光的衍射习题(含答案解析)1(1)

合集下载

光的衍射习题(附答案)1

光的衍射习题(附答案)1

光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。

光的干涉 衍射试题(含答案)(1)

光的干涉 衍射试题(含答案)(1)

光的干涉 衍射试题(含答案)(1)一、光的干涉 衍射 选择题1.两束平行的单色光a 、b 射向长方形玻璃砖,光从上面入射,恰从下表面重叠射出,如图所示,比较两束单色光,则下列说法正确的是______________.A .玻璃对a 光的折射率比对b 光的小B .在玻璃中,a 光的传播速度比b 光的大C .在玻璃砖的下表面上,a 光可能发生全反射D .a 、b 光的波长均大于紫外线的波长,在真空中的速度均等于紫外线的传播速度 E.a 光与b 光可能发生干涉2.如图所示,一束激光照射在双缝上,在缝后屏上得到干涉条纹,下列说法中正确的是( )A .增大双缝到光屏的距离,条纹间距变小B .入射光波长不变,光强增大,条纹间距不变C .增大激光器到双缝的距离,条纹间距变大D .若仅将双缝和光屏置于水中,同等条件下条纹间距变大3.如图所示的4种明暗相间的条纹,是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(黑色部分表示亮纹).则在下面的四个图中,哪个图是蓝光形成的干涉图样A .B .C .D .4.如图所示,半径为R 的特殊圆柱形透光材料圆柱体部分高度为2R ,顶部恰好是一半球体,底部中心有一光源s 向顶部发射一束由a 、b 两种不同频率的光组成的复色光,当光线与竖直方向夹角θ变大时,出射点P 的高度也随之降低,只考虑第一次折射,发现当P 点高度h 降低为122R +时只剩下a 光从顶部射出,下列判断正确的是( )A.在此透光材料中a光的传播速度小于b光的传播速度B.a光从顶部射出时,无a光反射回透光材料C.此透光材料对b光的折射率为1042D.同一装置用a、b光做双缝干涉实验,b光的干涉条纹较大5.把一个上表面是平面下表面是凸面的凸透镜压在一块平面玻璃上,让单色光从上方垂直射入,从上往下看凸透镜,可以看到亮暗相间的圆环状条纹()A.圆环状条纹是光经凸透镜上下两个玻璃表面之间反射引起的千涉造成的B.圆环状条纹是两个玻璃表面之间的空气膜引起的薄膜干涉造成的C.如果将凸透镜的凸面曲率半径增大而其它条件保持不变,观察到的圆环亮纹间距变大D.如果改用波长更长的单色光照射而其它条件保持不变,观察到的圆环亮纹间距变小6.把一个曲率半径很大的凸透镜的弯曲表面压在另一个玻璃平画上,让单色光从上方射入如图(甲),这时可以看到亮暗相间的同心圆如图(乙).这个现象是牛顿首先发现的,这些同心圆叫做牛顿环,为了使同一级圆环的半径变大(例如从中心数起的第二道圆环),则应 ( )A.将凸透镜的曲率半径变大B.将凸透镜的曲率半径变小C.改用波长更长的单色光照射D.改用波长更短的单色光照射7.下列说法正确的是 ( )A.电视机遥控器是利用发出红外线脉冲信号来换频道的B.在杨氏双缝干涉实验中,用紫光作为光源,遮住其中一条狭缝,屏上将呈现间距相等的条纹C.电磁波与声波由空气进入水中时,电磁波波长变短,声波波长变长D.某人在水面上方观察水底同位置放置的红、黃、绿三盏灯时,看到红灯距水面最远E. 照相机镜头前的增透膜、信号在光导纤维内的传播都是利用了光的全反射原理8.如图所示,有一束平行于等边三棱镜截面ABC的复色光从空气射向AB边的中点D,入射方向与边AB的夹角为θ= 30°,经三棱镜折射后分为a、b两束单色光,单色光a偏折到BC边的中点E,单色光b偏折到F点,则下列说法正确的是()A.该棱镜中对单色光a的折射率为3B.在棱镜中传播,a光的传播速度较大C.a光的频率一定大于b光的频率D.分别通过同一双缝干涉装置,a光的相邻亮条纹间距大9.下列说法中正确的是()A.单摆在周期性外力作用下做受迫振动,其振动周期与单摆的摆长无关B.线性变化的电场一定产生恒定的磁场,线性变化的磁场一定产生恒定的电场C.在杨氏双缝实验中,若仅将入射光由红光改为蓝光,则干涉条纹间距变窄D.光纤通信的工作原理是光的反射,光纤通信具有容量大,抗干扰性强等优E.用标准玻璃样板和单色光检查平面的平整度是利用了光的偏转10.下列说法正确的是A.图甲牛顿环是由两玻璃表面间的空气薄膜的反射光干涉形成的B.图甲中换表面曲率半径更大的凸透镜,中心暗纹半径不变C.图乙属于红光的干涉条纹D.图丙测彩色条纹的成因与图甲相同11.利用薄膜干涉的原理可以检查平面的平整度和制成镜头增透膜。

光的衍射习题(附问题详解)1(1)

光的衍射习题(附问题详解)1(1)

光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度 a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为1 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为 4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2= 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小) 单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a= 1.0×10−2cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a = 1.0×10-3 cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1/ax 2=32f λ2/a则两个第一级明纹之间距为Δx1= x2− x1=32f Δλ/a = 0.27 cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1= 1λ1d sinφ2= k λ2= 1λ2且有sinφ = tanφ= x / f所以Δx1= x2− x1= fΔλ/a = 1.8 cm14.一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为λ= 480nm(1 nm = 10−9 m)的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ= kλ第k级亮条纹位置:x1= f tanθ1≈f sinθ1≈k f λ/ d相邻两亮纹的间距:Δx= xk +1− xk=(k + 1) fλ/ d −k λ/ d= f λ/ d= 2.4×10−3 m = 2.4 mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx0 = f tanθ1≈f sinθ1≈k f λ/ d = 12 mmΔx/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

光的衍射参考答案

光的衍射参考答案

光的衍射参考解答一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 (A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ][参考解]一级暗纹衍射条件:λϕ=1sin a ,所以中央明纹宽度aff f x λϕϕ2sin 2tan 211=≈=∆中。

衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。

2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。

3.波长λ=5500?的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ][参考解]由光栅方程λϕk d ±=sin 及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。

4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。

[ D ][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。

光的干涉 衍射试题(含答案)(1)

光的干涉 衍射试题(含答案)(1)

光的干涉 衍射试题(含答案)(1)一、光的干涉 衍射 选择题1.如图所示,波长为a λ和b λ的两种单色光射入三棱镜,经折射后射出两束单色光a 和b ,则这两束光( )A .照射同一种金属均有光电子逸出,光电子最大初动能Ka Kb E E >B .射向同一双缝干涉装置,其干涉条纹间距a b x x ∆>∆C .在水中的传播速度a b v v <D .光子动量a b p p <2.如图所示,三束细光经玻璃三棱镜折射后分解为互相分离的a 、b 、c 三束单色光.比较a 、b 、c 三束光,可知( )A .a 为波长较长的光B .当它们在真空中传播时,a 光的速度最大C .分别用这三种光做光源,使用同样的装置进行双缝干涉实验,a 光的干涉条纹中相邻亮纹的间距最小D .若它们都从玻璃射向空气,c 光发生全反射的临界角最大3.市场上有种灯具俗称“冷光灯”,用它照射物品时能使被照物品处产生的热效应大大降低,从而广泛地应用于博物馆、商店等处如图所示.这种灯降低热效应的原因之一是在灯泡后面放置的反光镜玻璃表面上镀一层薄膜(例如氟化镁),这种膜能消除不镀膜时玻璃表面反射回来的热效应最显著的红外线.以λ表示红外线的波长,则所镀薄膜的最小厚度应为( ).A.18λB.14λC.12λD.λ4.明代学者方以智在《阳燧倒影》中记载:“凡宝石面凸,则光成一条,有数棱则必有一面五色”,表明白光通过多棱晶体折射会发生色散现象.如图所示,一束复色光通过三棱镜后分解成两束单色光a、b,下列说法正确的是A.若增大入射角i,则b光最先消失B.在该三棱镜中a光波速小于b光C.若a、b光通过同一双缝干涉装置,则屏上a光的条纹间距比b光宽D.若a、b光分别照射同一光电管都能发生光电效应,则a光的遏止电压高5.把一个上表面是平面下表面是凸面的凸透镜压在一块平面玻璃上,让单色光从上方垂直射入,从上往下看凸透镜,可以看到亮暗相间的圆环状条纹()A.圆环状条纹是光经凸透镜上下两个玻璃表面之间反射引起的千涉造成的B.圆环状条纹是两个玻璃表面之间的空气膜引起的薄膜干涉造成的C.如果将凸透镜的凸面曲率半径增大而其它条件保持不变,观察到的圆环亮纹间距变大D.如果改用波长更长的单色光照射而其它条件保持不变,观察到的圆环亮纹间距变小6.关于红光和紫光的比较,下列说法正确的是()A.红光在真空中的速度大于紫光在真空中的速度B.同一种介质对红光的折射率小于对紫光的折射率C.从玻璃到空气发生全反射时,红光的临界角大于紫光的临界角D.在同一介质中,红光的波长大于紫光的波长E.在同一杨氏双缝干涉装置中,红光的条纹间距小于紫光的条纹间距7.下列关于振动和波的说法,正确的是。

光的衍射习题(附答案)

光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

人教版高中物理选修3-4同步练习:《光的衍射》(含答案)

人教版高中物理选修3-4同步练习:《光的衍射》(含答案)

人教版高中物理选修3-4同步练习:《光的衍射》(含答案)光的衍射同步练习一.选择题(每小题5分,共60分)1.对衍射现象的下述定性分析中,不正确的是()A.光的衍射是光在传播过程中绕过障碍物发生弯曲传播的现象B.衍射花纹图样是光波互相叠加的结果C.光的衍射现象为光的波动说提供了有力的证据D.光的衍射现象完全否定了光的直线传播结论2.下列现象哪些是光的衍射产生的()A,著名的泊松亮斑B.阳光下茂密树阴中地面上的圆形亮斑C.光照到细金属丝后在其后面屏上的阴影中间出现亮线D.阳光经凸透镜后形成的亮斑3.在一次观察光衍射的实验中,观察到如图所示的清晰的明暗相间的图样,那么障碍物应是(黑线为暗纹)()A.很小的不透明的圆板B.很大的中间有大圆孔的不透明的圆板C.很大的不透明的圆板D.很大的中间有小圆孔的不透明的圆板4.点光源照射到一个障碍物,在屏上所成的阴影的边缘部分模糊不清.产生的原因是()A.光的反射B.光的折射C.光的干涉D.光的衍射5.关于衍射的下列说法中正确的是()A.衍射现象中衍射花样的明暗条纹的出现是光干涉的结果B.双缝干涉中也存在着光的衍射现象C.影的存在是一个与衍射现象相矛盾的客观事实D.一切波都可以产生衍射6.下列现象中能产生明显衍射现象的是()A.光的波长比孔或障碍物的尺寸大B.光的波长与孔或障碍物的尺寸可相比C.光的波长等于孔或障碍物的尺寸D.光的波长比孔或障碍物的尺寸小得多7.一束平行单色光,通过双缝后,在屏上得到明暗相间的条纹,则()A.相邻的明条纹或暗条纹的间距不等B.将双缝中某一缝挡住,则屏上一切条纹将消失,而出现一亮点C.将双缝中某一缝挡住,屏上出现间距不等的明、暗条纹D.将双缝中某一缝挡住,则屏上条纹与原来一样,只是亮度减半8.用单色光做双缝干涉实验和单缝衍射实验,比较屏上的条纹,正确的是()A.双缝干涉条纹是等间距的明暗相间的条纹B.单缝衍射条纹是中央宽、两边窄的明暗相间的条纹C.双缝干涉条纹是中央宽、两边窄的明暗相间的条纹D.单缝衍射条纹是等间距的明暗相间的条纹9.关于光的干涉和衍射现象,下面各种说法中正确的是()A.光的干涉和衍射是相同的物理过程,只是干涉图样和衍射图样不同B.光的干涉只能用双缝,而光的衍射只能用单缝C.在双缝干涉过程中,也有衍射现象存在D.单缝衍射过程中也存在着干涉现象10.在用单色平行光照射单缝观察衍射现象的实验中,下列哪些说法是正确的()A.缝越窄,衍射现象越显著B.缝越宽,衍射现象越显著C.照射光的波长越长,衍射现象越显著D.照射光的频率越高,衍射现象越显著11.下列关于光的干涉和衍射的叙述中正确的是()A.光的干涉和衍射都遵循光波的叠加原理B.光的干涉说明光的波动性,光的衍射说明光不是沿直线传播C.光的干涉呈黑白间隔条纹,光的衍射呈彩色条纹D.光的干涉遵循光波叠加原理,光的衍射不遵循这一原理12.下列哪些现象是光的衍射产生的()A.阳光下茂密的树荫下地面上的圆形亮斑B.泊松亮斑C.点光源照到不透明物体上,在物体背后的光屏上形成的阴影的边缘部分模糊不清D.透过树叶的缝隙观看太阳呈现产生的光环。

高考物理光的衍射专项练习附解析

高考物理光的衍射专项练习附解析

高考物理光的衍射专项练习(附解析)高考物理光的衍射专项练习(附解析)1、在用单色平行光照射单缝观察衍射现象的实验中,下列说法正确的是()A.缝越窄,衍射现象越显著B.缝越宽,衍射现象越显著C.照射光的波长越长,衍射现象越显著D.照射光的频率越高,衍射现象越显著答案解析:缝的宽度越接近光波的波长,衍射越显著,因缝越窄,越接近光的波长,故选项B错误,选项A正确;光波的波长越长,越接近缝的宽度,衍射越显著,选项C正确;光的频率越高,波长越小,衍射越不显著,选项D错误.答案:AC2、将一个大的不透明障碍物上的正三角形孔从边长10cm逐渐减小到零,让阳光从孔中通过,在障碍物后暗箱中的屏上可看到什么现象?答案解析:开始阶段,孔比较大,在屏上得到一个正三角形亮斑,如图甲所示。

随着孔的减小,亮斑也变小;孔再小,在亮斑周围出现一个亮度比较弱的圆,这是小孔成像,如图乙所示。

继续减小小孔的尺寸,在光屏上出现彩色的衍射图样,这时是明显的衍射现象;孔再小,光线再弱,直到什么也看不见。

3、如图所示是通过游标卡尺两测量脚间的狭缝观察白炽灯线光源时所拍下的四张照片。

(1)试通过图样分析四张照片对应的两测量脚间的宽度大小关系。

(2)试说明照片(4)中中央条纹的颜色及成因。

答案解析:(1)从四张照片的单缝衍射图样可以看出,由图(1)到图(4),衍射现象越来越明显,说明两测量脚间的狭缝越来越小,因此由图(1)到图(4)四张照片对应的两测量脚间的宽度越来越小。

(2)图(4)中中央条纹的颜色为白色,因为各种色光在屏中央均为亮条纹,七色光叠加后,中央条纹即为白色。

4、沙尘暴是由于土地的沙化引起的一种恶劣的天气现象,发生沙尘暴时能见度只有十几米,天气变黄变暗,这是由于这种情况下()A.只有波长较短的一部分光才能到达地面B.只有波长较长的一部分光才能到达地面C.只有频率较大的一部分光才能到达地面D.只有频率较小的一部分光才能到达地面答案BD解析:据光明显衍射的条件,发生沙尘暴时,只有波长较长的一部分光线能到达地面,据λ=c/f知,到达地面的光是频率较小的部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为1 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f =400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm .7. 一会聚透镜,直径为3 cm ,焦距为20 cm .照射光波长550nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24×10−5rad .这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm . 8. 钠黄光双线的两个波长分别是589.00 nm 和589.59 nm (1 nm = 10−9 m ),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9. 用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm 的第3级光谱线将与波长为λ2 =660 nm 的第2级光谱线重叠(1 nm = 10−9 m ). 10. X 射线入射到晶格常数为d 的晶体中,可能发生布拉格衍射的最大波长为2d .二. 计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合? 解:(1) 由单缝衍射暗纹公式得a sin θ1 = 1 λ1 a sin θ2 = 2 λ2由题意可知 θ1 = θ2, sin θ1 = sin θ2 代入上式可得 λ1 = 2 λ2 (2)a sin θ1 = k 1 λ1 =2 k 1 λ2 (k 1=1, 2, …)sin θ1 = 2 k 1 λ2 / aa sin θ2 = k 2 λ2 (k 2=1, 2, …) sin θ2 = 2 k 2 λ2 / a若k 2 = 2 k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2 k 1级极小与之重合.12. 在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm ,平行光垂直如射在单缝上,波长λ= 500 nm ,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度Δx .解:单缝衍射第1个暗纹条件和位置坐标x 1为a sin θ1 = λx 1 = f tan θ1 ≈ f sin θ1 ≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x 2为a sin θ2 = 2 λx 2 = f tan θ2 ≈ f sin θ2 ≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx 1 = x 2 − x 1 ≈ f (2 λ / a − λ / a ) = f λ / a=1.00×5.00×10−7/(1.00×10−4)m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm ,λ2 = 760 nm (1 nm = 10−9 m ).已知单缝宽度a = 1.0×10−2 cm ,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a = 1.0×10-3 cm 的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离. 解:(1) 由单缝衍射明纹公式可知a sin φ1 = 12 (2 k + 1) λ1 = 12λ1 (取k = 1)a sin φ2 = 12 (2 k + 1) λ2 = 32λ2 tan φ1 = x 1 / f ,tan φ2 = x 1 / f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2 且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3 m = 2.4mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12mmΔx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。

15. 用钠光(λ = 589.3 nm )垂直照射到某光栅上,测得第三级光谱的衍射角为60°.(1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm ~ 760n m )照射在该光栅上,求其第二级光谱的张角.解:(1) (a+b ) sin φ =3λa+b = 3λ / sin φ,φ = 60° a+b = 2λ' / sin φ',φ' = 30° 3λ / sin φ = 2λ' / sin φ'λ' = 510.3 nm(2) a+b = 3λ / sin φ=2041.4 nmφ2' = arcsin (2×400 / 2041.4) nm (λ = 400 nm) φ2'' = arcsin (2×760 / 2041.4) nm (λ = 760 nm) 白光第二级光谱的张角Δφ = φ2'' − φ2' = 25°16. 一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1 = 440nm,λ2 = 660 nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ = 60° 的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ1= k λ1d sinφ2= k λ2sinφ1 sinφ2=k1λ1k2λ2=440 k1660 k2=2 k13 k2当两谱线重合时有φ1= φ2即k1k2=32=64=96= ∙∙∙两谱线第二次重合即是k1k2=64,k1= 6,k2= 4由光栅公式可知d sin60°= 6λ1∴d =6λ1sin60°= 3.05×10−3 mm17.将一束波长λ = 589 nm(1 nm = 10−9 m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射光栅上,光栅的透光缝宽度a与其间距b相等,求:(1)光线垂直入射时,能看到几条谱线?是哪几级?(2)若光线以与光栅平面法线的夹角θ = 60° 的方向入射时,能看到几条谱线?是哪几条?解:(1) (a+b)sinϕ= k λ当ϕ = π/2时,k = (a+b) /λ = 3.39,k max = 3又∵a = b,(a+b)sinϕ= 2a sinϕ=k λ有谱线a sinϕ=k λ / 2但当k= ±2, ±4, ±6, …时缺级.∴能看到5条谱线,为0, ±1, ±3级.(2) (a+b)(sinθ + sinϕ)= k λ,θ = 30°,ϕ= ±90°ϕ= π2,k = (a+b)(sin30°+ sin90°) / λ = 5.09.取k max = 5ϕ= −π2,k = (a+b)(sin30°− sin90°) / λ = −1.7.取k'm ax= −1∵a = b∴第2, 4, … 级缺级.∴能看到5条谱线,为+5, +3, +1, 0, −1级.18.波长λ = 600 nm(1 nm = 10−9 m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1)光栅常数(a + b) 等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a + b) 和a之后,求在衍射角–π2<φ <π2范围内可能观察到的全部主极大的级次.解:(1) 由光栅衍射的主极大公式得a + b = k λsinφ= 2.4×10−4 cm(2) 若第三级不缺级,则由光栅公式得(a+b)sinφ'= 3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'= λa = a + b3= 8.0×10−3 cm(3) (a+b)sinφ= k λ(主极大)a sinφ= k' λ(单缝衍射极小)(k' = 1, 2, 3, …)因此k = 3, 6, 9, …缺级;又∵k max = a + bλ= 4,∴ 实际呈现出的是k = 0, ±1, ±2级明纹(k = ±4在π/2处不可见).19. 在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ = 480 nm (1 nm = 10−9 m ),试问: (1) 人眼最小分辨角是多大?(2) 在教室的黑板上,画的等号两横线相距2 mm ,坐在距黑板10 m 处的同学能否看清?(要有计算过程)解:(1) 已知得d = 3 mm ,λ= 550 nm ,人眼的最小分辨角为:θ = 1.22 λ / d = 2.24×10−4 rad(2) 设等号两横线相距Δx = 2 mm 时,人距黑板刚好看清,则l = Δx / θ = 8.9 m所以距黑板10m 处的同学看不清楚.20. 一平面透射多缝光栅,当用波长λ1 = 600 nm (1 nm = 10−9 m )的单色平行光垂直入射时,在衍射角θ = 30° 的方向上可以看到第2级主极大,并且在该处恰能分辨波长差Δλ = 5×10−3 nm 的两条谱线.当用波长λ2 = 400 nm 的单色平行光垂直入射时,在衍射角θ = 30°的方向上却看不到本应出现的第3级主极大.求光栅常数d 和总缝数N ,再求可能的缝宽a . 解:根据光栅公式d sin θ = k λ1得d =1sin k λθ= 2×600sin 30° = 2.4×10−3 nm = 2.4 μm 据光栅分辨本领公式R = λ1 /Δλ = kN 得N = λ1k Δλ= 60000在θ = 30° 的方向上,波长λ2 = 400 nm 的第3级主极大缺级,因而此处一定恰好是波长为λ2入射光单缝衍射的一个极小出现的位置。

相关文档
最新文档