最新椭圆焦点三角形面积公式备课讲稿

合集下载

椭圆中焦点三角形面积公式

椭圆中焦点三角形面积公式

2023年高考数学椭圆焦点三角形的面积问题【考点梳理】焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①焦点三角形的周长为2(a +c );②4c 2=r 21+r 22-2r 1r 2cos θ;③当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;④S =12r 1r 2sin θ=b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .【题型归纳】一、求椭圆焦点三角的面积1.已知点P 是椭圆22:1259x y C +=上一点,12,F F 是其左右焦点,且1260F PF ∠=,则三角形12F PF △的面积为_________2.已知点P 是椭圆221259x y +=上的点,点12,F F 是椭圆的两个焦点,若12F PF △中有一个角的大小为3π,则12F PF △的面积为______.3.设12,F F 是椭圆2241496x y +=的两个焦点,P 是椭圆上的点,且12||:||4:3PF PF =,则12PF F △的面积为()A .22B .42C .4D .64.设12,F F 是椭圆2211224x y +=的两个焦点,P 是椭圆上一点,且1213cos F PF ∠=.则12PF F △的面积为()A .6B .62C .8D .825.已知点F 1,F 2分别是椭圆22:14x C y +=的左右焦点,点M 在椭圆C 上,且满足1223MF MF += ,则12MF F △的面积为___________.6.已知椭圆()2222:10x y C a b a b+=>>的焦点为1F ,2F ,若椭圆C 上存在一点P ,使得120PF PF ⋅= ,且△12F PF 的面积等于4.则实数b 的值为___________.二、椭圆焦点三角形面积的最值问题7.已知1F 、2F 为椭圆22:14xy Γ+=的左、右焦点,M 为Γ上的点,则12MF F △面积的最大值为()A .3B .2C .23D .4三、已知椭圆焦点三角形面积求边8.设1F 、2F 是椭圆22:110x C y +=的两个焦点,O 为坐标原点,点P 在C 上,且12PF F △的面积为7,则OP =()A .3B .73C .83D .39.已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点M 是椭圆C 上的一点,且1212,2F MF F MF π∠= 的面积为1,则椭圆C 的短轴长为()A .1B .2C .22D .4四、与内切圆相结合10.已知椭圆2212516x y +=两焦点1F 、2F ,P 为椭圆上一点,若123F PF π∠=,则12F PF △的内切圆半径为______五、与平面向量相结合11.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为()A .33B .93C .3D .912.已知1F 、2F 是椭圆()2222:10x y C a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥ .若12PF F △的面积为9,求实数b 的值.【巩固训练】一、单选题13.已知点P 在椭圆221164x y +=上,1F 与2F 分别为左、右焦点,若1223F PF π∠=,则12F PF △的面积为()A .43B .63C .83D .13314.已知椭圆C :221259x y +=,1F ,2F 分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中错误的是()A .离心率45e =B .12F PF △的周长为18C .直线PA 与直线PB 斜率乘积为定值925-D .若1290F PF ︒∠=,则12F PF △的面积为815.已知椭圆2221(10)y x b b +=>>的左、右焦点分别为1F ,2F ,点M 是椭圆上一点,点A 是线段12F F 上一点,且121223F MF F MA π∠=∠=,3||2MA =,则该椭圆的离心率为()A .32B .12C .223D .33二、多选题16.椭圆22:143x y C +=的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,若方程340mx y m ++-=所表示的直线恒过定点M ,点Q 在以点M 为圆心,C 的长轴长为直径的圆上,则下列说法正确的是()A .椭圆C 的离心率为12B .12PF PF ⋅的最大值为4C .12PF F △的面积可能为2D .2PQ PF -的最小值为256-17.已知椭圆22:14x M y +=,若P 在椭圆M 上,1F 、2F 是椭圆M 的左、右焦点,则下列说法正确的有()A .若12PF PF =,则1230PF F ∠=B .12F PF △面积的最大值为3C .12PF PF -的最大值为23D .满足12F PF △是直角三角形的点P 有4个18.已知椭圆22:143x y C +=的左、右焦点分别是1F ,2F ,04,3M y ⎛⎫ ⎪⎝⎭为椭圆C 上一点,则下列结论正确的是()A .12MF F △的周长为6B .12MF F △的面积为153C .12MF F △的内切圆的半径为159D .12MF F △的外接圆的直径为321119.双曲线22:1124x y C -=的左,右焦点分别为1F ,2F ,点P 在C 上.若12PF F △是直角三角形,则12PF F △的面积为()A .833B .433C .4D .220.已知P 是椭圆C :2216x y +=上的动点,过11,4Q ⎛⎫ ⎪⎝⎭直线与椭圆交于,M N 两点,则()A .C 的焦距为5B .当Q 为MN 中点时,直线MN 的斜率为3-C .C 的离心率为306D .若1290F PF ︒∠=,则12F PF △的面积为121.设椭圆22:12x C y +=的左右焦点为1F ,2F ,P 是C 上的动点,则下列结论正确的是()A .离心率62e =B .12PF F △面积的最大值为2C .以线段12F F 为直径的圆与直线20x y +-=相切D .12PF PF ⋅的最小值为0三、填空题22.设12F F ,是椭圆22196x y +=的两个焦点,P 是椭圆上的点,且1221PF PF =::,则12F PF △的面积等于_______.23.已知F 1,F 2是椭圆2214x y +=的两个焦点,点P 在椭圆上,2PF ⊥x 轴,则12PF F 的面积为_________.四、解答题24.设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,点P ,Q 为椭圆C 上任意两点,且()110PF QF λλ=< ,若2PQF 的周长为8,12PF F △面积的最大值为2.(1)求椭圆C 的方程;(2)设椭圆C 内切于矩形ABCD (椭圆与矩形四条边均相切),求矩形ABCD 面积的最大值.25.已知椭圆C 的两焦点分别为()11,0F -、()21,0F ,P 为椭圆上一点,且12122F F PF PF =+.(1)求椭圆C 的标准方程;(2)若点P 在第二象限,12120F PF ∠=︒,求△12PF F 的面积.26.已知圆22:(3)64M x y ++=圆心为M ,定点(3,0)N ,动点A 在圆M 上,线段AN 的垂直平分线交线段MA 于点P(1)求动点P 的轨迹C 的方程;(2)若点Q 是曲线C 上一点,且60QMN ∠=︒,求 QMN 的面积.参考答案1.33【分析】由椭圆方程可得,,a b c ,利用椭圆定义和余弦定理可构造方程求得12PF PF ⋅,由三角形面积公式可求得结果.【详解】由椭圆方程知:5a =,3b =,则22216c a b =-=;由椭圆定义知:12210PF PF a +==,由余弦定理得:222121212122cos F F PF PF PF PF F PF =+-⋅∠,()2212121243100364c PF PF PF PF PF PF ∴=+-⋅=-⋅=,解得:1212PF PF ⋅=,12121213sin 63322F PF S PF PF F PF ∴=⋅∠=⨯= .故答案为:33.2.33或63##63或33【分析】由椭圆方程可求得,,a b c ;当123F PF π∠=时,由焦点三角形面积公式可求得12F PF S ;当123PF F π∠=时,利用余弦定理可构造方程求得1PF ,由三角形面积公式可得结果.【详解】由椭圆方程知:5a =,3b =,则224c a b =-=;若123F PF π∠=,则12212tan9tan 3326F PF F PF S b π∠=== ;若123PF F π∠=,设1PF m =,则2210PF a m m =-=-,由余弦定理得:22222112112122cos 648PF PF F F PF F F PF F mm =+-⋅∠=+-=()210m -,解得:3m =,1211212113sin 3863222F PF S PF F F PF F ∴=⋅∠=⨯⨯⨯= ;同理可得:当21π3PF F Ð=时,1263F PF S = .综上所述:12F PF △的面积为33或63.故答案为:33或63.3.D【分析】根据椭圆的定义求出12||4,||3PF PF ==,从而判断出12PF F △为直角三角形,然后即可求出12PF F △的面积.【详解】易知2494a =,26b =,所以222254c a b =-=,72a =,即52c =,由椭圆的定义,知12||||27PF PF a +==,又因为12||:||4:3PF PF =,所以12||4,||3PF PF ==,又1225F F c ==,所以12PF F △为直角三角形,所以13462ABC S =⨯⨯=△.故选:D.4.B【分析】利用椭圆的几何性质,得到12246PF PF a +==,12243F F c ==,进而利用1213cos F PF ∠=得出1218PF PF ⋅=,进而可求出12S PF F 【详解】解:由椭圆2211224x y +=的方程可得2224,12a b ==,所以22212c a b =-=,得26,23a c ==且12246PF PF a +==,12243F F c ==,在12PF F △中,由余弦定理可得222221212121212121212||||||(||||)2||||||cos 2||||2||||PF PF F F PF PF PF PF F F F PF PF PF PF PF +-+--∠==22212121212442||||42||||2||||2||||a c PF PF b PF PF PF PF PF PF ---==12124122||||2||||PF PF PF PF ⨯-=,而121cos 3F PF ∠=,所以,1218PF PF ⋅=,又因为,121cos 3F PF ∠=,所以1222sin 3F PF ∠=,所以,1212121122sin 1862223S PF F PF PF F PF =⋅∠=⨯⨯= 故选:B 5.1【分析】设00(,)M x y ,则可得1200(2,2)MF MF x y +=-- ,再由1223MF MF += 可得22003x y +=,而点00(,)M x y 在椭圆上,则有220014x y +=,求出0y ,从而可求出12MF F △的面积【详解】由题意可得2,1,3a b c ===,则12(3,0),(3,0)F F -,设00(,)M x y ,则12000000(3,)(3,)(2,2)MF MF x y x y x y +=---+--=--,因为1223MF MF +=,所以22004412x y +=,所以22003x y +=,因为点00(,)M x y 在椭圆上,所以220014x y +=,解得033y =,所以12MF F △的面积为1323123⨯⨯=,故答案为:16.2【分析】由三角形面积公式、向量数量积的坐标表示及P 在椭圆上列方程可得||4P c y =、2||P b y c=,即可求参数b .【详解】由题设,12||||42P P c y c y ⨯⨯==,且(,)(,)0P P P P c x y c x y ---⋅--=,可得222P P x c y =-,又222222222:1P P P Px y c y y C a b a b-+=+=,则2||P b y c =,综上,24b =,又0b >,则2b =.故答案为:27.A【分析】由于12F F 为定值,所以当点M 到12F F 的距离最大时,12MF F △面积取得最大值,即当M 与短轴的一个端点重合时,12MF F △面积的最大【详解】由2214x y +=,得224,1a b ==,所以222,1,3a b c a b ===-=,由椭圆的性质可知当M 与短轴的一个端点重合时,12MF F △面积的最大,所以12MF F △面积的最大值为1211231322F F b =⨯⨯=,故选:A 8.A【分析】根据三角形12PF F △的面积可求得点P 的坐标,由此可求得OP 的值.【详解】在椭圆C 中,10a =,1b =,则223c a b =-=,所以,1226F F c ==,12121372PF F P P S F F y y =⋅==△,所以73P y =,所以253P x =,则223P P OP x y =+=,故选:A.9.B【分析】首先分别设1MF x =,2MF y =,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设1MF x =,2MF y =,所以22221124x y a xy x y c+=⎧⎪⎪=⎨⎪+=⎪⎩,即()222222244x y x y xy x y a +=++=++=,即22444c a +=,得2221b a c =-=,短轴长为22b =.故选:B 10.233##233【分析】根据椭圆的方程求得c ,得12||F F ,设出11||PF t =,22||PF t =,利用余弦定理可求得12t t 的值,得到△12F PF 的面积,再由等面积法求出△12F PF 内切圆的半径.【详解】由题意方程可得,5a =,4b =,223c a b ∴=-=,即12||6F F =,设11||PF t =,22||PF t =,则根据椭圆的定义可得:1210t t +=,①在12F PF △中,123F PF π∠=,∴根据余弦定理可得:22212122cos 63t t t t π+-⋅=,②联立①②得12643t t ⋅=,∴121211643163sin 232323F PF S t t π=⋅=⨯⨯= ,设△12F PF 内切圆半径为r ,△12F PF 的周长为10616L =+=,面积为1633S =,则1112F PF S Lr =,2233S r L ∴==,故答案为:23311.A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解.【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A12.3b =【分析】由题意以及椭圆的几何性质列方程即可求解.【详解】因为12PF PF ⊥,所以1290F PF ∠=︒,所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=,()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅,1212192F PF S PF PF =⋅=△,所以2244490c a =-⨯=,所以2449b =⨯.所以3b =;综上,b =3.13.A【分析】由椭圆的定义结合余弦定理解得1216PF PF =,通过三角形面积公式即可求得答案.【详解】由12222121212128cos 2PF PF PF PF F F F PF PF PF ⎧+=⎪+-⎨∠=⎪⎩,,又1243F F =,解得1216PF PF =,1212121sin 313422162F PF S PF P PF F F =⨯⨯==∠△.故选:A.14.D【分析】根据离心率的定义可判断A ;利用椭圆的定义可判断B ;求出PA PB k k ⋅可判断C ;利用勾股定理以及椭圆的定义求出12PF PF 可判断D.【详解】由221259x y +=,可得5a =,3b =,224c a b =-=,A ,离心率45c e a ==,故A 正确;B ,12F PF △的周长为12122218PF PF F F a c ++=+=,故B 正确.C ,设()00,P x y ,2020002200009125955252525PA PBx y y y k k x x x x ⎛⎫- ⎪⎝⎭⋅=⋅===-+---,故C 正确;D ,1290F PF ︒∠= ,222121264PF PF F F ∴+==,又因为12210PF PF a +==,所以()212100PF PF +=,即2212122100PF PF PF PF ∴++=,解得1218PF PF =,所以1212192F PF S PF PF ==△,故D 错误.故选:D 15.B【分析】由椭圆定义得12MF MF +,由余弦定理可得12MF MF ,再由三角形面积公式得12MF MF +和12MF MF 的关系,从而求得c ,然后可得离心率.【详解】解:设11||MF r =,22||MF r =,则1222r r a +==,由余弦定理得2221212122||||||2||||cos3F F MF MF MF MF π=+-,即222212*********()4c r r r r r r r r r r =++=+-=-,所以21244r r c =-,因为1212F MF F MA AMF S S S =+ ,所以12121211sin ||sin ||sin 232323r r r MA r MA πππ=⋅⋅+⋅⋅,整理得1212()||r r r r MA =+⋅,即234422c -=⨯,整理得214c =,所以12c =,1a =,12c e a ==,故选:B.16.ABD【分析】A :根据椭圆方程可直接求得2a =,3b =,1c =,和离心率ce a=;B :由椭圆的定义可得124PF PF +=,结合不等式22a b ab +⎛⎫≤ ⎪⎝⎭代入运算;C :点P 位于椭圆的上、下顶点时,12PF F △的面积取得最大,计算判断;D :利用椭圆定义和圆的性质转化处理.【详解】对于选项A ,由椭圆C 的方程知2a =,3b =,1c =,所以离心率12c e a ==,故选项A 正确;对于选项B ,由椭圆的定义可得124PF PF +=,所以2121242PF PF PF PF ⎛+⎫⋅≤= ⎪⎝⎭,即12PF PF ⋅的最大值为4,故选项B 正确;对于选项C ,当点P 位于椭圆的上、下顶点时,12PF F △的面积取得最大值123322⨯⨯=<,故选项C 错误;对于选项D ,易知()3,4M -,则圆()()22:344M x y ++-=,所以()21114424256PQ PF PQ PF QF MF -=--≥-≥--=-,故选项D 正确,故选:ABD .17.ABC【分析】利用余弦定理可判断A 选项;利用三角形的面积公式可判断B 选项;利用椭圆的定义可判断C 选项;利用平面向量的数量积可判断D 选项.【详解】在椭圆M 中,2a =,1b =,3c =,且1223F F =,对于A 选项,当12PF PF =时,则122PF PF a ===,由余弦定理可得2221122121123cos 22PF F F PF PF F PF F F +-∠==⋅,因为120180PF F <∠<,所以,1230PF F ∠= ,A 对;对于B 选项,当点P 为椭圆M 的短轴顶点时,点P 到x 轴的距离最大,所以,12F PF △面积的最大值为1232c b bc ⨯⨯==,B 对;对于C 选项,因为2a c PF a c -≤≤+,即22323PF -≤≤+,所以,()1222222223PF PF a PF a a c c -=-≤--==,C 对;对于D 选项,当112PF F F ⊥或212PF F F ⊥时,12PF F 为直角三角形,此时满足条件的点P 有4个,当P 为直角顶点时,设点()00,P x y ,则220044x y =-,()1003,F P x y =+ ,()2003,F P x y =- ,222120003130F P F P x y y ⋅=-+=-= ,所以,033y =±,0263x =±,此时,满足条件的点P 有4个,综上所述,满足12F PF △是直角三角形的点P 有8个,D 错.故选:ABC.18.ABC【分析】求得0y ,进而求得12,MF MF ,由此对选项进行分析,从而确定正确选项.【详解】椭圆22:143x y C +=的左、右焦点分别是()11,0F -,()21,0F ,04,3M y ⎛⎫ ⎪⎝⎭为椭圆C 上一点,220041531,433y y ⎛⎫ ⎪⎝⎭+==,所以2212715884,433333MF MF ⎛⎫⎛⎫=+==-= ⎪ ⎪ ⎪⎝⎭⎝⎭.所以12MF F △的周长为22426a c +=+=,A 正确.12MF F △的面积为001151521233c y c y ⨯⨯=⨯=⨯=,B 正确.设12MF F △的内切圆的半径为r ,则115156,239r r ⨯⨯==,C 选项正确.1212641641199cos 0,8416233F MF F MF +-∠==>∠⨯⨯为锐角,12121135315sin 12561616F MF ∠=-==,所以12MF F △的外接圆的直径为12122323215sin 4531531516F F F MF ===∠,D 选项错误.故选:ABC 19.AC【分析】根据双曲线方程求出c ,再根据对称性只需考虑112PF F F ⊥或12PF PF ⊥.当12PF PF ⊥时,将4x =-代入双曲线方程,求出y ,即可求出三角形面积,当12PF PF ⊥时,由双曲线的定义可知1243PF PF -=,再由勾股定理求出12PF PF ,即可得解;【详解】解:由双曲线22:1124x y C -=可得221244c a b =+=+=.根据双曲线的对称性只需考虑112PF F F ⊥或12PF PF ⊥.当12PF PF ⊥时,将4x =-代入221124x y -=可得233y =±,所以12PF F △的面积为12118323F F PF =.当12PF PF ⊥时,由双曲线的定义可知,12243PF PF a -==,由勾股定理可得()22221212264PF PF F F c +===.因为()222121212264PF PF PF PF PF PF +=-+⋅=,所以128PF PF =,此时12PF F △的面积为12142PF PF ⋅=综上所述,12PF F △的面积为4或833.故选:AC .20.CD【分析】由题知226,1a b ==,25c =,进而根据离心率公式和焦距可判断A ,C ;对于B ,利用中点弦的直线的斜率公式直接计算即可判断;对于D 选项,结合椭圆定义得122PF PF =,进而计算面积即可判断.【详解】解:由题知226,1a b ==,所以2615c =-=,故焦距为225c =,故A 选项错误;对于B 选项,当Q 为MN 中点时,由中点弦公式得2020121364MNb x k a y =-=-=-⨯,故B 选项错误;对于C 选项,椭圆的离心率为53066c e a ===,故C 选项正确;对于D 选项,1290F PF ︒∠=,则12222121226PF PF PF PF F F ⎧+=⎪⎨+=⎪⎩,即()1222121212262PF PF PF PF PF PF F F ⎧+=⎪⎨+-=⎪⎩,代入数据得122PF PF =,所以12F PF △的面积为12112S PF PF ==,故D 选项正确;故选:CD 21.CD【分析】求出离心率可判断A ;计算12PF F △面积的最大值1212F F b ⋅可判断B ;求出圆的方程,再判断圆心到直线的距离与半径的关系可判断C ;设(),P x y 进行数量积的坐标运算结合2212x y +=可判断D ,进而可得正确选项.【详解】对于A :由椭圆22:12x C y +=可知,2a =,1b =,1c =,所以左、右焦点分别为()11,0F -,()21,0F ,离心率22c e a ==,故选项A 错误;对于B :122F F =,当P 点与椭圆的上下顶点重合时,12PF F △面积的最大,所以12PF F △面积的最大值为11221122b ⨯⨯=⨯⨯=,故选项B 错误;对于C :以线段12F F 为直径的圆的圆心()0,0,半径为1,由圆心()0,0到直线20x y +-=的距离222111d c ===+,所以以线段12F F 为直径的圆与直线20x y +-=相切,故选项C 正确;对于D :设(),P x y ,()()121,,1,PF x y PF x y =---=--,2222212111022x x PF PF x y x ⋅=+-=+--=≥ ,则12PF PF ⋅ 的最小值为0,故选项D 正确;故选:CD .22.23【分析】先利用定义求出12F PF △的各边,再求出123sin 2F PF ∠=,即可求出12F PF △的面积.【详解】由126PF PF +=,且1221PF PF =::,12124229623PF PF F F ∴===-=,,又在12PF F △中,cos ∠2221242(23)12422F PF +-==⨯⨯,123sin 2F PF ∴∠=12121S sin 232PF PF F PF ∴=∠=.故答案为:2323.32##132【分析】2PF ⊥x 轴可得P 点横坐标,再根据点P 在椭圆上,求出P 的纵坐标,代入三角形面积公式即可求解.【详解】由题意不妨设1(F ﹣3,0),2(F 3,0),∵P 2F ⊥x 轴,∴P (3,±12),∵△P 12F F 的面积=12|P 2F ||12F F |=12⨯12⨯23=32,故答案为:32.24.(1)22142x y +=(2)12【分析】(1)根据椭圆的定义可知24PQF C a = ,即可求出a ,再根据()12max122PF F S c b =⨯⨯ 及a 、b 、c 的关系计算可得;(2)当矩形ABCD 中有一条边与坐标轴平行时,直接求出矩形的面积,当矩形ABCD 的边都不与坐标轴平行时,设出直线方程,联立直线与椭圆方程,消元、根据0∆=求出2242m k =+,同理得2242n k =+,再由平行线之间的距离公式求出AD ,AB ,即可求出ABCD S ,最后利用基本不等式计算可得;(1)解:由()110PF QF λλ=<得P 、1F 、Q 三点共线,因为三角形2PQF 的周长为8,即22211224PQF C PQ PF QF PF QF PF QF a =++=+++=,所以48a =,则2a =.当P 点为椭圆上或下顶点时12PF F △的面积最大,即121222=⨯⨯== PF F S c b bc ,由222244=-=-b ac b,解得22b =,所以椭圆C 的方程为22142x y +=.(2)解:当矩形ABCD 中有一条边与坐标轴平行时,则另外三条边也与坐标轴平行,矩形ABCD 的两条边长分别为24a =,222b =,此时42282ABCD S =⨯=.当矩形ABCD 的边都不与坐标轴平行时,由对称性,不妨设直线AB 的方程为:y kx m =+,则CD 的方程为:y kx m =-,AD 的方程为:1y x n k =-+,BC 的方程为:1y x n k =--.由22142y kx mx y =+⎧⎪⎨+=⎪⎩,得()()222124220k x kmx m +++-=,令0∆=得2242m k =+,同理得2242n k =+,矩形ABCD 的边长分别为221m AD k =+,2211n AB k =+,∴()22222222821122411111ABCD kk m n mnk k S k kk k⎛⎫++ ⎪⎝⎭=⨯==++++,2211828212142k k=+≤+=++,当且仅当1k =±时取等号,所以矩形ABCD 面积的最大值是12.综上所述,矩形ABCD 面积的最大值是12.25.(1)22143x y +=(2)33【分析】(1)根据椭圆的定义得1,2c a ==,进而得答案;(2)根据余弦定理,结合椭圆定义,解决焦点三角形的面积问题即可.(1)解:∵椭圆C 的两焦点分别为()11,0F -、()21,0F ,∴设椭圆C 的方程为()222210x y a b a b+=>>,1c =,12||||42PF PF a ∴+==,2a ∴=.222413b a c ∴=-=-=,∴椭圆的标准方程为22143x y +=.(2)解:在△12PF F 中,由余弦定理得222121212||||||2||||cos F F PF PF PF PF =+-120︒,即212124(||||)||||PF PF PF PF =+-,212124(2)||||16||||a PF PF PF PF ∴=-=-,12||||12PF PF ∴=,1212113||||sin1201233222PF F S PF PF ∴=︒=⨯⨯= .26.(1)221167x y +=;(2)213.5【分析】(1)根据题意中的几何关系,判断动点P 的轨迹为椭圆,写出其方程即可;(2)利用椭圆定义结合余弦定理,即可求得MQ ,再求三角形面积即可.(1)由已知PN PA =,故8PM PN PM PA AM MN +=+==>,所以P 点轨迹是以M 、N 为焦点的椭圆,设P 点轨迹方程为22221(0)x y a b a b+=>>,则228,3,7a c b ===,所以P 点轨迹方程为221167x y +=.(2)不妨设MQ m =,由椭圆定义可得28QN a m m =-=-,又26MN c ==,则在MNQ 中,由余弦定理可得:()222681cos 212m m QMN m+--∠==,解得145m =.故 QMN 的面积13314213sin 2322255S QMN m c c m =⨯∠⨯⨯=⨯=⨯⨯=.。

3.1.2椭圆的简单几何性质第三课时(第二定义焦半径和三角型面积)课件-高二上学期数学人教A版选择性

3.1.2椭圆的简单几何性质第三课时(第二定义焦半径和三角型面积)课件-高二上学期数学人教A版选择性

练习 已知椭圆C: x2 y2 1过,点(0, 2)作圆x2+y2=1的切线l交椭圆C于A, B两点. 4
(1) 求椭圆C的焦点坐标和离心率;(2) O为坐标原点, 求△OAB的面积.
解:(1) 由已知得 a 2, b 1, 所以c 3 .
∴椭圆C 的焦点坐标为( 3, 0),( 3, 0), 离心率为e c
y B1
M •F2
A1 O A2 x •F1 B2
b x b, a y a
对称性
关于x, y轴对称,关于原点对称
顶点 离心率
A1(a, 0), A2 (a, 0), B1(0, b), B2(0, b) A1(b, 0), A2 (b, 0), B1(0, a), B2(0, a)
e c a
联立x2 2 y2 2, 消y得 (1 2k 2 )x2 4k 2 x 2k 2 2 0, 8k 2 8.
y k(x 1),
SABF2
1 2
|
F1F2
|
y1 y2
k x1 x2
k
8(k 2 1) 1 2k 2
2
∴ △ABF2面积的最大值为 2.
应用2:三角形的面积与韦达定理
②焦半径公式: 若P(x, y), 则
P(x,y)
焦点在x轴上 : PF1 a ex, PF2 a ex
F1
F2
焦点在y轴上 : PF1 a ey, PF2 a ey
y A2 F2 x
③定义: PF1 PF2 2a ④乘积最值: b2 PF1 PF2 a2
B1 O
B2
PF1 PF2 (a ex)(a ex)
l
设A( x1 ,
y1), B( x2 ,
y2 ).

椭圆与双曲线的焦点三角形面积公式及推导过程

椭圆与双曲线的焦点三角形面积公式及推导过程

椭圆与双曲线的焦点三角形面积公式及推导过程一、椭圆中的焦点三角形面积公式1、公式:)2tan(221αb S F PF =∆. 2、推导过程: 设椭圆的标准方程为:)(012222>>=+b a by a x ,21,F F 分别是椭圆的左、右焦点,P 是椭圆上异于长轴两端点的任意一点,21PF PF 与的夹角为α,则在21F PF ∆中,依椭圆的定义及余弦定理,有⎪⎪⎩⎪⎪⎨⎧-+=+==+=αcos 2222122212212222121PF PF PF PF F F c b a aPF PF cF F ⇒)cos 1(2)(21221221α+-+=PF PF PF PF F F 即)cos 1(2)2(22122α+-=PF PF a c )(⇒ααcos 12cos 1(222221+=+-=bc a PF PF ))2tan()2(cos 22cos 2sin 2cos 1sin sin cos 1221sin 21222222121αααααααααb b b b PF PF S F PF =⨯=+⨯=⨯+⨯==∆ 即)2tan(221αb S F PF =∆.二、双曲线中的焦点三角形面积公式1、公式:1-2)2tan(21αb S F PF =∆. 2、推导过程:设双曲线的标准方程为:),(001-2222>>=b a by a x ,21,F F 分别是双曲线的左、右焦点,P 是双曲线上异于实轴两端点的任意一点,21PF PF 与的夹角为α,则在21F PF ∆中,依双曲线的定义及余弦定理,有 ⎪⎪⎩⎪⎪⎨⎧-+=+===αcos 22-22122212212222121PF PF PF PF F F b a c a PF PF cF F ⇒ )cos 1(2)(21221221α-+-=PF PF PF PF F F 即)cos 1(2)2(22122α-+=PF PF a c )(⇒ ααcos 12cos 1(222221-=--=b a c PF PF )12222221)2(tan )2(sin 22cos2sin 2cos 1sin sin cos 1221sin 2121-∆=⨯=-⨯=⨯-⨯==αααααααααb b b b PF PF S F PF 即1-2)2tan(21αb S F PF =∆.。

椭圆焦点三角形面积公式

椭圆焦点三角形面积公式

椭圆焦点三角形面积公式定理 在椭圆12222=+by a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一点,θ=∠21PF F ,则2tan 221θb S PF F =∆. 证明:记2211||,||r PF r PF ==,由椭圆的第一定义得 .4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ即.4)cos 1(242212c r r a =+-θ .cos 12cos 1)(222221θθ+=+-=∴b c a r r 由任意三角形的面积公式得:2tan 2cos 22cos 2sin 2cos 1sin sin 2122222121θθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F . .2tan 221θb S PF F =∴∆ 同理可证,在椭圆12222=+bx a y (a >b >0)中,公式仍然成立. 例 若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F ,求 △21PF F 的面积. 解法一:在椭圆16410022=+y x 中,,6,8,10===c b a 而.60︒=θ记.||,||2211r PF r PF == 点P 在椭圆上,∴由椭圆的第一定义得:.20221==+a r r在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ 配方,得:.1443)(21221=-+r r r r.144340021=-∴r r 从而.325621=r r .336423325621sin 212121=⨯⨯==∆θr r S PF F 解法二:在椭圆16410022=+y x 中,642=b ,而.60︒=θ .336430tan 642tan 221=︒==∴∆θb S PF F 解法一复杂繁冗,运算量大,解法二简捷明了,两个解法的优劣立现!。

专题12 焦点三角形的面积公式(教师版)-2024年高考二级结论速解技巧

专题12 焦点三角形的面积公式(教师版)-2024年高考二级结论速解技巧

b2 θ 求解焦点三角形面积适用选择填空题,解答题需先证后用.
tan
2
例题
3.(2023·全国·高三专题练习)设双曲线 C
: x2 a2

y2 b2
= 1(a>0,b>0)的左、右焦点分别为 F1 , F2
离心率为 5 . P 是 C 上一点,且 F1P ⊥ F2P .若 ∆PF1F2 的面积为 4,则 a =(
1 A. 3
B. 2 3
C.
1 2
D. 2 2
【答案】A
【详解】设双曲线右焦点为 F2 ,连接 AF2 , BF2 ,由图形的对称性知 AFBF2 为矩形,则有 | AF | − AF2 = 2a ,
| AF | ⋅ AF2 = 3a2 ,
= ∴| AF |
3= a, AF2
a ,在 Rt AFF2 中, kAF
b2 tan θ = ⇒ 4 2
b2 tan π ⇒= b2 4
4 ,又离心率 c = a
5 ,结合 c=2
a2 + b2 ,可求出 a = 1.
【反思】焦点三角形问题,常规方法往往涉及到圆锥曲线的定义,利用定义,余弦定理求解,特别提醒,
在圆锥曲线中,定义是解题的重要工具.另外作为二级结论,S∆PF1F2
× sin
60°
=4 3 3
.
故选:C
4.(2022·高二课时练习)已知点 P 在椭圆 x2 16
+
y2 4
= 1上,F1 与 F2 分别为左右焦点,若 ∠F1PF2
= 2π ,则 3
△F1PF2
的面积为( )
A. 4 3
B. 6 3
C.8 3
D.16

微教案--椭圆焦点三角的面积

微教案--椭圆焦点三角的面积
内容
教学目的
1.理解并推导椭圆焦点三角形的面积公式
2.能灵活运用椭圆焦点三角形的面积公式解决问题。
教学重点难点
教学重点:灵活运用椭圆焦点三角形的面积公式解决问题。
教学难点:推导椭圆焦点三角形的面积公式
教学过程
1.温故知新:
椭圆:平面内动点 到两定点 和 的距离和为常数(这个常数大于 ),点 的轨迹叫做椭圆.
椭圆C: 的焦点三角形的面积为:
.( 为 点的纵坐标)
5.作业布置
椭圆的焦点三角形练习(二)
附表1
微课教学设计模板
授课教师姓名
微课名称
椭圆焦点三角形的面积
知识点来源
□学科:数学 □年级:高二 □教材版本:人教A版选修1-1
□所属章节:第二章2.1
录制工具和方法
Camtasia 录屏软件
设计思路
椭圆的焦点三角形,是历年高考中的常青树.焦点三角形的面积是其中一
个非常重要的几何量。如果学生能灵活地应用焦点三角形的面积公式,往往可以使复杂问题简单化,减少运算量,使问题迎刃而解.
因此本节课以讲练结合的方式贯穿始终:首先给出椭圆焦点三角形的面积公式并予以证明;然后就通过三个例题展示焦点三角形面积公式在解题中的运用;最后用一张小试卷作为课后作业,由浅入深,训练学生灵活运用焦点三角形面积公式。
本节微课力求短、平、快地让学生掌握焦点三角形面积公式,提高学生应对圆锥 和两焦点 、 为顶点的三角形叫做椭圆的焦点三角形。
2.新课讲授:
椭圆焦点三角形的面积公式:
在椭圆C: ( )中, 和 是椭圆的两个焦点, 是椭圆上任意一点, ,则焦点三角形的面积为
证明:记 ,
在 中,由余弦定理有:
由椭圆定义有:

椭圆焦点三角形的面积

椭圆焦点三角形的面积

综上所述,点 P 到 x 轴的距离 9 或 9
45
课堂总结
椭圆
C:
x2 a2
y2 b2
1( a
b
0 )的焦点三角形的面积为:
S△PF1F2
1 2
PF1
PF2
sin
S△PF1F2
b2
tan
2
S△PF1F2 c y0 .( y0 为 P 点的纵坐标)
作业:
椭圆的焦点三角形练习(二)
谢 谢!
椭圆焦点三角形的面积:
在椭圆
C: x2
a2
y2 b2
1( a
b
0 )中,F1 和
F2 是椭圆的两个焦点,
P 是椭圆上任意一点, F1PF2 ,则焦点三角形的面积为
S△PF1F2
b2
tan
2
证明:
记 | PF1 | m, | PF2 | n
m
n
在 F1PF2 中,由余弦定理有:
m2 n2 2mn cos | F1F2 |2 4c2
|
1 2
,求
F1PF2 的面积。
PF1 . PF2 | PF1 | . | PF2
|
cos
1 2
60
,
tan
2
tan 30
3 3
SPF1F2
b2
tan
2
3
3
例 3:已知椭圆 x2 y2 1的左、右焦点分别是
25 9
F1, F2 ,点 P 在椭圆上,若 P、F1、F2 是一个直
角三角形的三个顶点,求点 P 到 x 轴的距离。
椭圆的焦点三角形
(第二课时)
关于椭圆焦点三角形的常见问题:

椭圆焦点三角形面积公式推导及应用

椭圆焦点三角形面积公式推导及应用

θ 2

22

S△F1PF2
= b2 tan
θ 2
二、公式应用
例 1 ( 1993 全国高考题) 在面积为 1 的△PMN
中,tanM =
1 2
,tanN
=
- 2,建立适当的坐标系,求出以
M,N 为焦点且过点 P 的椭圆方程.
分析 此题为典型的椭圆焦点三角形面积问题,
只需找到对应的相等关系即可解决.
通过以上例题的解决我们发现在利用椭圆焦点三角形的面积公式时不一定是求面积问题而是呈现题型的变化多样性但只要我们抓住它们是椭圆焦点三角形这一关键点切入问题即可迎刃而解
2017 年 1 月 1 日
理科考试研究·数学版
·25·
椭圆焦点三角形面积公式推导及应用
内蒙古赤峰市宁城高级中学 024200 郭晓辉
摘 要: 椭圆上任意一点与两个焦点所组成的三角形叫焦点三角形. 在椭圆中,焦点三角形是一个引人注目的三角 形,它的面积是一个非常重要的几何量. 在解决有关焦点三角形问题中,如果能灵活地应用焦点三角形的面积公式,往 往可以使复杂问题简单化,减少运算量,使问题迎刃而解.
=1
上的点,F1 、F2

别是

圆的
左、右

点,若
PF→1 ·PF→2 | PF→1 | · | PF→2 |
=
1 2
,则
△F1 PF2 的面积为( )
A. 3 槡3
B. 2 槡3
C. 槡3
D.
槡3 3
分析 此题符合椭圆焦点三角形问题,所以首选
椭圆焦点三角形面积公式.

设 ∠F1 PF2
= θ,则
cosθ

椭圆焦点三角形的面积

椭圆焦点三角形的面积

椭圆焦点三角形的面积椭圆焦点三角形是椭圆中的一个重要几何图形,它由椭圆上的一点与椭圆的两个焦点所构成。

而椭圆焦点三角形的面积是一个具有特定计算公式和重要性质的量,理解和掌握它对于解决与椭圆相关的问题具有重要意义。

我们先来明确一下椭圆焦点三角形的定义。

椭圆焦点三角形是指以椭圆的两个焦点以及椭圆上的任意一点为顶点所构成的三角形。

要探讨椭圆焦点三角形的面积,就不得不提到椭圆的基本性质。

对于椭圆标准方程:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为椭圆的长半轴,\(b\)为椭圆的短半轴,两个焦点之间的距离\(2c\)(\(c\)为椭圆的半焦距)满足\(c^2 = a^2 b^2\)。

接下来,我们推导椭圆焦点三角形的面积公式。

假设椭圆上一点\(P\)的坐标为\((x_0, y_0)\),两个焦点分别为\(F_1\)、\(F_2\),且\(\angle F_1PF_2 =\theta\)。

根据余弦定理,在\(\triangle F_1PF_2\)中,\(|F_1F_2|^2 =|PF_1|^2 +|PF_2|^2 2|PF_1|\cdot|PF_2|\cos\theta\)又因为\(|PF_1| +|PF_2| = 2a\)(椭圆的定义),将其平方可得:\\begin{align}|PF_1|^2 +|PF_2|^2 + 2|PF_1|\cdot|PF_2|&=4a^2\\|PF_1|^2 +|PF_2|^2&=4a^2 2|PF_1|\cdot|PF_2|\end{align}\将其代入余弦定理的式子中可得:\\begin{align}4c^2&=4a^2 2|PF_1|\cdot|PF_2| 2|PF_1|\cdot|PF_2|\cos\theta\\2|PF_1|\cdot|PF_2|(1 +\cos\theta)&=4(a^2 c^2)\\2|PF_1|\cdot|PF_2|(1 +\cos\theta)&=4b^2\\|PF_1|\cdot|PF_2|&=\frac{2b^2}{1 +\cos\theta}\end{align}\那么椭圆焦点三角形的面积\(S =\frac{1}{2}|PF_1|\cdot|PF_2|\sin\theta\)\\begin{align}S&=\frac{1}{2}\cdot\frac{2b^2}{1 +\cos\theta}\cdot\sin\theta\\&=b^2\cdot\frac{\sin\theta}{1 +\cos\theta}\\&=b^2\cdot\tan\frac{\theta}{2}\end{align}\这就是椭圆焦点三角形面积的重要公式。

深圳优质课教案 高二数学椭圆焦点三角形的面积

深圳优质课教案      高二数学椭圆焦点三角形的面积
椭圆C: 的焦点三角形的面积为:
.( 为 点的纵坐标)
5.作业布置
椭Байду номын сангаас的焦点三角形练习(二)
内容
教学目的
1.理解并推导椭圆焦点三角形的面积公式
2.能灵活运用椭圆焦点三角形的面积公式解决问题。
教学重点难点
教学重点:灵活运用椭圆焦点三角形的面积公式解决问题。
教学难点:推导椭圆焦点三角形的面积公式
教学过程
1.温故知新:
椭圆:平面内动点 到两定点 和 的距离和为常数(这个常数大于 ),点 的轨迹叫做椭圆.
椭圆焦点三角形的面积
授课教师姓名
李龙华
微课名称
椭圆焦点三角形的面积
知识点来源
□学科:数学 □年级:高二 □教材版本:人教A版选修1-1
□所属章节:第二章2.1
录制工具和方法
Camtasia 录屏软件
设计思路
椭圆的焦点三角形,是历年高考中的常青树.焦点三角形的面积是其中一
个非常重要的几何量。如果学生能灵活地应用焦点三角形的面积公式,往往可以使复杂问题简单化,减少运算量,使问题迎刃而解.
焦点三角形:以椭圆上一点 和两焦点 、 为顶点的三角形叫做椭圆的焦点三角形。
2.新课讲授:
椭圆焦点三角形的面积公式:
在椭圆C: ( )中, 和 是椭圆的两个焦点, 是椭圆上任意一点, ,则焦点三角形的面积为
证明:记 ,
在 中,由余弦定理有:
由椭圆定义有:

3.例题精讲:
例1:设P是椭圆上 上的一点, 是其焦点,且 ,求 的面积。
因此本节课以讲练结合的方式贯穿始终:首先给出椭圆焦点三角形的面积公式并予以证明;然后就通过三个例题展示焦点三角形面积公式在解题中的运用;最后用一张小试卷作为课后作业,由浅入深,训练学生灵活运用焦点三角形面积公式。

椭圆标准方程焦点三角形面积公式

椭圆标准方程焦点三角形面积公式

椭圆焦点三角形面积公式的应用性质 1( 选填题课直接用,大题需论证 ):在椭圆x 2 y 2 1 a b > 〕中,焦点分别为F 1 、F 2 ,点 P 是椭圆上任意一点,a 2b 2 〔 > 0F 1 PF 2,那么 S F PF b 2 tan .y212P证明:记 | PF 1 | r 1 ,| PF 2 | r 2 ,由椭圆的第一定义得 Pr 1 r 2 2a,(r 1r 2 ) 24a 2 .F 1 OF 2x在△ F 1 PF 2 中,由余弦定理得: r 1 2r 2 2 2r 1r 2 cos(2c) 2 .配方得: (r 1r 2 )2 2r 1r 22 2 cos 4 c 2 .r 1r即 422 r 1r 2 (1 cos ) 4 c 2 . a r 1r 22( a 2 c 2 )2b 2.1 cos1cos由任意三角形的面积公式得:1r 1r 2 sin sin2sincosSF PF2b 2b 22 2 b 2 tan .121 cos2 cos 222SF PF2b 2 tan .12同理可证,在椭圆 y2x 2 1 〔 a> b > 〕中,公式仍然成立.a 2b 2典型例题22例 1 假设 P 是椭圆xy1上的一点,F 1、 F 2 是其焦点,且 F 1PF 260 ,求10064△ F 1 PF 2 的面积 .例 2已 知 P 是 椭 圆x 2y 2 1 上 的 点 , F 1 、 F 2 分 别 是 椭 圆 的 左 、 右 焦 点 , 假设25 9PF 1 PF 21,那么△ F 1 PF 2 的面积为〔〕| PF 1 | | PF 2 |2A. 3 3B.2 3C.3D.33例 3〔 04 湖北〕椭圆 x2y 2 1的左、 右焦点分别是 F 1、 F 2 ,点 P 在椭圆上 . 假设 P 、F 1、16 9F 2 是一个直角三角形的三个顶点,那么点P 到 x 轴的距离为〔〕A. 9B.9 7 C.9 D.9 或 9 757447答案:例 1假设 P 是椭圆x 2y 21上的一点,F 1、 F 2 是其焦点,且 F 1PF 260 ,求10064△ F 1 PF 2 的面积 .x 2y 26, 而60 . 记 | PF 1 | r 1 , | PF 2 | r 2 .解法一:在椭圆 1001 中, a 10, b 8, c64点 P 在椭圆上,由椭圆的第一定义得:r 1 r 2 2a 20.在△ F 1 PF 22 22r 1r 2 cos(2c) 2 .中,由余弦定理得: r 1 r 2配方,得: ( r 1r 2 )23r 1r 2 144.400 3r 1r 2144. 从而 r 1r 2256 .3SF 1 PF 21r 1r 2 sin1 256 3 64 3 .22 32 3解法二:在椭圆x 2y21 中, b2 64 ,而60 .100 64SF 1PF 2b 2 tan64 tan 30 64 3 .23解法一复杂繁冗,运算量大,解法二简捷明了,两个解法的优劣立现!例 2 已知 P 是椭圆x2 y 21 上的点,F1、F2分别是椭圆的左、右焦点,假设25 9PF1 PF2 1,那么△ F1PF2 的面积为〔〕| PF1 | | PF2 | 2A. 3 3B. 2 3C. 3D.3 3解:设F1 PF2 ,那么 cosPF1 PF2 1,60 . | PF1 | | PF2 | 2S F PF2 b 2 tan 9 tan 303 3.1 2 应选答案 A.例 3〔 04 湖北〕椭圆x2y 2 1的左、右焦点分别是F1、 F2,点P在椭圆上.假设 P、F1、16 9F2是一个直角三角形的三个顶点,那么点P 到x轴的距离为〔〕A. 9B. 9 7C. 9D. 9 或 9 75 7 4 4 7解:假设 F1或 F2是直角顶点,那么点P 到x轴的距离为半通径的长b2 9;假设 P 是直角顶点,设a 4 点 P 到x轴的距离为 h,那么S FPF2 b2 tan 9 tan 45 9 ,又 S F PF21(2c) h 7h,1 2 1 27h 9 , h 9 7. 故答案选 D. 7金指点睛1( 略 ). 椭圆 y 2 x2 1上一点P与椭圆两个焦点F1、 F2的连线互相垂直,那么△F1 PF2的面积为49 24〔〕A. 20B. 22C. 28D. 242. 椭圆x221的左右焦点为F1、F2,P是椭圆上一点,当△ F1 PF2的面积为PF1 PF2 y 1 时,4的值为〔〕A. 0B. 1C. 3D. 63. 椭圆 x2 y 2 1的左右焦点为 F 、F ,P 是椭圆上一点,当△F P F 的面积最大时,PF1 PF24 1 2 1 2的值为〔〕A. 0B. 2C. 4D. 24.椭圆x2 y2 1〔 a >1〕的两个焦点为F1、 F2,P为椭圆上一点,且F1PF2 60 ,a 2那么 |PF1 | | PF2 |的值为〔〕A.1 B .1C .4D .2 3 3 35. 椭圆的中心在原点,对称轴为坐标轴,F1、 F2 为焦点,点 P 在椭圆上,直线PF1与 PF2倾斜角的差为90 ,△ F1PF2的面积是20,离心率为5,求椭圆的标准方程 . 36.椭圆的中心在原点,F1、F2为左右焦点,P为椭圆上一点,且PF1 PF21,△ F1 PF2 | PF1 | | PF 2 | 2的面积是 3 ,准线方程为 x 4 3,求椭圆的标准方程 .3 答案1. 解: F1PF2 90 ,b 2 24 ,S F PF2 b2 tan 24 tan 45 24 .1 2 故答案选 D.2. 解:设F1 PF2 ,S F PF2 b2 tan tan 1 ,45 , 90 , 1PF 20 .1 2 2 2 PF故答案选 A.3. 解: a 2, b 1,c 3 ,设F1 PF2 ,S F1PF2 b 2 tan tan ,2 2当△ F1 PF2的面积最大时,为最大,这时点 P 为椭圆短轴的端点,120 ,PF1 PF2 | PF1 | | PF2 | cos a 2 cos120 2 .故答案选 D.4.解:F1 PF2 60 , b 1 , S F1PF2 b 2 tan tan30 3 ,2 3又SF1PF21| PF1 | | PF2 | sin3| PF1 | | PF2 |,2 43| PF1 | | PF 2 | 3,从而 | PF1 | | PF 2 | 4 .4 3 3 故答案选 C.5. 解:设F1PF2 ,那么90 .SF PF2b 2 tan2b2 tan 45 b 2 20 ,1又 e c a 2 b 2 5 ,a a 31 b2 5,即 1 20 5 .a2 9 a2 9解得: a 2 45 .所求椭圆的标准方程为x 2 y 2 1或 y 2 x2 1.45 20 45 206.解:设F1PF2 , cos PF1 PF2 1 , 120 .| PF1 | | PF2 | 2SF1PF2 b 2 tan b2 tan 60 3b 2 3 , b 1 .2又 a 2 4 3 ,即 c2 b2 c 2 1 c 1 4 3 3 3 .c 3 c c c 3 3c 3 或 c 3 .3当 c 3 时,a b 2 c2 2 ,这时椭圆的标准方程为x 2 y 2 1 ;4当 c3时, a b 2 c22 3,这时椭圆的标准方程为x2 y 2 1;3 3 43但是,此时点 P 为椭圆短轴的端点时,为最大,60 ,不合题意 .故所求的椭圆的标准方程为x 2 y2 1.4性质二: 有关角的问题椭圆方程为x 2 y 2 1(a b 0), 左右两焦点分别为F 1, F 2 , 设焦点三角形 PF 1F 2 ,a 2b 2若 F 1 PF 2 最大,那么点 P 为椭圆短轴的端点。

椭圆的焦点在y轴上的焦点三角形面积如何计算?

椭圆的焦点在y轴上的焦点三角形面积如何计算?

椭圆的焦点在y轴上的焦点三角形面积的计算公式为:$S = b^2tan(\frac{\pi}{2} - \alpha)$,其中,S表示焦点三角形的面积,b表示半长轴长,α表示椭圆在y轴上的焦点角的顶点与焦点的连线与x轴的夹角。

具体来说,椭圆的方程可以表示为$x^{2}/a^{2} + y^{2}/b^{2} = 1$,其中a和b是椭圆的半长轴和半短轴,满足a>b>0。

椭圆的焦点在y轴上,因此焦点三角形的角既有锐角也有钝角。

设椭圆上任意一点到两个焦点的距离分别为y和x,则椭圆焦点三角形的面积可以用顶角θ的三角形的面积乘以tan(θ),其中θ等于$\frac{\pi}{2}$减去椭圆在y轴上的焦点角的顶点与焦点的连线与x轴的夹角。

由于椭圆上的点在y轴上的投影是确定的,因此可以通过测量椭圆在y轴上的焦点角的顶点与焦点的连线与x轴的夹角来计算焦点三角形的面积。

除了上述公式外,还可以使用其他方法来计算椭圆的焦点三角形面积。

例如,可以将椭圆的长轴长度乘以短轴长度再除以4得到焦点三角形的面积。

另外,对于简单形式的椭圆,可以直接使用半长轴和半短轴的长度的乘积再除以2来计算焦点三角形的面积。

总之,椭圆的焦点在y轴上的焦点三角形面积的计算公式为$S = b^{2}tan(\frac{\pi}{2} -\alpha)$,其中b表示半长轴长,α表示椭圆在y轴上的焦点角的顶点与焦点的连线与x轴的夹角。

使用这个公式可以方便快捷地计算出椭圆的焦点三角形面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解
运用公式
设P为椭圆上的任意一点,
角F1F2P=α ,F2F1P=β,F1PF2=θ,
则有离心率e=sin(α+β) / (sinα+sinβ),
焦点三角形面积S=b^2*tan(θ/2)。

证明方法一
设F1P=m ,F2P=n ,2a=m+n,
由射影定理得2c=mcosβ+ncosα,
e=c/a=2c/2a=mcosβ+ncosα / (m+n),
由正弦定理e=sinαcosβ+sinβcosα/ (sinβ+sinα)=sin(α+β)/ (sinα + sinβ)。

证明方法二
对于焦点△F1PF2,设PF1=m,PF2=n
则m+n=2a
在△F1PF2中,由余弦定理:
(F1F2)^2=m^2+n^2-2mncosθ
即4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ)
所以mn(1+cosθ)=2a^2-2c^2=2b^2
所以mn=2b^2/(1+cosθ)
例题
F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的焦点,PQ是过F1的一条弦,求三角形PQF2面积的最大值
【解】S△PQF2=S△QF1F2+S△QF1F2=1/2 * |y2-y1| * 2c=c*|y2-y1|
△QF1F2与△QF1F2底边均为F1F2=2c,之后是联立直线方程与椭圆方程,利用韦达定理表示出|y2-y1|进行分析即可【|y1-y2| = √(1+1/k^2)[(y1+y2)^2 - 4y1y2] 】请你看下面的一个具体例题,会对你有所启发的。

设点F1是x^2/3+y^2/2=1的左焦点,弦AB过椭圆的右焦点,求三角形F1AB的面积的最大值。

【解】a^2=3,b^2=2,c^2=3-2=1→→c=1 ∴F1F2=2c=2
假设A在x上方,B在下方直线过(1,0)
设直线是x-1=m(y-0)x=my+1
代入
2x^2+3y^2=6(2m^2+3)y^2+4my-4=0→→y1+y2=-4m/(2m^2+3),y1y2=-4/(2m^2+3) △F1AB=△F1F2A+△F1F2B 他们底边都是F1F2=2 则面积和最小就是高的和最小(即|y1|+|y2|最小[1])
∵AB在x轴两侧,∴一正一负→→|y1|+|y2|=|y1-y2|
(y1-y2)^2=(y1+y2)^2-4y1y2=16m^2/(2m^2+3)2+16/(2m^2+3)
→→|y1-y2|=4√[m2+(2m2+3)]/(2m2+3)=4√3*√(m2+1)]/(2m2+3)
令√(m^2+1)=p^2m^2+3=2p^2+1且p>=1则p/(2p^2+1)=1/(2p+1/p) (分母是对勾函数) ∴p=√(1/2)=√2/2时最小这里p>=1→→p=1,2p+1/p最小=3
此时p/(2p2+1)最大=1/3→→|y1-y2|最大=4√3*1/3∴最大值=2*4√3/3÷2=4√3/3
在椭圆中,我们通常把焦点与过另一个焦点的弦所围成的三角形叫做焦点三角形,类似地,我们也把顶点与过另一个顶点所对应的焦点弦围成的三角形叫顶焦点三角形.在椭圆的顶焦点三角形中有许多与椭圆焦点三角形相类似的几何特征,蕴涵着椭圆很多几何性质,在全国各地的高考模拟试卷及高考试题中,都曾出现过以“顶焦点三角形”为载体的问题.本文对椭圆的顶焦点三角形的性质加以归纳与剖析.。

相关文档
最新文档