新人教版七年级数学(下册)第五章导学案及参考答案
人教版 七年级数学 下册 第五章相交线与平行线-5.2.1平行线 导学案
1.结合演示的结论,用自己的语言描述平行线的认识:
①平行线是同一的两条直线
②平行线是交点的两条直线
2.尝试用数学语言描述平行定义
特别注意:直线a与b是平行线,记作“”,这里“”是平行符号.
思考:如何确定两条直线的位置关系?.
合作探究
三、画图、观察、探索平行公理及平行公理推论
1.在转动教具木条b的过程中,有几个位置能使b与a平行?
不同点:平行公理中所过的“一点”要在已知直线,两垂线性质中对“一点”没有限制,可在直线,也可在直线.
4.探索平行公理的推论.
(1)直观判定过B点、C点的a的平行线b、c是互相.
(2)从直线b、c产生的过程说明直线b∥直线c.
(3)用三角尺与直尺用平推方法验证b∥c.
(4)用数学语言表达这个结论:
,用符号语言表达为:如果那么
3.把三根木条看成三条直线,观察三根木条之间的关系,有几种可能性?
4.自我演示.顺时针转动木条b两圈,然后思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与a不相交的位置?
5.同学交流并形成共识.
转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a的交点就会从A点的右边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都如下图
2.用直线和三角尺画平行线.已知:直线a,点B,点C.
(1)过点B画直线a的平行线,能画几条?
(2)过点C画直线a的平行线,它与过点B的平行线平行吗?
3.观察画图、归纳平行公理及推论.
人教版七年级数学下册第五章《平行线》学习任务单(公开课导学案)及作业设计
人教版七年级数学下册第五章
《平行线》学习任务单及作业设计
【学习目标】
1.理解平行线的定义;
2.掌握平行线的画法;
3.平行线的基本事实(平行公理)及其推论
【学习准备】
准备好直尺、三角板。
观看视频的同时认真思考,做好记录。
【学习方式和环节】
按老师指令完成相应的课上练习,学习环节主要有:
1.通过观察木条的转动,存在两条直线不相交的情况,得到平行线的概念;
2.学会画平行线的方法,平行公理及其推论;
3.通过练习,巩固本节教学内容;
4.反思与小结。
【作业设计】
一、填空题
1.有下列四种说法:
①过直线外一点有且只有一条直线与这条直线平行;
②同一平面内,过一点能且只能作一条直线与已知直线垂直;
③直线外一点与直线上各点连结的所有线段中,垂线段最短;
④平行于同一条直线的两条直线互相平行.其中正确的个数是_______个.
2.在同一平面内,若两条直线相交,则公共点的个数是________;若两条直线平行,则公共点的个数是_________.
3.若AB∥CD,AB∥EF,则_____∥______,理由是__________________.
二、依据下列语句画出图形
已知:点 P 是∠AOB 内一点.过点 P 分别作直线 CD∥OA ,直线 EF∥OB .
【参考答案】
一、填空题
1:4 个全部正确
2:1 个,0 个,由相交和平行的定义可以得到3:CD∥EF,理由:平行公理的推论
二、依据下列语句画出图形。
新人教版七年级数学下册第五章《命题、定理》导学案 (4)
新人教版七年级数学下册第五章《命题、定理》导学案年级七年级学科数学第一备课审核第二备课课题 5.3.2命题、定理课型授新章节第五章备课时间授课时间学习目标掌握命题的概念,并能分清命题的组成部分经历判断命题真假的过程,初步培养不同几何语言相互转化的能力.重点命题的概念和区分命题的题设与结论难点区分命题的题设和结论学习过程一、命题的构成:许多命题都由和两部分组成.是已知事项, 是由已知事项推出的事项.二、探索与思考1、练习:下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?(3)经过直线AB外一点P, 可以作一条直线与AB平行.2、指出下列命题的题设和结论:(1)如果两个数互为相反数,这两个数的商为-1;(2)两直线平行,同旁内角互补;(3)同旁内角互补,两直线平行;3、判断下列命题是否正确:(1)同位角相等(2)如果两个角是邻补角,这两个角互补;(3)如果两个角互补,这两个角是邻补角.三、练习:1、分别指出下列各命题的题设和结论。
(1)如果a∥b,b∥c,那么a∥c(2)同旁内角互补,两直线平行。
2、分别把下列命题写成“如果……,那么……”的形式。
(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等。
课堂后测1、分别指出下列各命题的题设和结论。
(1)如果a∥b,b∥c,那么a∥c(2)同旁内角互补,两直线平行。
2、分别把下列命题写成“如果……,那么……”的形式。
(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等。
学习反思。
(新课标人教版)七年级(下)数学第五章《相交线与平行线》全章导学案(共9课时)
2121O abO EDC B A OF E D C B A 导学案(七年级数学下册) 主备人:§5.1相交线(第1课时)学习目标: 1 知识与技能:(1)理解邻补角与对顶角的概念,能从图中辨认对顶角与邻补角。
(2)掌握对顶角相等的性质,理解对顶角相等的说理过程。
2 过程与方法:经历观察、讨论等活动,在具体情境中认识邻不角、对顶角3 情感、态度、价值观:(1)通过对对顶角的探究,初步认识数学与现实生活的联系(2)培养合作交流、主动参与的意识,在独立思考的同时能够认同他人。
一、预习检查:1 平面上不重合的两条直线的位置关系:_____与_______2 邻补角的特点是:3 对顶角的特点是: 二、自主探究:自学指导一:观察课本P1找出图中的相交线。
自学指导二:邻补角、对顶角的认识任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类。
分别量一下各个角的度数,各类角的度数有什么关系?为什么?画图:交流总结:自学指导三:探究对顶角的关系 如图∠1与∠2互补,∠3与∠2互补,∠1与∠3相等吗? 试说明理由应用拓展:如上图,直线AB,CD 相交,∠1=50°,求∠2、∠3、∠4的度数。
三、巩固练习:1 如图所示,∠1与∠2是对顶角的是2 如图所示,直线a,b 相交于点O,若∠1=27°,则∠2=____ 3 已知直线AB,CD 相交于点O,OA 平分∠EOC,∠EOC=100°则∠BOD 的度数是________ 4 课本P3练习四、自主学习达标检测题1 如图已知直线AB,CD 相交于点O ,且∠AOD+BOC=220°,那么∠AOC=_______2 直线AB,CD,EF 相交于一点O,(1) ∠EOB 的对顶角是_______(2)___________是∠COF 的邻补角 (3)若∠EOA=60°,则∠BOF=_____∠AOF=_________ 五、自主园地:六、课下练习:课本P8习题5.1的1、2、7、8题 七、下节课课前预习指导:1 什么是垂直,用符号如何表示?2 什么叫点到直线的距离?3 垂线有哪些性质?D C B A4321O B ACD A21B21D21OD CBAODCBAPa BaPA3A2A1OCBO§5.1相交线(第2课时)学习目标:1 知识与技能:(1)理解垂线的定义,点到直线的距离(2)掌握垂线的性质,会过一点画已知直线的垂线。
(完整)新人教版七年级数学(下册)第五章导学案及参考答案
新人教版七年级数学(下册)第五章导学案及参考答案第五章 相交线与平行线课题:5.1.1 相交线【学习目标】: 在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题。
【学习重点】:邻补角、对顶角的概念,对顶角性质与应用。
【学习难点】:理解对顶角相等的性质的探索。
【导学指导】 一、知识链接 1.读一读,看一看学生欣赏图片,阅读其中的文字.师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.2.观察剪刀剪布的过程,引入两条相交直线所成的角教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出结论: 二、自主探究1.学生画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.教师再提问:如果改变∠AOC 的大小, 会改变它与其它角的位置关系和数量关系吗?(1)O DCB A3.邻补角、对顶角概念 邻补角的定义是: 对顶角角的定义是: 5.对顶角性质.(1)学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由。
对顶角性质:( 2)学生自学例题例:如图,直线a, b 相交,∠1=40°,求∠2,∠3,∠4的度数.【课堂练习】: 1.课本P3练习2. 课本P8习题1【要点归纳】:邻补角、对顶角的概念及性质:【拓展训练】1. 如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________; 若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.(1) (2)2.如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________。
(完整版)新人教版七年级下册数学第五章相交线与平行线导学案
请归纳“ 对顶角的质 ”:
.
练习二:
1.如图,直线 a, b 相交,∠ 1=40°,则∠ 2=_______∠ 3=_______∠ 4=_______ 2.如图直线 AB、 CD、 EF 相交于点 O,∠ BOE的对顶角是 ______,∠ COF 的邻补角是 ____,
若∠ AOE=30°,那么∠ BOE=_______,∠ BOF=_______
( 1)写出∠ AOC的邻补角: ____ _ ___ __ ;
( 2)写出∠ COE的邻补角:
__
;
( 3)写出∠ BOC的邻补角: ____ _ ___ __ ;
( 4)写出∠ BOD的对顶角: ____
_
.
2. 若两个角互为邻补角,则它们的角平分线所夹的角为
度.
图1
探索:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.
制 , 可在直线 , 也可在直线
.
c
7
b
a
4. 探索平行公理的推论 .
(1) 直观判定过 B 点、 C 点的 a 的平行线 b、 c 是互相 .
(2) 从直线 b、 c 产生的过程说明直线 b∥直线 c.
(3) 用三角尺与直尺用平推方法验证 b∥c.
(4) 用数学语言表达这个结论
用符号语言表达为 : 如果
4
第三课时:§ 5.1.3 同位角、内错角、同旁内角
班级:
一、学习目标
姓名:
学号:
1.使学生理解三线八角的意义,并能从复杂图形中识别它们;
2.通过三线八角的特点的分析,培养学生抽象概括问题的能力
.
学习重点:同位角、内错角、同旁内角的识别 .
小组:
人教版数学七年级下导学案 第五单元《相交线与平行线》全套导学案
人教版数学七年级下第五章《相交线与平行线》全套导学案5.1.1 相交线【学习目标】1、经历观察、推理、交流等过程,了解邻补角和对顶角的概念,2、掌握邻补角、对顶角的性质;【学习过程】环节一:复习引入1、复习提问:若∠1和∠2互余,则________________若∠1和∠2互补,则________________2、画图:作直线AB、CD相交于点O3、探究新知归纳:有一条公共边,而且另一边互为反向延长线的两个角叫做互为________。
如图中的______和_______如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫做互为_________。
如图中的_________和__________3、想一想:如果改变∠1的大小, ∠1和∠2还是邻补角吗?_______,它们的大小关系是____________。
∠1和∠3还是对顶角吗?_______,它们的大小关系是________结论:从数量上看,邻补角__________,对顶角都_______________环节二:例题例:如图,直线a,b相交,∠1=400,求∠2,∠3,∠4的度数解:∵直线a,b相交∴∠1+∠2=1800(邻补角的定义)∴∠2=__________________ =__________________ =__________ ab1234OD CBAOFE D CB A 34D CBA 1234D CBA 12 ∵直线a ,b 相交 ∴∠3=∠____=________∠4=∠____=_________( ) 环节三:练习 A 组1、如图所示,∠1和∠2是对顶角的图形是( )121212212、如图1,AB 与CD 相交所成的四个角中,∠1的邻补角是______, ∠1的对顶角___.3、如图2所示,直线AB 和CD 相交于点O ,OE 是一条射线. (1)写出∠AOC 的邻补角:________________; (2)写出∠COE 的邻补角:_________________. (3)写出与∠BOC 的邻补角:_______________.4、如图3所示,若∠1=25°,则∠2=_______,理由是____________ ∠3=______,理由是__________________∠4=_______.,理由是_______________5、如图4所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠AOC=_________,∠BOD=•______.6、如图5所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°, 则∠AOD=________∠AOC•= ______________B 组7、下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个8、如图6所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_________, ∠AOC 的邻补角是_________;若∠AOC=50°,则∠BOD=______,∠COB=_______.9、如图6所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于OE D CBA 图4图2图6A B C D 图1图3图5O ED CBAOFE DCBA1 2( • )A.150°B.180°C.210°D.120°10、如图7,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.11、如图8,AB,CD相交于点O,OE平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的度数.C组13、如图8所示,直线AB,CD相交于点O,已知∠AOC=70°,OE把∠BOD分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________.人教版数学七年级下导学案 5.1.2 垂线OED C B A图8图7图8OD CB A【学习目标】1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
人教版七年级数学下册第5章习题课导学案(集体备课)
集体备课导学案学段初中年级七年级学科数学单元第5单元课题相交线与平行线练习课型练习主备学校初审人终审人主备人合作团队导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标用小黑板呈现本节课的学习目标,并让学生诵读探究出招一、填空题1.a、b、c是直线,且a〃b,b_Lc,则a与c的位置关系是2.如图(11),MNXAB,垂足为M点,MN交CD于N,过M点作MGXCD,垂足为G,EF过点N点,且EF〃AB,交MG于H点,其中线段GM的长度是_______到________的距离,线段MN的长度是________到_______的距离,又是_______的距离,点N到直线MG的距离是—.\l—B A p(11)(12)3.如图(12),AD〃BC,EF〃BC,BD平分ZABC,图中与ZADO相等的角有_______个,分别是____________•4.因为AB〃CD,EF〃AB,根据_________,所以_____________.5.命题“等角的补角相等”的题设_____,结论是6.如图(13),给出下列论断:①AD/7BC:②AB〃CD;③ZA=/C.以上其中两个作为题设,另一个作为结论,用“如果……,那么……"形式,写出一个你认为正确的命题是___________.自学探究FsB C E C C1(13)(14)(15)1 7.如图(14),直线AB、CD、EF相交于同一点0,而且ZB0C=—ZAOC,ZDOF=—ZAOD,那么ZFOC=_____度.8.如图(15),直线a、b被C所截,a_LL于M,b±L于N,Zl=66°,则匕2二_______.三、选择题.1.下列语句错误的是()A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等2.如图(16),如果AB〃CD,那么图中相等的内错角是()A.Z1与Z5,Z2与/6;A DB.Z3与Z7,Z4与Z8;C.Z5与/I,Z4与Z8;B(16)CD.Z2与/6,Z7与Z33.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①、②是正确的命题B.②、③是正确命题C.①、③是正确命题D.以上结论皆错4.下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行;②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内,一条直线不可能与两条相交直线都垂直,其中说法错误个数有()A. 3个B.2个C.1个D.0个C.四、解答题1.如图(17),是一条河,C河边AB外A—B ~■点:(1)过点C要修一条与河平行的--------------绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)2.如图(18),ABAXBD,CDXMN,垂足分别是B、D点,ZFDC=ZEBA.(1)判断CD与AB的位置关系;(2)BE与DE平行吗?为什么?F C[AD B3、已知,如图,BCE、AFE是直线,AB〃CD,Z1=Z2,Z3=Z4…求证:AD〃BE。
人教版七年级数学下册 第五章 5.1.2 垂线 导学案
5.1相交线5.1.2垂线第1课时垂线一、新课导入1.导入课题:观察周围的景物:墙与地面、桌腿与地面、公路两边的电线杆与地面的位置关系都给我们垂直的印象,导出课题——垂线.2.学习目标:(1)能说出垂线、垂线段的意义、会用三角尺或量角器过一点画已知直线的垂线.(2)记住垂线的性质并会利用所学知识进行简单的推理.3.学习重、难点:重点:正确理解垂线、垂线段的概念.难点:能利用垂线的性质进行简单的推理.二、分层学习1.自学指导:(1)自学内容:课本P3至P4“探究”之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,对重、难点内容做好标记.不清楚,不懂的地方可以小组讨论.(4)自学参考提纲:①垂线的定义:结合相交线模型和图5.1-4体会当∠α=90°时,a和b互相垂直,这说明:当两条直线相交成的四个角中,有一个角是90°时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.②垂线的定义推理过程(如图1):因为AB⊥CD(已知),所以∠AOC=∠AOD=∠BOC=∠BOD=90°(垂直定义).反之因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).③如图2,直线a ⊥b,∠1 = 35°,则∠2 =55°.④当两条直线相交所成的四个角相等时,这两条直线有什么位置关系?为什么?互相垂直.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师在学生自学时巡视课堂,关注学生的学习进度和学习中存在的问题.②差异指导:对在自学中遇到疑难或认识有偏差的学生进行点拨引导.(2)生助生:学生通过小组交流探讨各自遇到的问题.4.强化:(1)垂线、垂线段的概念.(2)举例说明生活中的垂直现象.1.自学指导:(1)自学内容:课本P5练习之前的内容.(2)自学时间:3分钟.(3)自学要求:根据探究提纲动手操作画图;在动手过程中互助交流作图方法.(4)探究提纲:①如图,用三角尺或量角器画已知直线l的垂线,这样的垂线能画几条?小组内交流,明确直线l的垂线有无数条,即垂线存在,但位置有不确定性.②如图1,在直线l上取一点A,过点A画直线l的垂线,能画几条?如图2,经过直线l外一点B画直线l的垂线,这样的垂线能画几条?③从②中你能得出什么结论?在同一平面内,过一点有且只有一条直线与已知直线垂直.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否会列表,是否理解表中的数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)用三角尺过已知点画已知直线的垂线的方法:①一边靠线;②移动找点;③画垂线.(2)垂线的存在性和唯一性:在同一平面上,过一点有且只有一条直线与已知直线垂直.(3)练习:画一条线段或射线的垂线,就是画它们所在直线的垂线,如图,请你过点P画出射线AB或线段AB的垂线.三、评价1.学生学习的自我评价:各小组长谈学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中表现出的态度、情感、方法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,学生的主体地位突出了,真正亲历了知识形成的全过程.在自主学习、同桌合作交流的活动中升华了对知识的理解.教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多.在本节课实施中的每一个学习活动,都以学生个性思维、自我感悟为前提多次设计了让学生自主探索、合作交流的时间与空间.通过学生和谐有效地互动,强化了学生的自主学习意识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图所示,若AB⊥CD于点O,则∠AOD=90°;若∠BOD=90°,则AB⊥CD.2.(10分)如图所示,已知AO⊥BC于点O,那么∠1与∠2的关系是∠1+∠2=90°.第1题图第2题图第3题图第4题图3.(10分)如图,OA⊥OB,OC是一条射线,若∠AOC=120°,则∠BOC=30°.4.(10分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(B)A.26°B.64°C.54°D.以上答案都不对5.(15分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC =35°,求∠AOD和∠BOD的度数.解:因为EO⊥AB,所以∠EOB=∠EOA=90°,所以∠COB=∠COE+∠EOB=125°.又因为∠AOD=∠BOC(对顶角相等),所以∠AOD=125°.因为∠AOC=∠AOE-∠COE=55°,所以∠BOD=∠AOC=55°(对顶角相等).二、综合应用(20分)6.如图,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一直线上吗?为什么?解:A、B、C三点在同一直线上.∵AB⊥l,BC⊥l.且交点都为B.∴A、B、C三点在同一直线上(在同一平面内,过一点有且只有一条直线与已知直线垂直).三、拓展延伸(20分)7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°-(∠2+∠AOC)=180°-90°=90°.(2)由已知条件∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°-30°=60°,所以由对顶角相等可得∠BOD=60°,所以∠MOD=90°+∠BOD=150°.5.1.2垂线第2课时垂线段一、新课导入1.导入课题:如图所示,在铁路旁边有一个村庄A,现要建一个火车站,为了使此村庄的人乘火车最方便(即距离最近),应怎样选择火车站的位置呢?学完这节课,相信你就会明白!2.学习目标:(1)能说出垂线段的意义和点到直线的距离的含义.(2)记住垂线段的性质,并能利用它进行简单的推理.3.学习重、难点:重点:正确理解垂线段的概念和点到直线的距离.难点:利用垂线段的性质进行简单的推理.4.自学指导(1)自学内容:课本P5的练习以下的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,联系生活实际体会并测量.(4)自学参考提纲:①什么叫垂线段?②在课本P5“探究”中,先通过目测估计最短的线段是PO,再通过度量或叠合法比较验证你的结论.③由②可得到:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.④点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如右图,PO的长度叫做点P到直线l的距离.PO、PA、PB、PC中最短的线段是PO.⑤在课本P5“思考”图中画出水渠开挖的路线,若图中比例尺为1∶100000,水渠大约要挖多长?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师参与到学生自学过程中,了解学生的认知情况.(2)差异指导:对个别学习有困难和认识有偏差的学生进行点拨和指导.2.生助生:小组内相互交流、探讨.四、强化1.垂线段最短.2.点到直线的距离.3.练习:如右图,三角形ABC中,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段?ACBC (2)三条边AB、AC、BC中哪条边最长?为什么?AB五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,我们从学生熟悉的生活实例入手,探讨了有关垂线段的意义和点到直线的距离问题,让学生真正经历了知识形成的全过程.同时课堂强调了学生的动手操作,让学生经历大胆猜测,合作交流等学习过程,为后面的学习打下坚实的基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)体育课上,老师测量跳远成绩的依据是(C)A.垂直的定义B.两点之间,线段最短C.垂线段最短D.两点确定一条直线2.(10分)点到直线的距离是指(D)A.直线外一点到这条直线上一点之间的距离B.直线外或直线上一点到直线的垂线段的长度C.直线外一点到这条直线的垂线的长度D.直线外一点到这条直线的垂线段的长度3.(10分)P是直线AB外一点,过点P作PO⊥AB,垂足为O,若C为直线AB上任意一点,则线段PC与线段PO的大小关系是(C)A.PC>POB.PC<POC.PC≥POD.PC≤PO4.(10分)如图,三角形ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是(B)A.3B.2.8C.3.5D.45.(20分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画直线CD的垂线,与AB相交于F点;(3)线段PE,PO,PF三者中最短的是PE,依据是垂线段最短.二、综合应用(20分)6.一辆汽车在直线形的公路AB上由A向B行驶,C、D是分别位于公路AB两侧的加油站.(1)设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中分别画出点M、N的位置;(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离C、D两加油站都越来越近?在哪一段路上距离加油站D越来越近,而离加油站C却越来越远?解:(1)如图.(2)在公路AB的AM段距离C、D两加油站都越来越近,在MN段距离加油站D越来越近,而加油站C却越来越远.三、拓展延伸(20分)7.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线各点的连线中,垂线段最短”是把河水引入蓄水池H 中开渠最短的根据.。
【新人教版七下数学】第五章导学案
【学习目标】1、掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。
2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。
一、课前检测1.过点P作直线AB的平行线2、填空:经过直线外一点,_____ ___与这条直线平行.二、自主学习(自学12-13页内容,完成以下问题)1、观察思考:过点P画直线CD∥AB的过程,三角尺起了什么作用?图中,∠1和∠2什么关系?2、判定方法1 。
应用格式∵∠1=∠2(已知)∴AB∥CD(同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理?3、思考:教材14页(试着写出推理过程)判定方法2:应用格式:∵∠2=∠3(已知)∴a∥b(内错角相等,两直线平行)4、将上题中条件改变为∠2+∠4=180°,能得到a∥b吗?(写出推理过程)判定方法3:应用格式:∵∠2+∠4=180°(已知)∴a∥b(同旁内角互补,两直线平行)5.教材14页练习1、2、3四、课堂检测1.如图1所示,下列条件中,能判断AB∥CD的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD2.D=∠EFC,那么( )A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.如图3,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5; ②∠1=∠7; ③∠2+∠3=180°; ④∠4=∠7.能说明a∥b的序号为 .DCBAFEDCBA图2D C B A O FE D C B A D C B A 1【学习目标】1.理解平行线的性质,能初步运用平行线的性质进行有关计算.2.培养概括能力和“观察-猜想-证明”的探索方法,辩证思维能力和逻辑思维能力.【教学流程】一、课前检测平行线判定方法: .二、自主学习1、完成教材18页探究2、性质2的证明:由∠3=∠5如何得出a ∥b ,请你写出推理过程性质3的证明:由∠3+∠6=180°如何得出a ∥b ,请你写出推理过程3、归纳性质:同位角 。
(2021年整理)新人教版七年级下册数学第五章相交线与平行线导学案
新人教版七年级下册数学第五章相交线与平行线导学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版七年级下册数学第五章相交线与平行线导学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版七年级下册数学第五章相交线与平行线导学案的全部内容。
第五章 相交线与平行线 第一课时:§5.1。
1 相交线班级: 姓名: 学号: 小组:[学习目标]1. 了解邻补角、对顶角,2. 能找出图形中的一个角的邻补角和对顶角3. ,理解对顶角相等,并能运用它解决一些问题.一、自主学习阅读P1—3课文,回答以下问题:1.探索一:完成课本P2页的探究,填在课本上.2.你能归纳出“邻补角”的定义吗? . 3.“对顶角”的呢? . 二、合作探究练习一:1.如图1所示,直线AB 和CD 相交于点O ,OE 是一条射线. (1)写出∠AOC 的邻补角:____ _ ___ __; (2)写出∠COE 的邻补角: __; (3)写出∠BOC 的邻补角:____ _ ___ __; (4)写出∠BOD 的对顶角:____ _. 2.如图所示,∠1与∠2是对顶角的是( )探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由. 请归纳“对顶角的质”: . 练习二:1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____。
人教版七年级数学下册第五章5.2.2平行线及其判定导学案(含解析答案)
平行线的判定班级:___________姓名:___________得分:__________知识与能力目标:1、经历观察、操作、想象、推理、交流等学习活动,认识同位角,能在图中识别出同位角,并掌握“同位角相等,两直线平行”这一判定。
2、会用三角尺过已知直线外一点画这条直线的平行线过程与方法目标:1、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题。
2、通过动手实践、合作交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
情感、态度与价值观目标:1、在探索和交流的活动中,培养学生与人协作的习惯。
2、初步了解推理论证的方法,逐步培养学生逻辑推理的能力。
教学重点、难点根据新课标的要求及七年级学生的实际情况,确定本节课的教学重点。
重点:平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
难点:同位角的寻找以及在具体的情境中利用“同位角相等,两直线平行”、“内错角相等,两直线平行”、“同旁内角互补,两直线平行”。
解决一些简单的问题.学习过程一.选择题(每小题5分,共35分)1.如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠72.在长方体ABCD﹣EFGH中,与面ABCD平行的棱共有()A.1条B.2条C.3条D.4条3.如图,四边形纸片ABCD,以下测量方法,能判定AD∥BC的是()A.∠B=∠C=90°B.∠B=∠D=90°C.AC=BD D.点A,D到BC的距离相等4.如图,在四边形ABCD中,若∠1=∠2,则AD∥BC,理由是()A.两直线平行,内错角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.同位角相等,两直线平行5.过一点画已知直线的平行线()A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条6.如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4 D.∠1=∠27.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠3二.填空题(每小题5分,共20分)1.如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有个.2.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是.3.如图所示,请你填写一个适当的条件:,使AD∥BC.4.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是.三.解答题(每小题15分,共45分)1.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.2.如图,∠BAF=46°,∠ACE=136°,CE⊥CD.问CD∥AB吗?为什么?3.如图,若∠EFD=110°,∠FED=35°,ED平分∠BEF,那么AB与CD平行吗?请说明你的理由.参考答案一.选择题(每小题5分,共35分)1.B【解析】∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选B2.D【解析】∵面EFGH与面ABCD平行;∴EF、FG、GH、EH四条棱与面ABCD平行.故选:D.3.D【解析】A、∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,A不可以;B、∠B=∠D=90°,无法得出边平行的情况,B不可以;C、AC=BD,无法得出边平行的情况,C不可以;D、∵点A,D到BC的距离相等,且A、D在直线BC的同侧,∴AD∥BC,D可以.故选D.4.C【解析】∵∠1与∠2是内错角,∴若∠1=∠2,则AD∥BC.故选C.5.D【解答】若点在直线上,过这点不能画已知直线的平行线;若点在直线外,根据平行公理,有且只有一条直线与已知直线平行.故选D.6.C【解析】∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选C.7.D【解析】A、∠1=∠3正确,内错角相等两直线平行;B、∠2+∠4=180°正确,同旁内角互补两直线平行;C、∠4=∠5正确,同位角相等两直线平行;D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.故选D.二.填空题(每小题5分,共20分)1.3.【解析】(1)如果∠3=∠4,那么AC∥BD,故(1)错误;(2)∠1=∠2,那么AB∥CD;内错角相等,两直线平行,故(2)正确;(3)∠A=∠DCE,那么AB∥CD;同位角相等,两直线平行,故(3)正确;(4)∠D+∠ABD=180°,那么AB∥CD;同旁内角互补,两直线平行,故(4)正确.即正确的有(2)(3)(4).故答案为:3.2.同位角相等,两直线平行【解析】如图所示,过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行.3.添加∠FAD=∠FBC,或∠ADB=∠DBC,或∠DAB+∠ABC=180°.【解析】∵∠FAD=∠FBC∴AD∥BC(同位角相等两直线平行);∵∠ADB=∠DBC∴AD∥BC(内错角相等两直线平行);∵∠DAB+∠ABC=180°∴AD∥BC(同旁内角互补两直线平行)4.80°【解析】如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.三.解答题(每小题15分,共45分)1.答案见解析.【解析】BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC(角平分线的定义).∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠1+∠AEB=90°(三角形的内角和等于180°),∴∠3=∠AEB(同角的余角相等).∴BE∥DF(同位角相等,两直线平行).2.答案见解析.【解析】CD∥AB.证明:∵CE⊥CD,∴∠DCE=90°,∵∠ACE=136°,∴∠ACD=360°﹣136°﹣90°=134°,∵∠BAF=46°,∴∠BAC=180°﹣∠BAF=180°﹣46°=134°,∴∠ACD=∠BAC,∴CD∥AB.3.AB与CD平行.理由如下:∵ED平分∠BEF,∴∠FED=∠BED=35°,∴∠BEF=70°.∵∠BEF+∠EFD=70°+110°=180°,∴AB∥CD.【解析】由ED为∠BEF的平分线,根据角平分线的定义可得,∠FED=∠BED=35°,进而得出∠BEF=70°,然后根据同旁内角互补两直线平行,即可AB与CD平行.AB与CD平行.理由如下:∵ED平分∠BEF,∴∠FED=∠BED=35°,∴∠BEF=70°.∵∠BEF+∠EFD=70°+110°=180°,∴AB∥CD.。
人教版初中七下数学5.3.2 命题、定理、证明-导学案【含答案】
第五章相交线与平行线课堂探究一、要点探究探究点1:命题的定义与结构阅读下面的几个语句,回答后面的问题:(1)北京是中华人民共和国的首都;(2)如果∠1与∠2是对顶角,那么∠1=∠2;(3)1+1<2;(4)如果一个整数各位上的数字之和是3的倍数,那么这个数能被3整除.问题1:观察上面的语句,它们有什么共同点?并总结命题的定义.问题2:上面的语句有什么不同点?例1判断下列四个语句中,哪个是命题?哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两直线平行,同位角相等;(4)相等的两个角,一定是对顶角.练一练:判断下列语句是不是命题?是用“√”,不是用“×表示.(1)长度相等的两条线段是相等的线段吗?()(2)两条直线相交,有且只有一个交点()(3)不相等的两个角不是对顶角()(4)相等的两个角是对顶角()(5)取线段AB的中点C()(6)画两条相等的线段()问题3:观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边分别相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.教学备注配套PPT讲授2.探究点1新知讲授(见幻灯片5-11)练一练:把下列命题改写成“如果……那么……”的形式.并指出它的题设和结论.(1)对顶角相等;(2)内错角相等;(3)两条直线被第三条直线所截,同位角相等;(4)平行于同一直线的两直线平行;(5)等角的补角相等.探究点2:真命题与假命题问题:观察下列命题,你能发现这些命题有什么不同的特点吗?命题1:“如果一个数能被4整除,那么它也能被2整除”命题2:“如果两个角互补,那么它们是邻补角”练一练:判断下列命题的真假.真的用“√”,假的用“×表示.(1)同旁内角互补()(2)一个角的补角大于这个角()(3)相等的两个角是对顶角()(4)两点可以确定一条直线()(5)两点之间线段最短()(6)同角的余角相等()(7)互为邻补角的两个角的平分线互相垂直()探究点3:证明与举反例问题1:什么叫证明?问题2:如何判定一个命题是假命题呢?例2如图,∠1=∠2,试说明直线AB ,CD平行?教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片12-13)4.探究点3新知讲授(见幻灯片14-22)5.课堂小结当堂检测1.下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线2.下列命题中,是真命题的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=03.下列句子哪些是命题?是命题的,指出是真命题还是假命题?(1)马有四只脚;(2)内错角相等;(3)画一条直线;(4)四边形是正方形;(5)你的作业做完了吗?(6)内错角相等,两直线平行;(7)垂直于同一直线的两直线平行;(8)过点P画线段MN的垂线.4.举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.5.在下面的括号内,填上推理的依据.如图,AB∥CD,CB∥DE,求证:∠B+∠D=180°.证明:∵AB∥CD,∴∠B=∠C().∵CB∥DE,∴∠C+∠D=180°().∴∠B+∠D=180°().6.如图,已知AB∥CD,直线AB,CD被直线MN所截,交点分别为P,Q,PG平分∠BPQ,QH平分∠CQP,求证:PG∥HQ.教学备注配套PPT讲授6.当堂检测(见幻灯片23-27)当堂检测参考答案1.D 2.D3.(1)是真命题(2)是假命题(3)否(4)是真命题(5)否(6)是真命题(7)是假命题(8)否4.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等.(2)当a=5,b=0时,ab=0,但a+b≠0.5.两直线平行,内错角相等两直线平行,同旁内角互补等量代换6.证明:∵AB∥CD(已知),∴∠BPQ=∠CQP(两直线平行,内错角相等).又∵PG 平分∠BPQ,QH 平分∠CQP(已知),∴∠GPQ=21∠BPQ,∠HQP=21∠CQP(角平分线的定义),∴∠GPQ=∠HQP(等量代换),∴PG∥HQ(内错角相等,两直线平行).。
人教七下数学第五章章末复习(导学案)
章末复习一、复习导入1.导入课题:同学们,我们学完《相交线与平行线》后,你对本章的知识结构和知识要点及其运用是否正确把握了呢?这节课我们对本章内容进行系统回顾.2.学习目标:(1)复习熟悉本章的知识结构图.(2)回忆本章有哪些重要的概念和性质.(3)思考本章知识在应用时有哪些重要结论和方法.3.学习重、难点:重点:①结合图形熟知邻补角、对顶角的意义和性质.②正确把握平行线的性质和判定方法.难点:运用平行线的性质与判定证明线段的平行关系及角的相等关系.二、分层复习1.自学指导:(1)自学内容:课本P34至P35的内容.(2)自学时间:8分钟(3)自学要求:看书并回忆每节学过的内容和前后联系,重要知识反复记忆并领悟其意义,记录疑点问题.(4)自学参考提纲:①两条直线相交形成的四个角中,存在有哪些位置关系的两个角?②两条直线被第三条直线所截形成的八个角中,存在有哪些位置关系的两个角?③如果两条直线都与第三条直线平行,那么这两条直线有何位置关系?④在几何学习中要注意一些什么问题?相互交流一下.⑤命题是由哪两部分构成的?各叫做什么?⑥定理与命题有什么联系和区别?⑦图形的平移时,前后图形有哪些不变的关系?⑧本章的学习中你还有哪些疑问?有哪些运用还不够熟练?2.自学:同学们围绕自学指导看书学习.3.助学:(1)师助生:①明了学情:教师深入课堂,了解自学进度及自学中存在的遗漏和疑难问题.②差异指导:对少数在知识结构和要点认知上不清楚或学法不当的学生进行点拨引导.(2)生助生:小组内相互交流和帮助.4.强化:(1)知识结构;(2)重要概念和性质;(3)判定和性质的运用方法;(4)易错、易混点.1.自学指导:(1)自学内容:典例剖析.(2)自学时间:6分钟.(3)自学要求:在各例题的分析引导下,积极思考,相互研讨进行解答,必要时还需再次翻看课本,熟悉书中介绍的知识应用方法.(4)自学参考提纲:[例1]下列命题中,是真命题的有③⑤(填序号).①两条直线不平行就相交;②同位角相等;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行;⑤从直线外一点到已知直线的垂线段叫做这点到已知直线的距离.(提示:注意对相关概念和定理的透彻理解及其准确表达)[例2]将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是(D)A.1B.2C.3D.4(提示:能从具体图形中识别同位角、内错角、同旁内角,再结合平行线的性质解决问题)[例3]如图,∠1=∠2,∠C=∠D,问:∠A与∠F相等吗?试说明理由.(提示:根据平行线的判定与性质解决问题)2.自学:同学们结合自学提纲进行学习.3.助学:(1)师助生:①明了学情:教师深入课堂了解学生自学进度,关注学生遇到的困难和存在的问题.②差异指导:根据学情进行相应点拨和指导.(2)生助生:小组内相互纠正、研讨,互帮互学.4.强化:(1)各小组代表展示学习成果、共同的认识(例1)和规范的证明(例3).(2)练习:如图,已知AB,CD,EF相交于O点,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠AOG的度数.解:∵AB⊥CD,∴∠AOC=90°.∵∠COE=∠FOD=28°,∴∠AOE=∠AOC+∠COE=90°+28°=118°.又∵OG平分∠AOE,∴∠AOG=12∠AOE=12×118°=59°.三、评价1.学生的自我评价:各小组长汇报本组学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、合作交流程度和收效进行点评. (2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的活动基本达到了预期的目的,在今后的课堂教学中应继续坚持探究式的学习方式,逐步培养学生的各种能力.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)体育课上,老师测量跳远成绩的依据是(B)A.两点之间,线段最短B.垂线段最短C.两点确定一条直线D.平行公理2.(15分)如图,已知∠D+∠2=180°,且∠D=∠B,则下列结论不成立的是(C)A.AD∥BCB.∠1 =∠DC.∠2 +∠C=180°D.∠1=∠B3.(15分)下列图形中,不能通过其中一个四边形平移得到的图案是(D)A B C D4.(15分)下列命题中是假命题的是(D)A.两条直线相交有2对对顶角B.同一平面内,垂直于同一条直线的两条直线平行C.互为邻补角的两个角的平分线互相垂直D.互补的两个角一定是邻补角5.(15分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70°.二、综合运用(20分)6.(10分)如图,HI∥GQ,EH⊥AB,∠1=40°,求∠EHI的度数.解:∵EH⊥AB,∴∠EHB=90°.∵HI∥GQ,∴∠IHB=∠1=40°.∴∠EHI=∠EHB-∠IHB=90°-40°=50°.7.(10分)如图,把一张长方形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′点的位置上,ED′与BC的交点为G,若∠EFG=55°,求∠1、∠2的度数.解:由题意得知AD∥BC,∴∠3=∠EFG=55°(两直线平行,内错角相等).由折叠性质可知∠4=∠3=55°.∴∠1=180°-∠4-∠3=180°-55°=70°.∵AD∥BC,∴∠1+∠2=180°(两直线平行,同旁内角互补).∴∠2=180°-∠1=180°-70°=110°.三、拓展延伸(10分)8.在如图所示的长方形草坪上,要修筑两条同样宽的柏油路,路宽为2m,则剩余草坪的面积是多少平方米?解:20×32-32×2-(20-2)×2=540(m2)答:剩余草坪的面积是540m2.(提示:由平移的性质,将两条路平移靠边,便可得到等面积的规则图形)。
2023年人教版七年级数学下册第五章《相交线与平行线》复习导学案1
新人教版七年级数学下册第五章《相交线与平行线》复习导学案21.(6分)填写推理理由(1′×15)(1) 已知:如图,D 、E 、F 分别是BC 、CA 、AB 上的点,D ∥AB ,DF ∥AC ,试说明∠FDE =∠A . 解:∵DE ∥AB ( )∴∠A +∠AED =1800( ) ∵DF ∥AC ( ) ∴∠AED +∠FED =1800 ( )∴∠A =∠FDE ( )(2)如图AB ∥CD ∠1=∠2,∠3=∠4,试说明AD ∥BE 解:∵AB ∥CD (已知)∴∠4=∠_____( ) ∵∠3=∠4(已知)∴∠3=∠_____( ) ∵∠1=∠2(已知)∴∠ 1+∠CAF =∠2+∠CAF ( ) 即 ∠_____ =∠_____( )∴∠3=∠_____∴AD∥BE( )22.(5分)已知:如图,AB ⊥CD ,垂足为O ,EF 经过点O ,∠2=4∠1,求∠2,∠3,∠BOE 的度数.23.(5分)如图:已知;AB ∥CD ,AD ∥BC ,∠B 与∠D 相等吗?试说明理由.FE D CBAFED C B A4321FEO DCBA321DC24.(6分)如图,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系; (2)BE 与DE 平行吗?为什么?NMFEDC BA25.(6分)如图,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么? (3)BC 平分∠DBE 吗?为什么.FE21DCBA26.(6分)在方格纸上,利用平移画出长方形ABCD 的立体图,其中点D ′是D 的对应点.(要求在立体图中,看不到的线条用虚线表示)D 'DCB A课堂后测(读句画图)如图,直线CD 与直线AB 相交于C ,根据下列语句画图 (1)过点P 作PQ ∥CD ,交AB 于点Q(2)过点P 作PR ⊥CD ,垂足为R(3)若∠DCB =1200,猜想∠PQC 是多少度?并说明理由PDCBA教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
最新七年级 下册 数学导学案参考答案
七年级下册数学导学案参考答案七年级(下学期)数学导学案参考答案第五章相交线与平行线P2.拓展训练1.∠COF,∠AOC和∠BOD,160°;2. 150°;3. 90°;P4拓展训练1.145°; 2、60°; 3. 垂直;4. 垂直P6拓展训练1. (1)错;(2)错;(3)错;2. (略)P8拓展训练1. C2.∠4 ;∠5;∠4 、∠5;3. (1) BC;EF;DE; 同位角(2)AB;DE;BC; 内错角P10拓展训练1. (略)2.D; 3 .C; 4.(略) 5. 0、1、2、3;P12拓展训练1.(1)AB ∥CD ;(2)∠DCB;(3)∠3=∠2;(4)∠5=∠2;2.AD ∥BE; AE ∥CD ;AD∥BC;P14拓展训练1. BC(内错角相等,两直线平行) ; BC(两直线平行,同旁内角互补)2. B;3. ∠BED=∠B+∠DP18拓展训练1. B ;2. B; 3 . 9米;P20基础训练1.A2.D3.C4.B5.D6.不相交的两条直线;7. CD∥EF;8. 1; 0; 9. 0、1、2、3;10.共线;11. (略) 12. (略)P22拓展训练P241.A2.3.4. (略)第五章相交线与平行线检测试题一、 1. C 2 .A 3.B 4.D 5.C 6. D 7. C8. B二、 9. a ∥ c; 10. 0、1、2、3;11. 120° 12.115;65;13.145° 14. 102°三、(略)第六章平面直角坐标系P28拓展训练1.6 2. c 3.(-5,3);向西走 2米,再向南走 6 米; 4. 140P30拓展训练1、4 ;3 ;2. x轴 3. (4,3) (4,-3) (-4,3) (-4,-3);4. (2,-2)、(1,1)5. (-1,6) (-1,-2);6. (-3,2) (-3,-2);7. 6P32拓展训练1. B; 2、 B; 3. 4或-4 ; 4. B; 5. c 6. B; 7. cP34拓展训练(略)P36拓展训练1. 5 ;2. (2,-1) ;3. (1,2)P38拓展训练1.(略); 2. (略);P39基础训练1. B;2. D3. B;4.四5. 一、三;二;6. 5、3;7.(1,2)、 (1,-2)、 (-1,2) 、(-1,-2);8. (3,-2) 9. (0,-3) 10. x轴上或y轴上11. (-1,3); (1,3)P40拓展训练1. (-4,0) ;2. -1;3. 4;4. 9或5\3;5. (1,3) (-5,1) (-1,-1) (-2,1);(-2,5) (1,1) (4,3) (1,5) 画图(略);第六章《平面直角坐标系》检测试卷P41、42一、1. B 2 .B 3.A 4.D 5.D 6. C 7. B8. B 9.B 10.D二、11. (8,6); 3排4号; 12. 6或-2; 13. (1,2) ; (-1,-2) ; (1,-2); 14. 四15. 平行; 3; 16. 3 17. (-1,4) 或(-1,0) 18. 4或-4三、(略)第七章三角形P44拓展训练1. B2. DP46拓展训练1.5 ;2. 110°3、 2.4P48拓展训练1;1;1;2. 80°;50°;3.直角;4. 1\2∠BAC; 95°P50拓展训练1. 116°2. 70°3. 180 °P52拓展训练(略)P54拓展训练1. 180 °2. 12;3. 104. 36°、72°、108°、144°;5. 150°6. AP59【课堂练习】1.2;2. 19或23;3. 直角;4.12;1800°5. 9 ;6.稳定性;7. = 8.钝角9. 10 ; 10. 30°;11. 100°; 12、 12;1800°;13、77°P60拓展训练1. 120°;2. 36 °3. 18 °第七章三角形测试卷P61、62一、1. C 2 .D 3.C 4.C 5.C 6. C 7. B 8.C二、9. 19 10. 直角 11. 70°或55° 12. 4、6、8、12;13. 12;1800°;14. 70°三、15. 6; 16. 100°; 17. 30° ;18. 30 ;60\13; 19. 90°第八章 二元一次方程组P64拓展训练1. -1;2.a ≠-2;b ≠1;3. a=-2;4. m=1、n=1; P66拓展训练1. 3;-2 ;2. 3;-2 ;3. -4;4;4. 6\7;6\7; -6;6P68拓展训练1. (1) ⎩⎨⎧==23y x (2) ⎩⎨⎧==12y x 2. (略)3. -4\3,-2\3;4.a=19\8,b=17\8P70拓展训练1.⎩⎨⎧-==12y x 2. ⎩⎨⎧==01b aP72拓展训练1. ⎩⎨⎧==23y x2. ⎩⎨⎧==17\6017\6y x 3. 9; 4. a=1\7,b=4\21P74拓展训练1.设: A 、B 两种型号的服装每件需要x, y 元,列方程组得, ⎩⎨⎧=+=+18808121810109y x y x 解(略) 2. 设:这所学校现在的初中在校生为x 人和高中在校生人数y 人,列方程组得,⎩⎨⎧⨯=+=+%104200%11%84200y x y x 解(略)P82拓展训练1. a =2, b=32. ⎩⎨⎧==32y x ⎩⎨⎧-==2\52\13y x3. 设:这批货物x 有吨,原计划每天运输y 吨,列方程组得, ⎩⎨⎧+⨯-=+=)5()220(1020y x y x 解得⎩⎨⎧==40800y x ,答(略) 4. 他以每小时60千米的速度行驶可准时到达。
人教版七年级数学下教师导学案第五章
第五章相交线与平行线5.1相交线5.1.1相交线一、导学1.导入课题:(1)观察课本图5.1-1,并阅读有关内容,体会说明:图中“剪刀”可以看作:两条相交线,画出示意图为: .(2)那么,这样的两条直线的位置关系和形成的角就是我们本节课所要研究的内容.2.学习目标:(1)能说出相交线、邻补角、对顶角的意义以及对顶角的性质.(2)能够灵活运用这几个意义和性质解决相关问题.3.学习重、难点:重点:邻补角、对顶角的概念,对顶角的性质.难点:推出“对顶角相等”的性质.二、分层学习4.自学指导:(1)自学内容:P2至P3练习前的内容.(2)自学时间:5分钟.(3)自学要求:①仔细阅读课文内容,图文比照.②动手比划,联系实际作图.(4)自学参考提纲:①如图1,直线AB、CD相交于O点,形成四个角,∠1和∠2有怎样的位置关系?a.∠1和∠2有一条公共边OA,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.b.图1中,互为邻补角的还有∠2和∠3,∠3和∠4,∠4和∠1.c.图2的各图中,∠1和∠2是邻补角吗?为什么?答案:A.不是,没有公共边.B.不是,另一边不是互为反向延长线.C.是,有公共边,且另一边互为反向延长线.②图1中,∠1和∠3有怎样的位置关系?a.∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线.具有这种位置关系的两个角,互为对顶角,图中互为对顶角的还有∠2和∠4.b.图3的各图中,∠1和∠2是对顶角吗?为什么?答案:B、E所对应图中的∠1和∠2是对顶角.c.请分别画出图4中∠1的对顶角和∠2的邻补角.d.如图5,三条直线AB、CD、EF相交于点O,∠AOE的对顶角是∠BOF,∠EOD的邻补角是∠FOD和∠COE.③a.在图1中,∠1与∠3有怎样的数量关系?答案:∠1=∠3b.在图1中,∠2与∠3有怎样的数量关系?你是怎样得到的?能用几何语言推理吗?答案:∠2+∠3=180°④在例1中,a.若把条件“∠1=40°”改成“∠1+∠3=80°”,你能求出各个角的度数吗?b.若把条件“∠1=40°”改成“∠1∶∠2=2∶7”,你能求出各个角的度数吗?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入学生自学过程之中,了解他们的学习情况:①是否知道邻补角、对顶角的位置关系,从而能从图形中准确予以识别.②能否用推理的形式说明“对顶角相等”.(2)差异指导:对在自学中有认识偏差和有疑难问题的同学进行点拨引导.2.生助生:在小组中相互交流指导,运用“兵教兵”.四、强化1.邻补角、对顶角的定义以及对顶角的性质.2.练习:(1)下列说法对不对?①邻补角可以看成是平角被过它顶点的一条射线分成的两个角.(√)②邻补角是互补的两个角,互补的两个角是邻补角.(×)③因为对顶角相等,所以相等的两个角是对顶角.(×)(2)课本P3“练习”.五、评价1.学生学习的自我评价:各小组代表总结学习收获和存在的问题与疑点.2.教师对学生的评价:(1)表现性评价:对学生在学习过程中的态度、方法、成效和存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课通过画图量角,让学生有对对顶角相等、邻补角互补知识的感性认识.学生对概念的理解及简单的一些推理说明基本能掌握.对于课堂上个别学生在解题过程中出现乱、繁的现象,课后应及时补差补缺.争取让每个孩子掌握这些概念及推理说明方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(20分)如图,直线c分别与直线a、b相交形成8个角,写出图中满足下列条件的角.(1)∠1的邻补角有∠2,∠4;(2)∠3的邻补角有∠2,∠4;(3)∠5的邻补角有∠6,∠8;(4)∠7的邻补角有∠6,∠8;(5)对顶角有∠1和∠3,∠2和∠4,∠5和∠7,∠6和∠8.第1题图第2题图2.(15分)如图所示:(1)邻补角有∠5和∠6,∠1和∠2,∠2和∠3,∠3和∠4,∠4和∠1;(2)对顶角有∠1和∠3,∠2和∠4.3.(15分)如图,直线AB、CD相交于点O,∠BOC的对顶角是∠AOD,邻补角是∠AOC和∠BOD.若∠AOC=80°,∠1=30°,则∠2的度数是50°.第3题图第4题图4.(20分)如图,直线AB、CD相交于点O,∠AOE=90°,如果∠1=20°,那么∠2=20°,∠3=70°,∠4=160°.二、综合运用(20分)5.如图,直线AB,CD,EF相交于点O.(1)写出∠AOC,∠BOE的邻补角;(2)写出∠DOA,∠EOC的对顶角;(3)如果∠AOC=50°,求∠BOD,∠COB的度数.解:(1)∠AOC的邻补角:∠BOC,∠AOD;∠BOE的邻补角:∠AOE,∠BOF;(2)∠DOA的对顶角是∠BOC;∠EOC的对顶角是∠DOF;(3)因为∠BOD是∠AOC的对顶角,所以∠BOD=∠AOC=50°;因为∠COB是∠AOC的邻补角,所以∠COB=180°-∠AOC=130°.三、拓展延伸(10分)6.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC∶∠EOD=2∶3,求∠BOD的度数.解:(1)因为OA平分∠EOC,所以∠AOC=12∠EOC=35°,又因为∠BOD是∠AOC的对顶角,所以∠BOD=∠AOC=35°;(2)因为∠EOC是∠EOD的邻补角,且∠EOC∶∠EOD=2∶3,所以∠EOC=72°,所以∠AOC=12∠EOC=36°,所以∠BOD=∠AOC=36°.5.1相交线5.1.2垂线第1课时垂线一、新课导入1.导入课题:观察周围的景物:墙与地面、桌腿与地面、公路两边的电线杆与地面的位置关系都给我们垂直的印象,导出课题——垂线.2.学习目标:(1)能说出垂线、垂线段的意义、会用三角尺或量角器过一点画已知直线的垂线.(2)记住垂线的性质并会利用所学知识进行简单的推理.3.学习重、难点:重点:正确理解垂线、垂线段的概念.难点:能利用垂线的性质进行简单的推理.二、分层学习1.自学指导:(1)自学内容:课本P3至P4“探究”之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,对重、难点内容做好标记.不清楚,不懂的地方可以小组讨论.(4)自学参考提纲:①垂线的定义:结合相交线模型和图5.1-4体会当∠α=90°时,a和b互相垂直,这说明:当两条直线相交成的四个角中,有一个角是90°时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.②垂线的定义推理过程(如图1):因为AB⊥CD(已知),所以∠AOC=∠AOD=∠BOC=∠BOD=90°(垂直定义).反之因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).③如图2,直线a ⊥b,∠1 = 35°,则∠2 =55°.④当两条直线相交所成的四个角相等时,这两条直线有什么位置关系?为什么?互相垂直.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师在学生自学时巡视课堂,关注学生的学习进度和学习中存在的问题.②差异指导:对在自学中遇到疑难或认识有偏差的学生进行点拨引导.(2)生助生:学生通过小组交流探讨各自遇到的问题.4.强化:(1)垂线、垂线段的概念.(2)举例说明生活中的垂直现象.1.自学指导:(1)自学内容:课本P5练习之前的内容.(2)自学时间:3分钟.(3)自学要求:根据探究提纲动手操作画图;在动手过程中互助交流作图方法.(4)探究提纲:①如图,用三角尺或量角器画已知直线l的垂线,这样的垂线能画几条?小组内交流,明确直线l的垂线有无数条,即垂线存在,但位置有不确定性.②如图1,在直线l上取一点A,过点A画直线l的垂线,能画几条?如图2,经过直线l外一点B画直线l的垂线,这样的垂线能画几条?③从②中你能得出什么结论?在同一平面内,过一点有且只有一条直线与已知直线垂直.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否会列表,是否理解表中的数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)用三角尺过已知点画已知直线的垂线的方法:①一边靠线;②移动找点;③画垂线.(2)垂线的存在性和唯一性:在同一平面上,过一点有且只有一条直线与已知直线垂直.(3)练习:画一条线段或射线的垂线,就是画它们所在直线的垂线,如图,请你过点P画出射线AB或线段AB的垂线.三、评价1.学生学习的自我评价:各小组长谈学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中表现出的态度、情感、方法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,学生的主体地位突出了,真正亲历了知识形成的全过程.在自主学习、同桌合作交流的活动中升华了对知识的理解.教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多.在本节课实施中的每一个学习活动,都以学生个性思维、自我感悟为前提多次设计了让学生自主探索、合作交流的时间与空间.通过学生和谐有效地互动,强化了学生的自主学习意识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图所示,若AB⊥CD于点O,则∠AOD=90°;若∠BOD=90°,则AB⊥CD.2.(10分)如图所示,已知AO⊥BC于点O,那么∠1与∠2的关系是∠1+∠2=90°.第1题图第2题图第3题图第4题图3.(10分)如图,OA⊥OB,OC是一条射线,若∠AOC=120°,则∠BOC=30°.4.(10分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(B)A.26°B.64°C.54°D.以上答案都不对5.(15分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC =35°,求∠AOD和∠BOD的度数.解:因为EO⊥AB,所以∠EOB=∠EOA=90°,所以∠COB=∠COE+∠EOB=125°.又因为∠AOD=∠BOC(对顶角相等),所以∠AOD=125°.因为∠AOC=∠AOE-∠COE=55°,所以∠BOD=∠AOC=55°(对顶角相等).二、综合应用(20分)6.如图,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一直线上吗?为什么?解:A、B、C三点在同一直线上.∵AB⊥l,BC⊥l.且交点都为B.∴A、B、C三点在同一直线上(在同一平面内,过一点有且只有一条直线与已知直线垂直).三、拓展延伸(20分)7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°-(∠2+∠AOC)=180°-90°=90°.(2)由已知条件∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°-30°=60°,所以由对顶角相等可得∠BOD=60°,所以∠MOD=90°+∠BOD=150°.5.1.2垂线第2课时垂线段一、新课导入1.导入课题:如图所示,在铁路旁边有一个村庄A,现要建一个火车站,为了使此村庄的人乘火车最方便(即距离最近),应怎样选择火车站的位置呢?学完这节课,相信你就会明白!2.学习目标:(1)能说出垂线段的意义和点到直线的距离的含义.(2)记住垂线段的性质,并能利用它进行简单的推理.3.学习重、难点:重点:正确理解垂线段的概念和点到直线的距离.难点:利用垂线段的性质进行简单的推理.4.自学指导(1)自学内容:课本P5的练习以下的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,联系生活实际体会并测量.(4)自学参考提纲:①什么叫垂线段?②在课本P5“探究”中,先通过目测估计最短的线段是PO,再通过度量或叠合法比较验证你的结论.③由②可得到:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.④点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如右图,PO的长度叫做点P到直线l的距离.PO、PA、PB、PC中最短的线段是PO.⑤在课本P5“思考”图中画出水渠开挖的路线,若图中比例尺为1∶100000,水渠大约要挖多长?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师参与到学生自学过程中,了解学生的认知情况.(2)差异指导:对个别学习有困难和认识有偏差的学生进行点拨和指导.2.生助生:小组内相互交流、探讨.四、强化1.垂线段最短.2.点到直线的距离.3.练习:如右图,三角形ABC中,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段?ACBC (2)三条边AB、AC、BC中哪条边最长?为什么?AB五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,我们从学生熟悉的生活实例入手,探讨了有关垂线段的意义和点到直线的距离问题,让学生真正经历了知识形成的全过程.同时课堂强调了学生的动手操作,让学生经历大胆猜测,合作交流等学习过程,为后面的学习打下坚实的基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)体育课上,老师测量跳远成绩的依据是(C)A.垂直的定义B.两点之间,线段最短C.垂线段最短D.两点确定一条直线2.(10分)点到直线的距离是指(D)A.直线外一点到这条直线上一点之间的距离B.直线外或直线上一点到直线的垂线段的长度C.直线外一点到这条直线的垂线的长度D.直线外一点到这条直线的垂线段的长度3.(10分)P是直线AB外一点,过点P作PO⊥AB,垂足为O,若C为直线AB上任意一点,则线段PC与线段PO的大小关系是(C)A.PC>POB.PC<POC.PC≥POD.PC≤PO4.(10分)如图,三角形ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是(B)A.3B.2.8C.3.5D.45.(20分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画直线CD的垂线,与AB相交于F点;(3)线段PE,PO,PF三者中最短的是PE,依据是垂线段最短.二、综合应用(20分)6.一辆汽车在直线形的公路AB上由A向B行驶,C、D是分别位于公路AB两侧的加油站.(1)设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中分别画出点M、N的位置;(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离C、D两加油站都越来越近?在哪一段路上距离加油站D越来越近,而离加油站C却越来越远?解:(1)如图.(2)在公路AB的AM段距离C、D两加油站都越来越近,在MN段距离加油站D越来越近,而加油站C却越来越远.三、拓展延伸(20分)7.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线各点的连线中,垂线段最短”是把河水引入蓄水池H 中开渠最短的根据.5.1相交线5.1.3同位角、内错角、同旁内角一、导学1.导入课题:(1)如图1,直线AB与CD相交于点O,在∠1,∠2,∠3,∠4中,找出所有的对顶角和邻补角.(2)如图2,若直线AB、CD都和EF相交(即直线AB、CD被直线EF 所截),共有8个小于平角的角(即三线八角),这节课,我们来研究没有公共顶点的两个角的关系(板书课题).2.学习目标(1)能说出同位角、内错角、同旁内角的概念.(2)能结合图形正确找出同位角、内错角、同旁内角.3.学习重、难点:重点:同位角、内错角、同旁内角的认识.难点:在复杂图形中识别同位角、内错角、同旁内角,正确分辨是由哪两条直线被哪条直线所截而形成的.4.自学指导:(1)自学内容:课本P6~P7例题.(2)自学时间:10分钟.(3)自学要求:认真阅读教材,找出各种位置关系的两个角的特征,不懂的地方可通过组内讨论解决.(4)自学参考提纲:①图2中∠1与∠5,这两个角分别在直线AB、CD的上方,并且都在直线EF的右侧,具有这种位置关系的一对角叫做同位角,像这样的角还有∠2和∠6,∠3和∠7,∠4和∠8.②图2中∠3与∠5,这两个角都在直线AB、CD之间,并且分别在直线EF 两侧,具有这种位置关系的一对角叫做内错角,像这样的角还有∠4和∠6.③图2中∠3与∠6,这两个角都在直线AB、CD之间,且它们在直线EF 的同侧,具有这种位置关系的一对角叫做同旁内角,像这样的角还有∠4和∠5.④分别指出下图中的同位角、内错角和同旁内角.答案:同位角:∠2与∠6,∠4与∠8,∠3与∠7,∠1与∠5内错角:∠3与∠6,∠4与∠5同旁内角:∠3与∠5,∠4与∠6答案:同位角:∠1与∠3,,∠2与∠4,同旁内角:∠2与∠3⑤如图,∠B与哪个角是内错角,与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截形成的?对∠C进行同样的讨论.解:∠B与∠DAB是内错角,与∠BAE是同旁内角,它们都是由DE与BC被AB所截形成的,还与∠BAC是同旁内角,它们是由AC、BC被BA所截形成的.∠C与∠EAC是内错角,与∠DAC是同旁内角,它们都是由DE与BC被AC所截形成的.还与∠BAC是同旁内角,它们是由AB、BC被AC所截形成的.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入到学生自学过程中,了解学习进度,关注学生对具有这三类关系的两个角的位置特征的判断情况.(2)差异指导:对个别两个角的位置特征把握不清的学生进行点拨引导.2.生助生:小组相互交流、纠正.四、强化1.同位角、内错角、同旁内角的概念.2.归纳例题的解题要领.3.练习:(1)如图①,∠2与∠3是邻补角,∠2和∠4是内错角,∠2与∠5是同位角,∠2与∠8是同位角,∠2与∠6是同旁内角.图①图②(2)如图②:①∠DAE的同位角是∠B,它们是直线AD和直线BC被直线AB所截形成的.②∠CAD的内错角是∠C,它们是直线AD和直线BC被直线AC所截形成的.③∠B的同旁内角有∠DAB,∠CAB,∠C.五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课学生对简单图形的同位角、内错角和同旁内角的判定较正确,但一些略复杂图形的同位角、内错角、同旁内角的判定就不够全面.针对课堂反馈的信息应及时对学生补差补缺,对角的理解的问题应及时纠正,让所有学生都有收获,激发他们的学习兴趣.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图,直线a、b被直线c所截,∠1和∠2是同位角,∠3和∠4是同旁内角,∠2和∠3是内错角.第1题图第2题图第3题图2.(20分)如图,∠1和∠2是直线EF和直线CD被直线AB所截形成的同位角.3.(10分)如图,已知∠1和∠2是内错角,则下列表述正确的是(B)A.∠1和∠2是由直线AD、AC被CE所截形成的B.∠1和∠2是由直线AD、AC被BD所截形成的C.∠1和∠2是由直线DA、DB被CE所截形成的D.∠1和∠2是由直线DA、DB被AC所截形成的4.(10分)如图,∠1和∠2是同位角的是(B)A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)5.(20分)如图,已知∠4的同旁内角等于117°28′,求∠1、∠2、∠3的度数.解:由图可得:∠3和∠4是同旁内角.所以∠3=117°28′.又因为∠2=∠3,∠1+∠3=180°,所以∠2=∠3=117°28′,∠1=180°-∠3=62°32′.二、综合应用(20分)6.如图,∠1和∠2,∠3和∠4是由哪两条直线被一条直线所截形成的?它们各是什么位置关系的角?(1)(2)解:(1)∠1和∠2是由直线DC、AB被BD所截形成的内错角,∠3和∠4是由直线AD、BC被BD所截形成的内错角.(2)∠1和∠2是由直线AB、CD被BC所截形成的同旁内角.∠3和∠4是由直线AD、BC被AE所截形成的同位角.三、拓展延伸(10分)7.直线AB,CD相交于点O.(1)OE、OF分别是∠AOC、∠BOD的平分线,画出这个图形;(2)射线OE、OF在同一条直线上吗?(3)画出∠AOD的平分线OG,OE与OG有怎样的位置关系?为什么?解:(1)如图:(2)射线OE、OF在同一条直线上.(3)OE⊥OG.因为OE平分∠AOC,所以∠AOE=12∠AOC.同理:∠AOG=12∠AOD.所以∠AOE+∠AOG=12(∠AOC+∠AOD)=12×180°=90°.所以OE⊥OG.5.2平行线及其判定5.2.1平行线一、导学1.导入课题:如图,直线a、b是铁路上的两条铁轨,它们会相交吗?今天我们就来研究这样的两条直线——平行线.2.学习目标:(1)了解平行线的概念,知道同一平面内不重合的两条直线的两种位置关系, 能叙述平行公理以及平行公理的推论.(2)会用符号语言表示平行公理及其推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.3.学习重、难点:重点:平行公理及其推论.难点:文字语言、图形语言、符号语言的相互转换.4.自学指导:(1)自学内容:课本P11至P12“练习”之前的内容.(2)自学时间:10分钟.(3)自学要求:认真阅读教材,重点部分做好圈点;动手操作画图,并观察图形总结规律.(4)自学参考提纲:①定义:同一平面内,直线a与b不相交,这时直线a与b互相平行.换言之,同一平面内不相交的两条直线叫做平行线.②直线a与b是平行线,记作a∥b.③同一平面内,两条直线的位置关系有两种,分别是相交和平行.④联系实际生活,列举平行线的实例.a.如右图,已知直线a及直线a外两点B、C.b.用直尺和三角尺分别过点B、C作直线a的平行线,分别记作直线b和直线c.c.结合画图过程,观察所画图形,思考:过点B(或C)画直线a的平行线,能画几条?直线b和直线c有何位置关系?答案:1条;b∥c.d.归纳总结:平行线的画法(用三角尺为例):一“落”:把三角尺一边落在已知直线上;二“靠”,用直尺紧靠三角尺的另一边;三“推”,沿直尺推动三角尺,使三角尺与已知直线重合的边过已知点;四“点”,沿三角尺过已知点的边画直线,所画直线即为所要画的线.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(与垂线的性质1相比较,注意它们的相同点和不同点)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.用符号语言表述为:如果b∥a,c∥a,那么b∥c.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师巡视课堂,了解学生的自学情况:①“过直线外一点画该直线的平行线”的作图是否会操作.②平行公理与垂线性质1的相同点与不同点是否清楚.(2)差异指导:对个别学生进行指导,帮助理解画图的依据.2.生助生:各小组相互交流、纠正认知误区.四、强化1.平行线的概念及画法.2.平行公理及推论.3.练习:读下列语句,并画出图形.(1)点P是直线AB外一点,直线CD经过点P,且与直线AB平行.(2)直线AB与CD相交,点P是直线AB、CD外一点,直线EF经过点P 且与直线AB平行,与直线CD相交于点E.五、评价1.学生学习的自我评价:各小组组长汇报本组的学习情况,总结经验、收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的重点是平行线的概念和平行公理及其推论.在本课中学生动手、动脑,独立思考,完全参与到知识的探索之中,是知识的探索者,教师也不再是满堂灌式的教学,而是学习的引导者,符合新的课堂理念.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)在同一平面内,两条直线的位置关系有:平行和相交.2.(10分)在同一平面内,两条相交直线不可能都与第三条直线平行,这是因为如果两条直线与第三条直线平行,那么这两条直线也互相平行.3.(10分)两条直线相交,交点的个数是1,两条直线平行,交点的个数是0.4.(20分)判断:(1)不相交的两条直线叫做平行线.(×)(2)如果一条直线与两条平行线中的一条平行, 那么它与另一条直线也互相平行.(√)(3)过一点有且只有一条直线平行于已知直线.(×)5.(20分)画图并解答.(1)画∠AOB,并用量角器画∠AOB的平分线OC,在OC上任取一点P,比较点P到OA、OB的距离的大小.(2)画∠AOB,在∠AOB的内部任取一点P,过点P作直线PC∥OA交OB 于点C,再过点P作直线PD∥OB交OA于点D,比较∠AOB与∠CPD的大小.解:(1)如图:PM、PN即为点P到OA、OB的距离,PM=PN.(2)如图:∠AOB=∠CPD二、综合运用(20分)6.在同一平面内,有三条直线,它们的交点个数可能是(D)A.0B.1C.2D.0,1,2,37.如图,若AB∥CD,经过点E可画EF∥AB,则EF与CD的位置关系是EF∥CD,理由是如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第7题图第8题图三、拓展延伸(10分)8.如图,MN⊥AB,垂足为M,MN交CD于点N,过M点作MG⊥CD,垂足为G,EF过点N,且EF∥AB,交MG于点H,其中线段GM的长度是点M到CD的距离, 线段MN的长度是点N到AB的距离,又是两平行线AB与EF之间的距离,点N 到直线MG的距离是NG.5.2 平行线及其判定5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线(板书课题).2.学习目标:(1)学会并记住平行线的判定方法1、2、3.(2)能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:(1)自学内容:课本P12至P13的内容.(2)自学时间:10分钟.(3)自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.(4)自学参考提纲:①a.观察P12“思考”中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,若∠1=∠2,则a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?②a.在图1中,∠2与∠3是一对内错角.b.若∠3=∠2,能得到直线a∥b吗?分析:若能由∠3=∠2转化为∠1=∠2,那么由判定方法1,就可得a∥b,你能写出推理过程吗?c.由②可得到平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称为内错角相等,两直线平行.③a.在图1中,∠2与∠4是一对同旁内角.b.若∠2+∠4=180°,能得到直线a∥b吗?分析:若能由∠2+∠4=180°转化为∠1=∠2(或∠3=∠2),那么由判定。
(新课标人教版)七年级(下)数学第五章《相交线与平行线》全章导学案(共9课时)
导学案(七年级数学下册)主备人:§5.1 相交线(第 1 课时)学习目标:1知识与技能:(1)理解邻补角与对顶角的概念,能从图中辨认对顶角与邻补角。
(2)掌握对顶角相等的性质,理解对顶角相等的说理过程。
2过程与方法:经历观察、讨论等活动,在具体情境中认识邻不角、对顶角3情感、态度、价值观:(1)通过对对顶角的探究,初步认识数学与现实生活的联系(2)培养合作交流、主动参与的意识,在独立思考的同时能够认同他人。
一、预习检查:1 平面上不重合的两条直线的位置关系:_____与 _______2 邻补角的特点是 :3 对顶角的特点是 :二、自主探究:自学指导一:观察课本P1 找出图中的相交线。
自学指导二 : 邻补角、对顶角的认识任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类。
分别量一下各个角的度数,各类角的度数有什么关系?为什么?所形成的分类位置关大小关系画图:角系有公共顶点,一条公共边∠1 与∠2有公共顶点,无公共边交流总结 :自学指导三:探究对顶角的关系A D2如图∠ 1 与∠ 2 互补,∠3 与∠ 2 互补,∠ 1 与∠ 3 相等吗?13试说明理由4C B 应用拓展:如上图,直线A B,CD相交,∠ 1=50°,求∠ 2、∠ 3、∠ 4 的度数。
三、巩固练习: 1如图所示,∠ 1 与∠ 2 是对顶角的是12 112D221BA2 如图所示,直线a,b 相交于点 O,若∠ 1=27°,12则∠ 2=____EDOb 3 已知直线 AB,CD相交于点 O,OA平分∠ EOC,∠EOC=100°则∠ BOD的度数是 ________A B a4 课本 P3练习O四、自主学习达标检测题C1 如图已知直线 AB,CD相交于点 O,且∠ AOD+BOC=220°, 那么∠ AOC=_______B CA EO C DDOAF B2 直线 AB,CD,EF相交于一点 O,(1) ∠EOB的对顶角是 _______(2)___________是∠ COF的邻补角( 3)若∠ EOA=60°, 则∠ BOF=∠AOF=_________五、自主园地:六、课下练习:课本 P8习题 5.1 的 1、2、7、8 题七、下节课课前预习指导:1什么是垂直,用符号如何表示?2什么叫点到直线的距离?3垂线有哪些性质?§5.1 相交线(第 2 课时)学习目标:1 知识与技能:(1)理解垂线的定义,点到直线的距离(2)掌握垂线的性质,会过一点画已知直线的垂线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版七年级数学(下册)第五章导学案及参考答案第五章 相交线与平行线课题:5.1.1 相交线【学习目标】: 在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题。
【学习重点】:邻补角、对顶角的概念,对顶角性质与应用。
【学习难点】:理解对顶角相等的性质的探索。
【导学指导】 一、知识链接 1.读一读,看一看学生欣赏图片,阅读其中的文字.师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.2.观察剪刀剪布的过程,引入两条相交直线所成的角教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出结论: 二、自主探究1.学生画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.教师再提问:如果改变∠AOC 的大小, 会改变它与其它角的位置关系和数量关系吗?(1)O DCB A3.邻补角、对顶角概念 邻补角的定义是: 对顶角角的定义是: 5.对顶角性质.(1)学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由。
对顶角性质:( 2)学生自学例题例:如图,直线a, b 相交,∠1=40°,求∠2,∠3,∠4的度数.【课堂练习】: 1.课本P3练习2. 课本P8习题1【要点归纳】:邻补角、对顶角的概念及性质:【拓展训练】1. 如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________; 若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.(1) (2)2.如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________。
3.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?【总结反思】:ba4321FE OD CB A FEOD C B AO DCB A 课题:5.1.2 垂线(1)【学习目标】:了解垂直概念,能说出垂线的性质, 会用三角尺或量角器过一点画一条直线的垂线. 【学习重点】:两条直线互相垂直的概念、性质和画法. 【学习难点】:推理能力和表达能力的培养 【导学指导】一、温故知新1.如图∠1=60°,那么∠2、∠3、∠4的度数2. ∠1=90°,那么∠2、∠3、∠4的度数3.学生观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖线……,思考这些给大家什么印象?二、自主探究(一)垂直定义1.出示相交线的模型,学生观察思考:固定木条a,转动木条, 当b 的位置变化时,a 、b 所成的角a 是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?结论:当b 的位置变化时,角a 从锐角变为钝角,其中∠a 是_____角是特殊情况;其特殊之处还在于:当∠a 是_____角时,它的邻补角,对顶角都是_____角,即a 、b 所成的四个角都是_____角,都_____。
2.垂直定义两条直线相交,所成四个角中有一个角是_____角时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。
3.表示方法:垂直用符号“_____”来表示,结合课本图5.1-5说明“直线AB 垂直于直线CD , 垂足为O”, 则记为__________________,并在图中任意一个角处作上直角记号,如图. 4.垂直应用:∵∠AOD=90°( ) ∴AB ⊥CD ( ) ∵ AB ⊥CD ( ) ∴ ∠AOD=90° ( )找一找:在你身边,你还能发现“垂直”吗? 5.判断以下两条直线是否垂直: ①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等; ③两条直线相交,有一组邻补角相等; ④两条直线相交,对顶角互补。
bbaE (3)OD C B A (2)O D CB A (1)O DC B A(二)垂线的性质1.学生用三角尺或量角器画已知直线L 的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L 的垂线.待学生上黑板画出L 的垂线后,教师追问学生:还能画出L 的垂线吗?能画几条?L A L(2)在直线L 上取一点A,过点A 画L 的垂线,并且动手画出图形. 学生的结论: ____________________________________________(3)经过直线L 外一点B 画直线L 的垂线,这样的垂线能画出几条?从中你又得出什么结论?B.L学生的结论: ____________________________________________ 学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1: ____________________________________________ 【课堂练习】:1.课本P5练习2.课本P8习题1 【要点归纳】:1.你有那些收获?【拓展训练】:1.如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________;2.如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________;3.如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB的位置关系是_________;4.已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系。
【总结反思】:E D C BA课题:5.1.2垂线(2)【学习目标】:了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离.【学习重点】:“垂线段最短”的性质,点到直线的距离的概念及其简单应用.【学习难点】:对点到直线的距离的概念的理解.【导学指导】一、温故知新1.垂线的定义:2.垂线性质1:3.线段公理:二、自主探究1.探究垂线段最短的垂线性质观察课本图5.1-8,思考::要把河中的水引到农田P处, 有多少引法?并画出图形,用适当的方法比较比较它们的长短,选出你认为最合理的一种方法。
观察课本图5.1-9,结论:垂线的性质2:2.点到直线的距离1.忆一忆两点之间的距离:2.点到直线的距离定义:问题:课本中水渠该怎么挖最合理?在图上画出来.如果图中比例尺为1:100000, 水渠大约要挖多长?【课堂练习】:1.课本P6练习.E D B A2.如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点的距离是_________.3.如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到 BF 的距离,对小明的说法,你认为_________________.【要点归纳】:1.你有那些收获?2.你的学习疑难解决了吗?【拓展训练】:1. 判断正误,如果正确,请说明理由,若错误,请订正。
(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离. (2)如右图,线段AE 是点A 到直线BC 的距离.(3)如右图,线段CD 的长是点C 到直线AB 的距离.2.如下图,分别画出点A 、B 、C 到BC 、AC 、AB 的垂线段,再量出A 到BC 、点B 到AC 、 点C 到AB 的距离。
【总结反思】:DCBAFE D C B ACBA课题:5.1.3同位角、内错角、同旁内角【学习目标】:1、知道三线八角的意义,并能从复杂图形中识别它们2、通过三线八角的特点的分析,培养学生抽象概括问题的能力【学习重点】:三线八角的意义, 【学习难点】:能在各种变式的图形中找出这三类角 【导学指导】 一、知识链接阅读课本P6-7页,解决以下问题:1、截线与被截线是如何划分的,举例说明!2、同位角、内错角、同旁内角都是由它们的位置而命名的,它们各自有什么特征?请举例说明!二、自主学习1.同位角、内错角、同旁内角的特征:(1)同位角的基本特征: 同旁同侧,即在两条直线的同旁,第三条直线(截线)的 同侧.如图1, 故两角的边所在直线构成任意旋转的“F ”字形 .(2)内错角的基本特征:内部两旁,即在两条直线的内部,第三条直线(截线)的两旁;如图1___________________________故两角的边所在直线构成任意旋转的“Z ”字形 . (3)同旁内角的基本特征:内部同旁,即在两条直线的内部,第三条直线(截线)的同旁.如图1,_____________________________.故两角的边所在直线构成任意旋转的“U ”字形 . 由此可见,在截线的同旁,找 ;在截线的两旁,找 2.学生自学P7例题 3.注意图形的识别复杂图形的识别方法把复杂图形的识别转化为简单的基本图形的识别. 例 如图2,指出图中所有的同位角、内错角和同旁内角.图112 34 56 7 8ab c 1 2 3 45(图2)析解:把相关的两个角从图4中分离出来,得到如图5所示的简单图形,这样就容易判断出:图3∠1与∠4是同位角(图3①);∠2与∠5是内错角(图3②);∠3与∠4是同旁内角(图3③),∠4与∠5是同旁内角(图3④),∠3与∠5是同旁内角(图3⑤). 【课堂练习】:1. 课本P7练习.【要点归纳】:同位角的特征:内错角的特征: 同旁内角的特征:【拓展训练】:1.如图4所示,下列结论错误的是( ) (A )∠1与∠B 是同位角 (B )∠1与∠3是同旁内角(C )∠2与∠C 是内错角 (D )∠4与∠A 是同位角2.如图5所示,∠1的同位角是 ,∠2的内错角是 ,∠3的同旁内角是 .3.如图6,(1)∠2与∠4是直线 和 被直线 所截而形成的 .(2)∠1与∠3是直线 和 被直线 所截而形成的 .【总结反思】:35 1 4 2 5 34 54 ① ② ③ ④⑤ 图5图6图4a C 课题 5.2.1 平行线【学习目标】:1.了解平行线的概念,知道平行公理以及平行公理的推论.2.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.【学习重点】:探索和掌握平行公理及其推论. 【学习难点】:对平行线本质属性的理解,用几何语言描述图形的性质. 【导学指导】 一、知识链接1.两条直线相交有几个交点?2.相交的两条直线有什么特殊的位置关系?3.在平面内,两条直线除了相交外,还有别的位置关系吗?二、自主学习平行线定义,表示法1、自学课本12页,回答下列问题:思考:木条a 、b 有没有不相交的位置? 得出:在转动的过程中,存在一个直线a 与直线 的位置,这时直线a 与b 互相平行,记作 。