(生物信息学课件)第9讲生物信息学的计算机、统计学及数学基础
《生物信息学》课件
生物信息学的重要性
解释生物信息学在生物科学 研究、药物开发和医学诊断 中的重要作用。
生物信息学的发展历程
1
计算机技术的进步
描述计算机技术的不断发展为生物信息学提供了强大的工具和平台。
2
基因测序技术的突破
介绍基因测序技术的革命性进步,推动了生物信息学的发展。
3
开放数据共享
解释开放数据共享促进了生物信息学研究的合作和创新。
生物信息学的基本原理
1 序列比对
2 基因功能注释
3 数据挖掘和机器学习
阐述序列比对在生物信息 学中的核心作用,用于识 别相似的DNA、RNA和蛋 白质序列。
描述基因功能注释的流程, 用于理解基因的功能和作 用。
介绍数据挖掘和机器学习 在生物信息学中的应用, 用于发现生物学模式和预 测结构。
生物信息学的未来发展趋势
技术革新
预测未来生物信息学将受益于技 术的不断革新,如人工智能、大 数据和基因编辑。
研究领域拓展
探索生物信息学在新兴领域,如 单细胞测序和微生物组学中的应 用潜力。
多学科融合
强调生物信息学将与其他学科, 如人类基ቤተ መጻሕፍቲ ባይዱ组学和系统生物学, 进行深入交叉。
《生物信息学》PPT课件
欢迎来到《生物信息学》PPT课件。本课程将带您了解生物信息学的定义、应 用、发展历程、基本原理和未来发展趋势。
导入生物信息学
什么是生物信息学
介绍生物信息学是一门跨学 科领域,结合了生物学和计 算机科学的知识,用于解析 和研究生物信息。
生物信息学的应用领域
探索生物信息学在基因组学、 蛋白质组学、转录组学等领 域的广泛应用。
生物信息学概述(共59张PPT)精选全文完整版
蛋白质 结构
蛋白质 功能
最基本的 生物信息
2024/11/11
生命体系千姿百 态的变化
维持生命活 动的机器
9
第一部遗传密码已被破译,但对密码的转录过程还不清楚,对大多
数DNA非编码区域的功能还知之甚少
对于第二部密码,目前则只能用统计学的方法进行分析。破译“第
二遗传密码”:即折叠密码(folding code),从蛋白质的一级结构
Rickettsia prowazekii
Helicobacter pylori
Buchnerasp. APS
Escherichia coli大南芥
Thermotoga maritima
Thermoplasma acidophilum
mouse
Caenorhabitis elegans
以基因组计划的实施为标志的基因组时代(1990年至2001年)是生
物信息学成为一个较完整的新兴学科并得到高速发展的时期。这一 时期生物信息学确立了自身的研究领域和学科特征,成为生命科学 的热点学科和重要前沿领域之一。
这一阶段的主要成就包括大分子序列以及表达序列标签 ( expressed sequence tag,EST)数据库的高速发展、BLAST( basic local alignment search tool)和FASTA(fast alignment)等工具软件的研制和相应新算法的提出、基因的寻 找与识别、电子克隆(in silico cloning)技术等,大大提高
细胞质(线粒体、叶绿体) 基因组DNA
人类基因组:3.2×109 bp 18
人类自然科学史上的 3 大计划
曼哈顿原子 弹计划
阿波罗登月 计划
人类基因组计划
生物信息学教学培训课件PPT模板
03
数据处理
蛋白质样品中蛋白质 的分离过程。
使用质谱技术对蛋白 质进行鉴定和定量的 过程。
对质谱数据进行处理 和分析的过程。
8
代谢组学概述
01
代谢物是生物表现
代谢物可以反映生物体内的 代谢状态。
02
代谢组学研究内容
代谢物的筛选、特征鉴定和 定量分析。
03
代谢组学应用于诊 疗
为疾病的早期诊断和治疗提 供新的手段。
5
02
蛋白质组学和代谢组学
蛋白质组学概述
蛋白质组学定义及对象
研究蛋白质组成、结构、功能、互作、调控等方面的学科
蛋白质组学技术
包括质谱技术、蛋白质芯片技术、蛋白质互作组学技术等
蛋白质组学在疾病中应 用
Байду номын сангаас
用于疾病的早期诊断、病理机制的研究、药物研发等方面。
7
蛋白质组学分析技术
01
蛋白质分离
02
质谱分析
3
结果可视化
展示分析结果,并方便我们对结果进行观察和分析
14
04
生物信息学的应用和前景
生物信息学在基因治疗中的应用
01
基因治疗优势前景
用生物信息学进行基因治疗的设计和 优化,以达到最佳的治疗效果。
02
基因治疗限制
介绍基因治疗的安全性和有效 性的限制。
03
生物信息学在 治疗中应用
生物信息学可以监测和调控基因表达,以及 评估基因治疗的效果和安全性。
9
代谢组学分析技术
01
样品收集制备
介绍代谢组学分析技术中的样 品收集和制备过程
02
代谢产物检测分离
介绍代谢组学分析技术中的代 谢产物检测分离过程
生物信息学课堂ppt课件
只是出现在电子出版物的文本中。
5
产生 生物信息学的
❖ 20世纪后期,生物科学技术迅猛发展,无论从数量上还是从质量上都 极大地丰富了生物科学的数据资源。数据资源的急剧膨胀迫使人们寻求 一种强有力的工具去组织这些数据,以利于储存、加工和进一步利用。 而海量的生物学数据中必然蕴含着重要的生物学规律,这些规律将是解 释生命之谜的关键,人们同样需要一种强有力的工具来协助人脑完成对 这些数据的分析工作。
❖ 基因组时代--基因寻找和识别、网络数据库系统的 建立、交互界面的开发;
❖ 后基因组时代--大规模基因组分析、蛋白质组分析。
8
重要性 生物信息学的
❖ 生物信息学不仅是一门学科,更是一种重要的研究开发工具。 ❖ 从科学的角度来讲,生物信息学是一门研究生物和生物相关
系统中信息内容与信息流向的综合系统科学。只有通过生物 信息学的计算处理,人们才能从众多分散的生物学观测数据 中获得对生命运行机制的系统理解。 ❖ 从工具的角度来讲,生物信息学几乎是今后所有生物(医药) 研究开发所必需的工具。只有根据生物信息学对大量数据资 料进行分析后,人们才能选择该领域正确的研发方向。 ❖ 生物信息学不仅具有重大的科学意义,而且具有巨大的经济 效益。它的许多研究成果可以较快地产业化,成为价值很高 的产品。
分析(主要研究内容) 应用(多个领域)
主要由数据库、计算机网络和应用软件三大部分构成
2
定义
❖ 收集、维护、传播、分析以及利用在分子生物学研究中获得的大量数据。
生物信息学(bioinformatics)是生物学与计算机科学以及应用数学等学
生物信息学PPT课件
生物信息学在农业研究中的应用
1 2 3
作物育种
生物信息学可以通过基因组学手段分析作物的遗 传变异,为作物育种提供重要的遗传资源。
转基因作物研究
通过生物信息学分析,可以了解转基因作物的基 因表达和性状变化,为转基因作物的研发和应用 提供支持。
农业环境监测
生物信息学可以帮助研究人员监测农业环境中的 微生物群落、土壤质量等指标,为农业生产提供 科学依据。
特点
生物信息学具有数据密集、技术依赖、多学科交叉、应用广泛等特点。
生物信息学的重要性
促进生命科学研究
提高疾病诊断和治疗水平
生物信息学为生命科学研究提供了强 大的数据分析和挖掘工具,有助于深 入揭示生命现象的本质和规律。
生物信息学在疾病诊断和治疗方面具 有重要作用,通过对基因组、蛋白质 组等数据的分析,有助于实现个体化 精准医疗。
03 生物信息学技术与方法
基因组测序技术
基因组测序技术概述
基因组测序是生物信息学中的一项关键技术,它能够测定生物体的 全部基因序列,为后续的基因组学研究提供基础数据。
测序原理
基因组测序主要基于下一代测序技术,如高通量测序和单分子测序, 通过这些技术可以快速、准确地测定生物体的基因序列。
测序应用
基因组测序在医学、农业、生物多样性等多个领域都有广泛应用,如 疾病诊断、药物研发、作物育种等。
生物信息学ppt课件
目录
• 生物信息学概述 • 生物信息学的主要研究领域 • 生物信息学技术与方法 • 生物信息学的应用前景 • 生物信息学的挑战与展望 • 案例分析
01 生物信息学概述
定义与特点
定义
生物信息学是一门跨学科的学科,它利用计算机科学、数学和工程学的原理、 技术和方法,对生物学数据进行分析、解释和利用,以解决生物学问题。
生物信息学课件PPT
12
递归(Recursion)
• 在计算机程序设计中如何理解F(x)=ax+b • 编程计算N! f(n) = n*f(n-1) n>1 • 编程计算斐波那契数列
1, 1, 2, 3, 5, 8 ...... n
f(n) = f(n-1)+f(n-2) n>2
2021/3/10
13
动态规划
• 问:斐波那契数列当n=5时,结果是多少? x=50呢?x=100呢?
• 数据是信息的载体,信息是数据的目的
“我有一个好想法,不过只可意会不可言传”
• 数据本身没有价值
• 用户不同,数据和信息的划分也不同
• 数据和信息可以相互转化
2021/3/10
4
What is Data?
10535185574 雨认会不天我为明下
0100100101001100 0110111101110110 0110010101011001 0110111101110101
简介
• 生物信息学(Bioinformatics)是20世纪80 年代末随着人类基因组计划的启动而兴起 的一门新型交叉学科,它体现了生物学、 计算机科学、数学、物理学等学科间的渗 透与融合。
• 生物信息学通过对生物学实验数据的获取、 加工、存储、检索与分析,达到揭示数据 所蕴含的生物学意义从而解读生命活动规 律的目的。
残基序列所占比例的大小
• 序列比对定义
序列比对(Sequence Alignment)就是运用某种特定的算法,找出两个或多个 序列之间的最大匹配碱基数
2021/3/10
11
动态规划与序列比对
• 基因组数据库保存了海量的原始数据(Raw Data), 人类基因有接近30亿个碱基对。为了查遍所有数 据并找到其中有意义的关系,我们便需要依赖于 高效的计算机科学字符串算法。
生物信息学课件
基因组组装与注释
基因组组装
01
基因组组装是将测序得到的碎片组装成一个完整的基因组序列
。
基因组注释
02
基因组注释是对基因组序列进行分析,识别出基因和其他功能
元件。
基因组组装与注释的重要性
03
基因组组装与注释是理解基因组结构和功能的基础,对于研究
生物进化、疾病发生和治疗具有重要意义。
03
生物信息学应用
• 详细描述:单基因遗传病通常是由单个基因的突变引起的,这些突变可能是显性或隐性。在研究中,生物信息 学家可以通过对患者的基因组进行测序和分析,识别与疾病相关的基因变异。他们还可以通过比较健康个体的 基因组与患病个体的基因组,发现差异并确定导致疾病的特定突变。此外,生物信息学家还可以使用计算机模 型和算法来模拟基因组变异的影响,并预测其对蛋白质功能和细胞过程的影响。这些信息有助于医生和研究人 员更好地理解疾病的病因、病理生理机制以及潜在的治疗方法。
THANK YOU
数据库建设
研究如何建立和维护生物信息学数据库, 包括数据库设计、数据存储和管理、数据 查询和可视化等技术。
02
生物信息学基础
遗传密码子
遗传密码子的定义
遗传密码子是DNA和RNA中携带遗传信息的序列 。
遗传密码子的特点
遗传密码子具有方向性、连续性、通用性和简并 性。
遗传密码子的破译
科学家们通过研究基因组序列,逐渐破译了遗传 密码子的秘密。
以单分子DNA测序为主要技术,具有读取长度长、准确率高、速度快等优点,但设备昂贵且维护成本 高。
生物信息学数据库
1 2 3
NCBI
美国国立生物技术信息中心,提供生物医学相关 信息和数据,包括基因组测序数据、基因表达谱 数据等。
2024生物医学信息学PPT课件
生物医学信息学PPT课件•生物医学信息学概述•生物信息学基础知识•医学图像处理技术•生物信号处理与分析目录•生物医学数据挖掘与应用•生物医学信息学伦理与法规01生物医学信息学概述定义与发展历程定义生物医学信息学是生物医学与计算机科学、信息科学等学科的交叉领域,旨在研究生物医学信息的获取、处理、存储、分析和应用等方面的理论和技术。
发展历程生物医学信息学经历了从早期的医学图像处理、生物信号处理到现代的生物信息学、临床信息学等阶段,随着大数据、人工智能等技术的发展,生物医学信息学的研究和应用领域不断拓展。
研究内容及方法研究内容生物医学信息学的研究内容包括生物医学数据的采集、处理、分析和挖掘,生物医学知识的表示、推理和应用,以及生物医学信息系统的设计、开发和应用等。
研究方法生物医学信息学采用多种研究方法,包括数学建模、统计分析、机器学习、自然语言处理等,以实现对生物医学数据的深入挖掘和有效利用。
应用领域及前景展望应用领域生物医学信息学在医疗、科研、教学等领域具有广泛的应用,如医学影像诊断、基因测序数据分析、临床决策支持、生物医学知识库构建等。
前景展望随着生物医学数据的不断积累和技术的不断进步,生物医学信息学将在精准医疗、智能诊疗、健康管理等方面发挥越来越重要的作用,为人类的健康和医疗保健事业做出更大的贡献。
02生物信息学基础知识基因组学与蛋白质组学基因组学01研究生物体基因组的组成、结构、功能及演变的科学领域,涉及基因测序、基因注释、比较基因组学等方面。
蛋白质组学02研究生物体内所有蛋白质的表达、功能、相互作用及调控的科学领域,与基因组学相辅相成,共同揭示生物体的生命活动规律。
基因组学与蛋白质组学的关系03基因组学提供生物体的遗传信息,蛋白质组学则研究这些遗传信息的表达产物,二者相互关联,共同揭示生物体的生理和病理过程。
基因表达调控与表观遗传学基因表达调控生物体内通过一系列机制调节基因的表达水平,包括转录调控、转录后调控、翻译调控等多个层面,以确保生物体在不同环境和发育阶段下能够正常生长发育。
《生物信息学概述》课件
04
生物信息学的挑战与未来发展
数据整合与标准化
数据整合
在生物信息学中,数据整合是一个重要的挑战。由于不同实验室、研究机构的数据格式、标准和质量 各不相同,如何将这些数据有效地整合在一起成为一个亟待解决的问题。
标准化
为了提高数据的可比性和可重复性,生物信息学需要制定统一的标准和规范,以确保数据的准确性和 可靠性。
03
生物信息学在医学研究中的应用
疾病诊断
基因检测
利用生物信息学技术对基因序列进行分析,检测与疾病相关的基因 变异,有助于早期发现遗传性疾病和个性化诊断。
疾病分型
通过对生物样本的基因组、转录组和蛋白质组等数据进行比较分析 ,有助于对疾病进行精确分型,为制定个性化治疗方案提供依据。
预测疾病风险
基于生物信息学的大数据分析,可以预测个体患某种疾病的风险,为 预防性干预提供科学依据。
05
实例分析
基因组学研究实例
总结词
基因组学研究实例展示了生物信息学在基因组序列分析中的应用。
详细描述
基因组学研究实例中,生物信息学发挥了重要作用。通过对基因组序列进行分析,可以 发现与人类健康、疾病相关的基因变异和功能。生物信息学方法包括基因组测序、基因
表达分析、基因变异检测等,这些方法为个性化医疗和精准医学提供了有力支持。
02
生物信息学的主要技术
基因组学
基因组测序
通过对生物体基因组的测序,分析基因序列、基因突变和基 因功能。
基因表达分析
研究基因在不同条件下的表达水平,揭示基因与生物表型之 间的关系。
蛋白质组学
蛋白质分离与鉴定
分离和鉴定生物体内的蛋白质,了解蛋白质的组成和功能。
蛋白质相互作用研究
《生物信息学》PPT课件
FT
/organism="Pisum sativum"
FT
/strain="G2"
FT
/dev_stage="pre-floral seedlings"
FT
/tissue_type="apical bud"
FT
/clone_lib="lambda ZAPII"
FT CDS
48..1376
FT
/db_xref="SPTREMBL:O04699"
互联网生物信息资源 Bioinformatics Resources on the
Internet
xxx 北京大学生物信息中心
lxxxx@ /
1
Half day on the web, saves you half month in the lab.
120
ctaatcgcac caggcttttc accaaagttc aattcagttt ccaccaactt cctccgattc
180
......
. ggaccacata catttgtttg tagtttatag taagttttgt atatgtcaaa cagtttgtat
catttttggg ttgacaattt tattgaacat gttatttaat catgcaaaat atcttttgtt
FT
/gene="ppf-1"
FT
/product="PPF-1 protein"
FT
/protein_id="CAA73179.1"
FT
《生物信息学》PPT课件
❖ 10. 通过学习应逐渐掌握的内容
编辑ppt
2
1. 什么是生物信息学?
❖ What is bioinformatics ?
❖ What do you know about bioinformatics ?
❖ 收集、维护、传播、分析以及利用在分子生物学研究中获得的大
量数据。生物信息学(bioinformatics)是生物学与计算机科学以
及应用数学等学科相互交叉而形成的一门新兴学科。它通过对生
物学实验数据的获取、加工、存储、检索与分析,进而达到揭示
数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主
要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸
和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物
信息学可以狭义地定义为:将计算机科学和数学应用于生物大分
组测序工作。
编辑ppt
7
3. 生物信息学的发展过程
大致经历了3个阶段:
❖ 前基因组时代—生物数据库的建立、检索工 具的开发、DNA和蛋白质序列分析、全局和 局部的序列对位排列;
❖ 基因组时代—基因寻找和识别、网络数据库 系统的建立、交互界面的开发;
❖ 后基因组时代—大规模基因组分析、蛋白质 组分析。
❖ 早在1956年,在美国田纳西州盖特林堡(Datlinburg)召开的 首次“生物学中的信息理论研讨会”上,便产生了生物信息 学的概念。但是,就生物信息学的发展而言,它还是一门相 当年轻的学科。直到20世纪80—90年代,伴随着计算机科 学技术的进步,生物信息学才获得突破性进展。
❖ 1987年,林华安博士正式把这一学科命名为“生物信息学” (Bioinformatics)。此后,其内涵随着研究的深入和现实需 要的变化而几经更迭。1995年,在美国人类基因组计划第一 个五年总结报告中,给出了一个较为完整的生物信息学定义: 生物信息学是一门交叉科学,它包含了生物信息的获取、加 工、存储、分配、分析、解释等在内的所有方面,它综合运 用数学、计算机科学和生物编学辑p的pt 各种工具,来阐明和理解大10 量数据所包含的生物学意义。
(生物信息学课件) 生物信息学的计算机、统计学及数学基础-最新课件
隐藏层
输
输
入
出
层
层
反向传播神经网络结构示意
6、专家系统
专家系统(Expert System)是一种基于知识 的智能系统,它将领域专家的经验用一定的知 识表示方法表示出来,并放入知识库中,供推 理机使用
知识库是专家系统的第一重要组成部分,知识 库中的知识通常分为两类:
机器学习
机器学习是模拟人类的学习过程,以计算机为工具 获取知识、积累经验
1、遗传算法采用随机搜索方法,具有自适应能力和便于 并行计算
2、神经网络的理论是基于人脑的结构,其目的是揭示一 个系统是如何向环境学习的,这一种方法被称为联接主义。
模式识别
模式识别是机器学习的一个主要任务。模式是对感 兴趣客体定量的或者结构的描述,而模式识别就是 利用计算机对客体进行鉴别,将相同或者相似的客 体归入同种类别中
一类领域的事实性知识或广泛公用的知识 另一类是启发性知识,是该领域专家在长期研究和
实践过程中积累起来的经验总结
知识获取方式大致上可以分为两种:
一种是由知识工程师向领域专家询问有关知识,经 过整理编辑后将知识转换成计算机表示形式,送入 知识库
另一种是针对大量数据进行机器学习,分析、总结 和抽取出有用的新知识,这是更高层次的知识获取 方式。
(生物信息学课件)第9 讲生物信息学的计算
机、统计学及数学基 础
一、所用的方法和技术汇总
1、数学统计方法 2、动态规划方法 3、机器学习与模式识别技术 4、数据库技术及数据挖掘 5、人工神经网络技术 6、专家系统 7、分子模型化技术 8、量子力学和分子力学计算 9、生物分子的计算机模拟 10、因特网(Internet)技术
(生物信息学).ppt
生物信息学简介生物信息学是一门综合性学科,将计算机科学、统计学和生物学相结合,利用计算机技术和软件工具对生物学数据进行解析、处理和研究。
生物信息学在基因组学、蛋白质组学、转录组学等领域具有重要的应用价值,可以帮助我们更好地理解生物体内的分子机制和生物过程。
生物信息学的应用领域基因组学基因组学是研究整个基因组的结构、功能、进化和调控的学科。
生物信息学在基因组学中起到重要作用,可以通过生物信息学工具对基因组进行注释、比对、重构等分析。
基因组学的研究可以帮助我们理解基因的组织、表达和调控,以及基因与疾病之间的关系。
蛋白质组学蛋白质组学是研究细胞或生物体内所有蛋白质的表达、结构和功能的学科。
生物信息学在蛋白质组学中有广泛的应用,可以通过生物信息学方法预测蛋白质的结构和功能,对蛋白质相互作用网络进行建模和分析,以及对蛋白质组的表达、修饰等进行系统性的研究。
转录组学转录组学是研究细胞或组织中所有基因的转录活动的学科。
生物信息学在转录组学中发挥重要作用,可以通过分析转录组数据,如RNA测序数据,来研究基因的表达模式、调控网络和信号通路等。
转录组学的研究对于理解基因调控和细胞分化等生物过程具有重要意义。
比较基因组学比较基因组学是研究不同物种间基因组的结构、功能和进化的学科。
生物信息学在比较基因组学中起到关键作用,可以通过比对不同物种的基因组序列,寻找共同的基因、保守的序列和功能,从而揭示物种的进化关系和基因家族的起源演化。
生物信息学的工具和方法生物信息学依赖于各种计算工具和方法来分析和解释生物学数据。
以下是一些常用的生物信息学工具和方法的介绍:序列比对序列比对是生物信息学中常用的分析方法,可以用来比对不同序列之间的相似性和差异性。
比对结果可以用来推断序列的进化关系、功能和结构等。
常用的序列比对工具包括BLAST、ClustalW等。
基因注释基因注释是通过对基因组序列进行分析和解释,确定基因的位置、结构和功能的过程。
2024年《生物信息学介绍》PPT课件
1. 实验设计 2. 样品制备(指mRNA或总RNA样品,包括对照组和实验组) 3. 芯片制备(包括PCR,纯化,点样等步骤) 4. 芯片杂交(将mRNA或总RNA分别进行逆转录生成cDNA,在此步骤中将对照组和实验组cDNA分别标记CY3和CY5荧光信号) 5. 芯片扫描(采用激光扫描仪,分别用532nm和635nm波长激光扫描芯片,对于每张芯片,得到CY3和CY5通道两幅图象)
蛋白质结构和功能的预测分析 蛋白质家族保守序列寻找 从氨基酸组成辨识蛋白质 蛋白质二级结构预测 蛋白质的三维结构 蛋白质的物理性质预测 其他特殊局部信息:其它特殊局部结构包括膜蛋白的跨膜螺旋、信号肽、卷曲螺旋(Coiled Coils)等,具有明显的序列特征和结构特征,也可以用计算方法加以预测
KDD2001年BIOKDD的主题就是“生物信息学中的数据挖掘”
现在的工作
数据挖掘算法在生物信息学研究中的应用 数据挖掘算法在生物信息学研究中的改进与发展 生物信息学软件的开发
基因芯片(microarray)介绍
电子技术与生物技术的结合 基因组研究中最实用的部分之一 Affymetrix公司: 1.6cm2 40万位点 每点1000万条探针
近期任务
大规模基因组测序中的信息分析 新基因和新SNPS(单核苷酸多态性)的发现与鉴定 完整基因组的比较研究 大规模基因功能表达谱的分析 生物大分子的结构模拟与药物设计
远期任务
读懂人类基因组,发现人类遗传语言的根本规律,从而阐明若干生 物学中的重大自然哲学问题,像生命的起源与进化等。这一研究的关键和核心是了解非编码 区 非编码区信息结构分析 遗传密码起源和生物进化的研究
生物信息学介绍
生物信息学: 存储、修复、分析、整合生物数据的学科 分子生物学与信息技术的结合体 研究材料与结果:各种生物学数据 研究工具:网络、计算机 包括生物学和计算两部分 现代生物研究的核心 研究方法: 传统生物学:实验 理论 现代生物学:理论 实验验证
《生物信息学》PPT课件
完整版课件ppt
8
数据库
数据库格式:EMBL格式,GenBank格式, ASN.1格式,PIR/CODATA格式
生物信息学
生物信息学概述 生物信息数据库及其应用
完整版课件ppt
1
生物信息学(bioinformatics)是生物学与计算 机科学以及应用数学等学科相互交叉而形成 的一门学科。它通过对生物学实验数据的获 得、加工、存储、检索与分析,进而达到揭 示数据所蕴含的生物学意义的目的。
完整版课件ppt
2
生物信息学与生物计算
★ 各种数据库的建立和管理 ★ 数据库接口和检索工具的研制 ★ 研究新算法,发展方便适用的程序
完整版课件ppt
3
生物信息学与生物实验
★ 实验数据是生物信息学的基础 ★ 生物信息学的指导作用
完整版课件ppt
4
算法 图形学 图像识别 人工智能 数据库 统计学 计算机模拟 信息理论 语言学 机器人学 软件工程 计算机网络
完整版课件ppt
25
重要生物信息学中心简介
NIH:National Institute of Health NCBI:National Center of Biotechnology Institute NLM:National Library of Medicine / GenBank, Unigene , Refseq, dbSNP, OMIM
完整版课件ppt
32
完整版课件ppt
33
完整版课件ppt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据对象的统计特征进行识别, 根据对象的结构特征进行识别
反馈
环境
学习
知识库
执行
机器学习系统的基本结构
4、数据库技术及数据挖掘
数据库技术
数据仓库 虚拟数据库技术(Virtual Database,简称 VDB)
数据挖掘(data mining)
又称作数据库中的知识发现 (Knowledge Discovery in Database),它是从数据库或数据仓库中发现并提 取隐藏在其中的信息的一种新技术,它能自动分析数 据,对它们进行归纳性推理和联想,寻找数据间内在 的某些关联,从中发掘出潜在的、对信息预测和决策 行为起着十分重要作用的模式
标准的BP网由三层神经元组成:输入层、隐 藏层和输出层
隐藏层
输
输
入
出
层
层
反向传播神经网络结构示意
6、专家系统
专家系统(Expert System)是一种基于知识 的智能系统,它将领域专家的经验用一定的知 识表示方法表示出来,并放入知识库中,供推 理机使用
知识库是专家系统的第一重要组成部分,知识 库中的知识通常分为两类:
1、数学统计方法
生物活动常常以大量、重复的形式出现,既受 到内在因素的制约,又受到外界环境的随机干 扰。因此概率论和数学统计是现代生物学研究 中一种常用的分析方法
数据统计、因素分析、多元回归分析是生物学 研究必备的工具
隐马尔科夫模型(Hidden Markov Models)在 序列分析方面有着重要的应用。与隐马尔科夫 模型相关的技术是马尔科夫链(Markov Chain)
数据挖掘过程一般分为4个基本步骤:数据选择、数据 转换、数据挖掘和结果分析
5、人工神经网络技术
人工神经网络(Artificial Neural Network, 简称ANN)是通过模拟神经元的特性,以及脑 的大规模并行结构信息的分布式和并行处理等 机制建立的一种数学模型
在生物信息学中,使用得最多的是反向传播神 经网络(Back Propagation Neural Network, 简称BP网)。BP网被认为是稳定性和鲁棒性较 强的人工神经网络之一,而且属于有监督学习 的网络模型。
一类领域的事实性知识或广泛公用的知识 另一类是启发性知识,是该领域专家在长期研究和
实践过程中积累起来的经验总结
知识获取方式大致上可以分为两种:
一种是由知识工程师向领域专家询问有关知识,经 过整理编辑后将知识转换成计算机表示形式,送入 知识库
另一种是针对大量数据进行机器学习,分析、总结 和抽取出有用的新知识,这是更高层次的知识获取 方式。
专家系统的另一个重要部分是推理机,由它来 控制和协调整个系统,并根椐当前输入的数据 和知识,按一定的推理策略,去解决当前的问 题,推导出结论
领域专家 用 户
AI专家
使用界面 知识库
知识获取 推 理 机 解释机构
知识库
数据学基础
主讲: 王元茂
一、所用的方法和技术汇总
1、数学统计方法 2、动态规划方法 3、机器学习与模式识别技术 4、数据库技术及数据挖掘 5、人工神经网络技术 6、专家系统 7、分子模型化技术 8、量子力学和分子力学计算 9、生物分子的计算机模拟 10、因特网(Internet)技术
机器学习
机器学习是模拟人类的学习过程,以计算机为工具 获取知识、积累经验
1、遗传算法采用随机搜索方法,具有自适应能力和便于 并行计算
2、神经网络的理论是基于人脑的结构,其目的是揭示一 个系统是如何向环境学习的,这一种方法被称为联接主义。
模式识别
模式识别是机器学习的一个主要任务。模式是对感 兴趣客体定量的或者结构的描述,而模式识别就是 利用计算机对客体进行鉴别,将相同或者相似的客 体归入同种类别中
2、动态规划方法
动态规划(Dynamic Programming) 是一种解决多阶段决策过程的最优化方 法或复杂空间的优化搜索方法
动态规划解决问题的基本过程是:将一 个问题的全局解分解为局部解,逆序递 推求出局部最优解,随着执行过程的推 进,“局部”逐渐接近“全局”,最终 获得全局最优解
3、机器学习与模式识别技术