一次函数与面积问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与面积问题

一次函数与面积问题结合起来一起考查,是一类常考题型,它要求学生充分理解点的坐标的几何意义,能在坐标系中表示出线段的长度,会将面积问题转化为线段、坐标的关系问题,同时对于较复杂的问题能够依据题意画出图象,并借助图象进行分析与解答.一次函数与面积问题的相关类型如下.

三角形的底在坐标轴上 三角形的底在坐标轴上时,利用点到坐标轴的距离求出高后直接求面积即可,注意点到坐标轴的距离要带绝对值. 如图①,S △OAC =

21·OA ·CH=21·︱x A ︱·︱y C ︱; 如图②,S △OBC =21·OB ·CH=2

1

·︱y B ︱·︱x A ︱

三角形的底平行于坐标轴

三角形的底平行于坐标轴时,利用平行于坐标轴的直线上的两点间距离求出底和高,最后用面积公式求出面积 如图①,S △ABC =

21·AB ·CH=21·︱x B -x A ︱·︱y C -y H ︱;如图②,S △ABC =21·AB ·CH=2

1

·︱y B -y A ︱·︱x C -x H ︱

补形法或分割法

如果三角形的边都不平行于坐标轴,可以采用补形法构造出有边平行于坐标轴的三角形或四边形后再求解. 如图①,S △ABC = S △OBC + S △OAC + S △AOB ; 如图②,S △ABC = S 梯形OACD + S △BCD + S △AOB ;

如图③,S △ABC = S 梯形BOEC + S △ACE -S △AOB ; 如图④,S △ABC = S 矩形OAFD - S △BCD - S △ACF - S △AOB ;

通过作平行于坐标轴的直线将三角形分成左右两个三角形或上下两个三角形来求解面积.作三角形铅锤高是解决三角形面积问题的一个好办法.如图①,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽a ”,中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高h ”.我们可得出一种计算三角形面积的新方法:S △ABC =0.5ah ,即三角形面积等于水平宽与铅垂高乘积的一半.图①中,S △ABC =

2

1

·︱x A -x B ︱·︱y C -y M ︱,如图②,S △ABC = S △ACM + S △BCM ;如图③,S △ABC = S △ABN + S △BCN 平行线转移法

通过作平行线,利用平行线间的距离处处相等和底高关系转移三角形面积.如图④,AB ∥CG ,S △ABC =S △ABG

例题1:一次函数y=kx+b(k≠0)的图象经过点A(﹣1,2)和点B(0,4).(1)求出这个一次函数的解析式;(2)画出一次函数图象;(3)求一次函数图象与x轴、y轴所围成的三角形的面积?

分析:(1)将两点坐标代入函数表达式中,用待定系数法求解即可;(2)用两点法画函数的图象(确定两点,描点,连线).(2)利用交点点坐标求出三角形面积可.

解:(1)依题意得:,解得,所以该一次函数的解析式为y=2x+4;(2)画出一次函数图象;(3)一次函数图象与x轴、y轴所围成的三角形的面积为:S=×2×4=4.

例题2:已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点的坐标;(2)求直线y =﹣3x+6与坐标轴围成的三角形的面积.

分析:(1)分别令x=0、y=0求解即可得到与坐标轴的交点;(2)根据三角形的面积公式列式计算即可得解:(1)当x=0时,y=﹣3x+6=6,当y=0时,0=﹣3x+6,x=2.所以A(2,0),B(0,6);(2)直线

与坐标轴围成的三角形的面积=S△ABO=×2×6=6.

例题3:求一次函数y=x+、一次函数y=﹣2x+6与x轴围成的三角形面积.

分析:分别设一次函数y=x+、一次函数y=﹣2x+6与x轴的交点为A、B,两函数图象的交点为C,则可分别求得A、B、C的坐标,则可求得△ABC的面积.

解:设一次函数y=x+、一次函数y=﹣2x+6与x轴的交点为A、B,两函数图象的交点为C,在y=x+中,令y=0可解得x=﹣1,故A(﹣1,0),在y=﹣2x+6中,令y=0可解得x=3,故B(3,0),∴AB=3﹣(﹣1)=4,联立两函数解析式可得,解得,故C(2,2),∴在△ABC中,AB边上的高为2,∴S△ABC =×4×2=4,即一次函数y=x+、一次函数y=﹣2x+6与x轴围成的三角形面积为4.

例题4:已知一次函数的图象与x轴交于点A(6,0),又与正比例函数的图象交于点B,点B在第一象限,且横坐标为4,如果△AOB(O为坐标原点)的面积为15,求这个一次函数与正比例函数的函数关系式.

分析:如图作BC⊥OA于C,先根据三角形面积公式求出BC=5,则B点坐标为(4,5),然后利用待定系数法分别求正比例函数和一次函数解析式.

解:如图,作BC⊥OA于C,∵S△OAB=OA•BC,∴×6×BC=15,∴BC=5,∴B点坐标为(4,5),设正比

的解析式为y=kx+b,把A(6,0)、B(4,5)代入得,解得,∴一次函数解析式为y=﹣x+15.

例题5:如图,已知一次函数图象交正比例函数图象于第二象限的A点,交x轴于点B(﹣6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式

分析:作AC⊥OB于C点,如图,根据等腰三角形的性质得BC=OC=BC=3,则C(﹣3,0),再利用三角

形面积公式得×6•AC=15,解得AC=5,所以A(﹣3,5),然后利用待定系数法分别求直线OA的解析式和直线AB的解析式即可.

解:作AC⊥OB于C点,如图,∵AB=AO,∴BC=OC=BC=3,∴C(﹣3,0),∵△AOB的面积为15,∴OB •AC=15,即×6×AC=15,解得AC=5,∴A(﹣3,5),设直线OA的解析式为y=kx,把A(﹣3,5)代入得﹣3k=5,解得k=﹣,∴直线OA的解析式为y=﹣x;设直线AB的解析式为y=ax+b,把A(﹣3,5)、B (﹣6,0)分别代入得,解得,∴直线AB的解析式为y=x+10,即正比例函数和一次函数的解析式分别为y=﹣x,y=x+10

例题6:已知函数y=(m+1)x+2m﹣6,(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点,并求出这两条直线与y轴所围成三角形的面积.

分析:(1)将点(﹣1,2)代入函数解析式求出m即可;(2)根据两直线平行即斜率相等,即可得关于m 的方程,解方程即可得;(3)联立方程组求得两直线交点坐标,再求出两直线与y轴的交点坐标,根据三角形面积公式列式计算即可.

解:(1)∵函数y=(m+1)x+2m﹣6的图象过(﹣1,2),∴2=(m+1)×(﹣1)+2m﹣6,解得:m=9,故此函数的解析式为:y=10x+12;

(2)由函数图象与直线y=2x+5平行知二者斜率相等,即m+1=2,解得:m=1,故函数的解析式为:y=2x﹣4;(3)如图,由题意,得:,解得:,∴两直线的交点A(1,﹣2),y=2x﹣4与y轴交点B(0,﹣4),y=﹣3x+1与y轴交点C(0,1)∴S△ABC=×5×1=.

例题7:如图,直线y=kx+6与x轴、y轴分别交于点E、F,点E的坐标为(﹣3,0),点A的坐标为(﹣2.5,0).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当点P运动到什么位置(求点P 的坐标)时,△OPA的面积为5,并说明理由.

相关文档
最新文档