棵,则树苗缺21棵; 5(x+21-1), 每隔6米栽1棵,则树苗正好用完.6(x-1), 由题意得:5(211)6(1)x x+-=-.故选A.【点睛】本题考查列一元一次方程解应用题,抓住等量关系两种不同栽法总长度一样,总长度=(棵数-1)×每两棵之间的距离列方程是解题关键.10.C【解析】【详解】设正方形的边长为xcm,依题意有24×2+12×2=4x,解得x=18,故正方形的边长为18cm.11.30【解析】【详解】试题分析:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据锻造前后体积不变列方程求解即可.解:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据题意得20×20x=40×30×10,解得x=30(厘米).故答案为30.12.2【解析】【详解】试题分析:设要用长1.6米、宽1.2米的长方形红纸x张,求出x张长方形红纸的面积,根据等量关系:长方形红纸做成三角形小旗后总面积不变,列方程求解即可.解:设要用长1.6米、宽1.2米的长方形红纸x张,则长方形红纸面积为1.6×1.2x平方米,做成的三角形小旗总面积为12×0.4×0.3×64平方米,根据题意得1.6×1.2x=12×0.4×0.3×64,解得x=2.故答案为2.13.7 4 x-【解析】【详解】设计划做x个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.解答:解:设计划做x个“中国结”,由题意得,96x+=74x-.14.35+x=27+(28-x)【解析】【分析】设应调往甲队x人,乙队(28-x)人,根据人数相等可得.【详解】设应调往甲队x人,乙队(28-x)人.由题意得:35+x=27+(28-x),故答案为:35+x=27+(28-x)【点睛】考核知识点:一元一次方程应用.理解题意是关键.15.1.2a(或120%a)【解析】【分析】根据增加20%,列出代数式即可.【详解】解:①糯米做成年糕的过程中重量会增加20%,①a增加20%后为(1+20%)a=1.2a(或120%a).【点睛】本题考查了代数式的表示,属于简单题,将数学语言转换成符号语言是解题关键. 16.35【解析】【详解】解:设七言绝句有x首,根据题意,可列方程为:28x﹣20(x+13)=20.解得x=35故答案为35.17.12(x+10)=13x+60.【解析】【详解】解:设原计划每小时生产零件x个,则实际每小时生产零件(x+10)个.根据等量关系列方程得:12(x+10)=13x+60.故答案为12(x+10)=13x+60.点睛:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,然后再列出方程.18.32【解析】【详解】设这个长方体零件毛坯的高是xcm,由题意得:32×24=6×4×x,解得x=32,故答案为32.19.105【解析】【详解】设较大图形的面积为x2cm,则较小图形的面积为(150-x)2cm,由题意得:x:(150-x)=7:3,解得x=105,即较大图形的面积是1052cm20.小赵的设计符合要求.按他的设计养鸡场的面积是143米2.【解析】【分析】根据小王的设计可以设宽为x 米,长为(x +5)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小王的设计,根据小赵的设计可以设宽为y 米,长为(y +2)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小赵的设计,从而可以作出判断.【详解】解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为y 米,长为(y +2)米,根据题意得2y +(y +2)=35解得y=11.因此小王设计的长为y +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米).【点睛】 本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.x =60【解析】【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;①有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解22.11110024x x x x++++=【解析】【详解】试题分析:根据“如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只”这一等量关系列出方程即可.试题解析:解:设这群羊有x只,根据题意得:x+x+12x+14x+1=100.23.飞机票价格应是1200元.【解析】【详解】试题分析:设飞机票价格应是x元,根据该旅客购买了180元的行李票,列方程求解.试题解析:解:设飞机票价格应是x元,由题意得:(30﹣20)×1.5% x=180,解之得:x=1200.答:飞机票价格应是1200元.24.(1)填表见解析;(2)﹣10x+15000;(3)﹣130x+3900=0.【解析】【详解】试题分析:(1)根据题意填写表格即可;(2)根据表格中的数据,以及已知的运费表示出总运费即可;(3)根据本次运送水泥总运费需要25900元列方程化简即可.试题解析:解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100﹣x)吨,乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,补全表格如下:(2)运送甲仓库100吨水泥的运费为140x+150(100﹣x)=﹣10x+15000,故答案为﹣(3)140x +150(100﹣x )+200(70﹣x )+80(x +10)=25900,整理得:﹣130x +3900=0. 点睛:此题考查了一元一次方程的应用,弄清题意找到相等关系是解本题的关键 25.每一个长条的面积都是2320cm .【解析】【详解】试题分析:经分析显然要设正方形的边长是xcm .根据“两次剪下的长条面积正好相等”这一关系列出方程即可.试题解析:设正方形的边长是cm x ,根据题意得()8108x x =-,解方程得40x =,()28320cm x =, 所以每一个长条的面积都是2320cm .。

最新北师版七上数学金牌学典5.3 应用一元一次方程——水箱变高了

最新北师版七上数学金牌学典5.3 应用一元一次方程——水箱变高了

6 2
2
x,
解得x=12.5.
因为12.5>10,所以底面直径6厘米、高10厘米的圆柱形玻璃
杯不能完全装下.
设瓶内水面还有y厘米高.
依题意,得π
5 2
2
y=π
6 2
2
×(12.5-10),解得y=3.6.
答:不能完全装下,瓶内水面还有3.6厘米高.
第三级 拓广探究 8.一个长方形的养鸡场的长边靠墙,墙长14 m,其他三边用竹篱笆 围成,现有长为35 m的竹篱笆,小明打算用它围成一个鸡场,其中 长比宽多5 m;小强也打算用它围成一个鸡场,其中长比宽多2 m. 你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?
7.在一个底面直径为5厘米、高为18厘米的圆柱形瓶内装满水,再 将瓶内的水倒入一个底面直径为6厘米、高为10厘米的圆柱形玻璃 杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能 装满,求杯内水面离杯口的距离.
解:设底面直径6厘米、高x厘米的圆柱形玻璃杯恰好能装满水.
依题意,得π
5 2
2
×18=π
A.1π8 cm C.1π8 cm
B.3π6 cm D.3π6 cm
3.根据图中给出的信息,可得正确的方程是( A )
A.π·82
2x=π·62
2
·(x+5)
B.π·
8 22Βιβλιοθήκη x=π·6 22
·(x-5)
C.π·8x=π·6(x+5)
D.π·82x=π·62×5
4.把一个长、宽、高分别为8 cm、7 cm、6 cm的长方体铁块和一个 棱长为5 cm的正方体铁块,熔炼成一个底面直径为20 cm的圆锥, 则圆锥的高为( B )
A.5609π1

53应用一元一次方程——水箱变高了

53应用一元一次方程——水箱变高了

53应用一元一次方程——水箱变高了
假设有一个水箱,原来的高度为x,突然上升了h,现在的高度为
x+h。

我们知道,水箱的体积等于底面积乘以高度。

假设水箱的底面积为A,则原来的体积为V1=A*x,现在的体积为V2=A*(x+h)。

根据题意,水箱的体积变大了。

即V2-V1>0,即A*(x+h)-A*x>0,即
A*h>0。

由于A是一个正数(底面积不会为负),所以我们可以得到h>0。

这个结果告诉我们,水箱的高度变大了,即增加了一些高度。

现在,我们来解一元一次方程来计算出增加的高度h。

根据上面的推导,我们得到了方程A*h>0,我们可以通过将A*h除以
A来消去A,得到h>0。

这说明增加的高度必须大于0。

这样,我们可以得到结论,水箱的高度上升了。

例如,假设水箱原来的高度为2米,突然上升了1米。

那么现在的高
度就变成了2+1=3米。

通过解一元一次方程,我们可以计算出增加的高度为1米。

总结一下,应用一元一次方程可以帮助我们解决一些与高度变化、体
积变化相关的问题。

在这个例子中,我们解一元一次方程来计算出水箱增
加的高度。

当然,水箱变高了不仅仅可以用一元一次方程来解决,还可以用其他
方法解决,比如直接通过观察得出结论。

但是对于更复杂的问题,一元一次方程就是一种有效的解决方法。

我们可以通过列方程、化简方程、求解方程等步骤,得到问题的答案。

希望这个例子可以帮助你更好地理解应用一元一次方程的方法。

北师大版 七年级数学上册5.3应用一元一次方程——水箱变高了同步练习

北师大版 七年级数学上册5.3应用一元一次方程——水箱变高了同步练习

5.3应用一元一次方程—水箱变高了考点内容:1、等积变形问题2、等长变形问题知识点一等积变形问题(重点)等积变形:指的是图形或物体的形状发生变化,但变化前后的体积或面积不变,等积变形问题中的等量关系:变化前图形的面积或物体的体积=变化后图形的面积或体积。

易错:等积变形问题中涉及求圆柱体积问题时,会用到圆柱底面半径,读题时要看清题目所给的条件是直径还是半径。

考核角度1:利用等积变形解决锻造问题练习:例题1 用直径为4cm的圆柱形钢铸造3个直径为2cm,高为16cm的圆柱形零件,需要截取多长的圆柱形钢?例题2 某厂要锻造长、宽、高分别为260mm,150mm,130mm的长方体毛坯,需要截取横截面面积为130×130mm2的方钢多长?(不计损耗)例题3 要锻造一个半径为5cm,高为8cm的圆柱形毛坯,应截取半径为4cm的圆柱形钢的高度为多少?例题4一个长方体合金长80cm、宽80cm、高100cm,现要锻压新的长方形,使其底面积为边长是40cm的正方形的高为多少?例题5 有一个长、宽、高分别是15cm,10cm,30cm的长方体钢锭,现将它锻压成一个底面为正方形,且边长为15cm的长方体钢锭,求锻压后长方形钢锭的高。

(忽略锻压过程中的损耗)例题6 将一个底面积为28.26cm2,高为10cm的铁块锻压成底面积为78.5cm2的“胖”铁块,此时铁块的高为多少?考核角度2:利用等积变形解决容器注水问题练习:例题1 将装满水的底面直径为40cm,高为60cm的圆柱形水桶里的水全部灌于另一个底面直径为50cm的圆柱形水桶(水不会溢出),这时水面的高度是多少厘米?例题2 一个长方形水箱,从里面量长、宽、高分别为40cm,30cm和30cm,水箱中水面高10cm,放进一个棱长为20cm的正方形铁块后,铁块顶面仍高于水面,这时水面高多少厘米?例题3 将内径为12cm的圆柱形杯子装满水后倒入内径为30cm,内高为3.2cm的圆柱形容器里刚好倒满,求杯子的内高?(注:内径是指内圆的直径)例题4 在水平桌面上有甲、乙两个圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】
一、选择题
1. 小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d ,把矿石完全浸没在水中,测出杯中水面上升的高度为h ,则小明的这块矿石体积是( )
A . 4πd 2h
B . 2
πd 2h C . πd 2h D . 4πd 2h 2. 已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满几个大纸杯( )
A . 64
B . 100
C . 144
D . 225
3. 如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB=?( )
A . 5:3
B . 7:5
C . 23:14
D . 47:29
4.(石家庄模拟)小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是( )
A .25斤
B .20斤
C .30斤
D .15斤
5. 受季节影响,某种商品开始实行优惠措施,按原价降低10%后,又降低a 元,现在每件售价b 元,那么该商品每件的原售价为( )
A . 110%a b +-
B . -110%
b a - C . (1﹣10%)(a+b ) D . (1﹣10%)(a ﹣b ) 6.(朝阳区校级模拟)超市推出如下优惠方案:
(1)一次性购物不超过100元不享受优惠;
(2)一次性购物超过100元,但不超过300元一律9折;
(3)一次性购物超过300元一律8折.
李明两次购物分别付款80元,252元.如果李明一次性购买与上两次相同的物品应付款( )
A .288元
B .332元
C .288元或316元
D .332元或363元
二、填空题
7.爷爷病了,需要挂100毫升的药液,小明守候在旁边,观察到输液流量是每分钟3毫升,输液10分钟后,吊瓶的空出部分容积是50毫升(如图),利用这些数据,计算整个吊瓶的容积是 毫升.
8.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,则甲的容积为.
9.矩形ABCD被分成6个正方形,其中最小的正方形边长为1,则矩形ABCD的面积为.
10. (黑龙江)某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.
11.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次去购书享受八折优惠,他查看了所买书的定价,发现两次共节约了34元.则该学生第二次购书实际付款______________元.
12. 中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.某人两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款 .
三、解答题
13. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按40%的利润定价,乙服装按50%的利润定价,在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装的成本各是多少元?
14.(泾阳县期中)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;。

相关文档
最新文档