第4章 控制系统的根轨迹分析法

合集下载

自动控制原理第第四章 线性系统的根轨迹法

自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

第四章控制系统的根轨迹法

第四章控制系统的根轨迹法
10
应掌握的内容
180度,0度根轨迹的绘制 参数根轨迹的绘制 增加开环零、极点对根轨迹和系统性能的影响 分析系统的稳定性 分析系统的瞬态和稳态性能 对于二阶系统(及具有闭环主导共轭复数极点的高阶 系统),根据性能指标的要求在复平面上划出满足这一 要求的闭环极点(或高阶系统主导极点)应在的区域。
11
第四章 控制系统的根轨迹法
1
根轨迹概念
根据系统的零极点分布可间接地研究控制系统的性 能。在复平面上由开环零极点确定闭环零极点的图解方 法称为根轨迹法。 根轨迹定义:开环系统某一参数从零变化到无穷大时,
闭环系统特征方程的根在s平面上变化的轨迹。
根轨迹的类型:
常规根轨迹:包括180度等相角根轨迹和零度等相角根 轨迹。轨迹增益kg从0变化到无穷大时的根轨迹称为180度 根轨迹; kg从0变化到负无穷大时的根轨迹称为0度根轨迹。
分别为-2.93和-17.1,
分离(会合)角为90
45
度。根轨迹为圆,如
右图所示。
13

OB,其方程为
2 2
时,阻尼角 45,表示45 角的直线为
,代入闭环特征方程整理后得:
5 k10k j 2 2 5 k 0
令实部和虚部分别为零,有
5 k10k 0
2 5 k 0
增加开环极点对根轨迹的影响 (1)一般可使根轨迹向右半s平面弯曲或移动,降低 系统的相对稳定性,减小系统的阻尼。 (2)改变渐近线的倾角,增加渐近线的条数。
8
利用根轨迹分析系统性能
利用根轨迹可确定使系统稳定的参数范围 根轨迹处于s左半平面部分的系统是稳定的。
瞬态性能分析 闭环系统的零、极点和瞬态响应的关系在前面已讨
9
利用根轨迹分析系统性能(续)

自动控制原理 第四章 根轨迹法

自动控制原理 第四章 根轨迹法

第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。

本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。

4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。

例如某控制系统的结构图如图4.1所示。

图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。

于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。

箭头表示随K 值增加根轨迹的变化趋势。

这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。

画出根轨迹的目的是利用根轨迹分析系统的各种性能。

通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。

又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。

可以看出,根轨迹与系统性能之间有着比较密切的联系。

图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。

而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。

下面给出图解法绘制根轨迹的根轨迹方程。

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

第四章控制系统的根轨迹分析法

第四章控制系统的根轨迹分析法

− p4
− p3
∠s + z 2
∠s + p2
− p2
共轭复根 相; ∠s + p2 = 2π 在 s 左边的零、极点其相角均为0
∠s + z1 + ∠s + z2 = 2π 在 s 右边的零、极点其相角均为π
n m 0 出射角公式: 出射角公式: θ pc =180 + ∑θzj − ∑θ pi j =1 i=1
ζ = 0.707
s’ s’
-2 0
K −1
Re
-1
根轨迹法的分析基本思路: 根轨迹法的分析基本思路 目的: 目的
①解决高阶系统求解特征根比较困难 的实现; 寻找到一种方便、 的实现 ②寻找到一种方便、有效的描述 系统的根轨迹的方法。 系统的根轨迹的方法。
方法: 方法
① 根据开环零极点的分布绘制出系统 的根轨迹图; 的根轨迹图;②利用根轨迹法来分析和设 计系统. 计系统
S1
0 -1 -1+j -1+j∞
∞ ↑ K
S2
-2 -1 -1-j -1-j∞ jω
1 S1 0 σ -1
闭环特征方程式 S2+2S+K= 0
S2 -2
特征方程的根 S1.2 = -1± 1-K ±
K变化时,闭环特征根 变化时,
在S平面上的轨迹图形
-1 K ∞ ↑
系统特征方程为 求得两个极点: 求得两个极点:

z1 p3 -2 p2 -1 z2 1 p
1 0
-1
3、实轴上的根轨迹 、
实轴上某区间存在根轨迹, 实轴上某区间存在根轨迹,则 该区间右边的开环零、 该区间右边的开环零、极点数之和 必为奇数。 必为奇数。

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

第4章 控制系统的根轨迹分析

第4章 控制系统的根轨迹分析

绘制根轨迹如图4-13所示。
第4章 控制系统的根轨迹分析
图4-13 例4-5系统的根轨迹
第4章 控制系统的根轨迹分析
图中根轨迹与虚轴的交点可从系统临界稳定的条件
得到τ=1。τ=1时系统的特征方程为
得与虚轴交点的坐标为jω=±j。从根轨迹得到系统稳定时τ
的取值范围为0<τ<1。
第4章 控制系统的根轨迹分析
θj(j=1,2,3,4)。选取实轴上一点s0,若s0为根轨迹上的点,必满足
相角条件,有
第4章 控制系统的根轨迹分析
图4-5 实轴上根轨迹相角示意
第4章 控制系统的根轨迹分析
下面分别分析开环零、极点对相角条件的影响,进而分
析对实轴上根轨迹的影响。
(1)共轭复数极点p4和p5到点s0的向量的相角和为
φ4+φ5=2π,共轭复数零点到s0点的向量的相角和也为2π。
(2)实轴上,s0点左侧的开环极点p3和开环零点z2到点s0所
构成的向量的夹角φ3和θ2均为零度。
(3)实轴上,s0点右侧的开环极点p1、p2和开环零点z1到点
s0 所构成的向量的夹角φ1、φ2和θ1均为π。
第4章 控制系统的根轨迹分析
第4章 控制系统的根轨迹分析
若系统稳定,由劳斯表的第一列系数,有以下不等式成立:
得0<K* <78.47。
由此可知,当 Kc* =78.47时,系统临界稳定,此时根轨迹穿
过虚轴。K* =78.4ω 值由以下辅助方程确定:
将 K* =78.47代入辅助方程,得
解得s=±j2.16。
第4章 控制系统的根轨迹分析
对于例4-1,其在实轴上的根轨迹一条始于开环极点,止于
开环零点(根轨迹位于-2到-5之间),另两条始于开环极点,止于

第四章 控制系统根轨迹分析法

第四章 控制系统根轨迹分析法
i j 1 j
4.1 根轨迹的概念
模条件与角条件的作用: 1、角条件与k无关,即s平面上所有满足角条件的 点都属于根轨迹。(所以绘制根轨迹只要依据角条 件就足够了)。 2、模条件主要用来确定根轨迹上各点对应的根轨 I 迹增益k值。
m
k

j 1 m
n
s p
j
s Zi
args Z i
1
所以结论:实轴上线段右侧的零、极点数目之和为奇 数时,此区段为根轨迹。


k G0 ( s ) Ts 1
1 T
×
×
×
×
σ
1 p T
j


1 1 T F 1 T 2k 1 1
k' G0 ( s ) s( s 0.5 )
j
p1 0 p2 0.5
k G0 s 举例: 开环传函: ss 1
K为开环增益(因为标准型) 有两个开环极点 无开环零点
rs
k ss 1
C s
k G s 2 闭环传函: s sk
2 D s s sk 0 则闭环特征方程为:
1 1 闭环特征根(即闭环传函的极点): s1 1 4k
0 0 .5 F 0.25 2 2k 1 3 , 2 2 2

-0.5 0
4.2 根轨迹的绘制规则
规则四:根轨迹的渐近线: (1)条数: (n-m)条 (2)与实轴所成角度 当
m n 2k 1
n m
s 时,认为所有开环零极点引向s的角相同
Z1 Z m p1 p n
G 0 s k
m
为m个开环零点

(自动控制)第四章:根轨迹法

(自动控制)第四章:根轨迹法

动态性能:从根轨迹图可以分析出系统的工作状态,
如过阻尼状态、欠阻尼状态……
根轨迹增益、闭环零极点与开环零极点的关系 l f
* G(s)= KG
∏( s-p ) i i=1
f i i 1 H q
q
∏( s-z ) i i=1
;
l
j=1 * H (s)= KH h
f l m
∏(s-zj )
C(s)
C ( s) 2k 2 R ( s ) S 2 S 2k
特征方程(闭环):
S2+2s+2k=0

k s(0.5s+1)
特征根:s1,2= -1±√1-2k k=0时, s1=0, s2=-2
K:0 ~ ∞
0<k<0.5 时,两个负实根 ;若s1=-0.25, s2=? k=0.5 时,s1=s2=-1 0.5<k<∞时,s1,2=-1±j√2k-1 j
注意:一组根对应同一个K;
K一变,一组根变; K一停,一组根停;
-2
-1
0
由以上分析,s1、s2两条根轨迹反映了系统特征根随参 数k变化的规律,组成了系统的根轨迹。 1.二阶系统有两个特征根,它的根轨迹有两条分支; 一个n阶系统的根轨迹则应有n条分支。 2.k=0时的闭环极点,s1=0、s2=-2正好是开环传递函 数的两个极点,因此说,系统开环极点就是它各条根轨 迹的起点。 3. k=∞时的闭环极点,是根轨迹的终点。 4.特征方程的重根点是根轨迹的分支离开负实轴进入复 数平面的分支点。
a.系统响应单调上升(ξ>1)系统具有两个不相等的负实根┈ 过阻尼响应。 b.系统响应衰减振荡(0<ξ<1)系统具有一对负实部的共 轭复根┈欠阻尼响应。

东南大学成贤学院自动控制原理ppt程鹏主编第二版

东南大学成贤学院自动控制原理ppt程鹏主编第二版
(4)当0.25<Kg<∞时,s1,2 =-0.5±j0.5 4Kg 1, 两个闭环极点变为一对共轭复数极点。s1、s2旳实 部不随Kg变化,其位于过(-1,0)点且平行于虚 轴旳直线上。
(5)当Kg→∞时, s1 = -0.5+ j∞、s2 = -0.5- j∞,此时s1、s2将趋于无限远处。
EXIT
EXIT
第4章第28页
m
n
(s zi ) (s p j ) 180 (2k 1) , k 0,1,2,
i 1
j 1
②位于s1右边旳实数零、极点: 每个零、极点提供180°相角。
③位于s1左边旳实数零、极点:(s1 z1)、(s1 p4 ) 向量引起旳 相角为0°
∴ 判断 s1是否落在根轨迹上,位于s1左边旳零、极点不 考虑。
m
s zi
i 1
n
s pj j 1
1
Kg
1. 起点:Kg=0,等式右边→∞,仅当
nm
s p j ( j 1, 2, , n)
成立,∴n条根轨迹起始于系统旳n个开环极点。
EXIT
第4章第23页
2.终点:Kg →∞ ,等式右边=0 ①当
s zi (i 1, 2, , m)
m
s zi
闭环特征方程为: D(s) = s2 +s + Kg = 0 解得闭环特征根(亦即闭环极点)
s1 0.5 0.5 1 4Kg , s2 0.5 0.5 1 4Kg
可见,当Kg 变化,两个闭环极点也随之连续变化。 当Kg 从0→∞变化时,直接描点作出两个闭环极点旳变 化轨迹。
EXIT
第4章第8页
3
1
60 180
300
k 0 k 1 k 2

孙炳达版 《自动控制原理》第4章 控制系统的根轨迹分析法-5

孙炳达版 《自动控制原理》第4章 控制系统的根轨迹分析法-5

R(s)
s 1
k s 2 (s 2)
Y(s)
j
j
σ
-1/τ
σ
4.5 系统性能的根轨迹分析
系统开环传递函数:
Gk ( s) Kg s( s 2)(s 3)
Þ ¿ Î ª » ·Á ã µ ã
j¦ Ø 2 -3 -2 -1 0 ¦ Ò -2
增加零点-z
Gk ( s) K g (s z) s( s 2)(s 3)
4.5 系统性能的根轨迹分析
例 系统的结构图如下,
R(s)
K
s 2 2 s 5 ( s 2 )( s 0.5 )
Y(s)
要求: 1)用根轨迹法确定使系统稳定的K的取值范围; 2)用根轨迹法确定系统的阶跃响应不出现超调 量的K的最大值。
4.5 系统性能的根轨迹分析
解 由已知条件画出根轨迹如图, 其中根轨迹与虚轴的交点 分别为0和1.254j,对应的开环 增益K分别为0.2和0.75。 分离点为d=-0.409。 所以,系统稳定K的取值范围为:0.2<K<0.75 不出现超调量的K最大值出现在分离点处d=-0.409 处。将d代入 D( s ) ( s 2)(s 0.5)
由根轨迹图可测得该对主导极点为:
s1, 2 b jn n j 1 2 n 0.35 j 0.61
由根轨迹方程的幅值条件,可求得A、B两点:
Kg OA CA DA 2.3
根据闭环极点和的关系可求得另一闭环系统极 点s3=-4.3,它将不会使系统超调量增大,故取 Kg=2.3可满足要求。
4.5 系统性能的根轨迹分析
将零点z1<-10,系统根轨迹为 系统根轨迹仍有两条始 终位于S平面右半部, 系统仍无法稳定。

《自动控制原理》第4章_根轨迹分析法

《自动控制原理》第4章_根轨迹分析法
一般有两个解,从中
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母

第四章根轨迹分析法

第四章根轨迹分析法

j=1
i=1 ≠b
例 设系统开环传递函数零、极点的分布如图4-9所
示,试确定根轨迹离开复数共极点- p1 、- p2的出
射角。
解 按公式(4-28),由作图结果得
øb= +180°(2k+1) + - p1+ z1- - p1+ p2-
jw
- p1+ p3- - p1+ p4
S平面
= +180°(2k+1) +45° -90°-135°-26.6°
根轨迹与虚轴相交,意味着闭环特征方程出现 纯虚根。故可在闭环特征方程中令s=jw,然后令 其实部和虚部分别等于0,从中求得交点的坐标 值及其相应的Kg值。 例 设系统的开环传递函数为
Gk(s)=s(s+1K)g(s+2)
试求根轨迹和虚轴的交点,并计算临界根轨迹增 益Kgp。
解 闭环系统的特征方程为 s(s+1)(s+2)+Kg=0
确定根轨迹上某点对应的K*值
例:开环传函 G(s)H(s)= K ,求根轨迹
(s+1)(s+2)
解 1、确定极点、零点
开环 –p1= -1, –p2= -2
无零点
1、相角条件
∠(s+zi)- ∠(s+pj) = 0-[∠(s+1)+ ∠(s+2)] =±180o(2k+1)
试差法 s= -1.5
∠θ1+ ∠θ2=180 o
故 D’(s)=3s2+6s+2
N’(s)=0
解得 s1=-0.423 s2=-1.577
由于s2不在根轨迹上,因而分离点是s1 。

(完整版)第四章根轨迹法

(完整版)第四章根轨迹法

j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法
仿真与实验研究
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数

自动控制原理课后答案第4章

自动控制原理课后答案第4章

5
的不同,系统的稳定性和动态性能不一定能同时得到满足。因此,只有当附加开环零点的位 置选配得当,才有可能使系统的稳态性能和动态性能同时得到显著改善。 ② 增加开环极点 增加开环极点后,系统阶次升高,渐近线数量增加,使得渐近线与实轴的夹角变小,从 而导致根轨迹向右弯曲,致使系统不稳定成分增加。同时,实轴上的分离点也向右移动。系 统响应减缓,过渡过程延长,调节时间增加,系统的稳定性降低。当增加的极点在[-1,0]范 围内时,越靠近虚轴的极点,其产生的阶跃响应振荡越剧烈,稳定性越差;而当增加的极点 在(-∞, -1)范围内时,越远离虚轴的极点,对根轨迹的影响越小,从而对系统的动态性能影 响越小。
式中,A(s)为开环传递函数的分母多项式,B(s)为开环传递函数的分子多项式。则分离点或 会合点坐标可用下式确定,即 A( s) B '( s ) A '( s ) B ( s ) 0 3)极值法
dK 0 ds
规则 7:根轨迹的出射角和入射角 根轨迹的出射角是指根轨迹离开开环复数极点处的切线与实轴正方向的夹角,如图 4-2 中的角 p1 ; 而根轨迹的入射角是指根轨迹进入开环复数零点处的切线与实轴正方向的夹角, 如图 4-2 中的角 z1 。
n n
n l
m
s
l 1
n
(1) n pi (1) m K z j
i 1
n
j 1
( 1)
n
s
l 1
l
(1)
nLeabharlann pi 1i
K (系统无开环零点时)

5、根轨迹与系统性能之间的关系 根轨迹可以直观地反映闭环系统特征根在[s]平面上的位置以及变化情况,所以利用根轨 迹可以很容易了解系统的稳定性和动态性能。除此之外,由于根轨迹上的任意一点都有与之对 应的开环增益值,而开环增益又与系统稳态误差有一一对应的关系,因此通过根轨迹也可以 确定出系统的稳态误差,或者根据给定系统的稳态误差要求,来确定闭环极点位置的容许范 围。由此可以看出,根轨迹与系统性能之间有着比较密切的联系。

控制系统的根轨迹法分析

控制系统的根轨迹法分析

可得
s2 20s 50 0
解得
s1,2 10 5 2
因此,分离点为-2.93,会合点为-17.07。
分离角和会合角分别 为 , 90 根轨迹为圆,如下图所示。
(2)当 2 时,阻尼角
2Hale Waihona Puke 45,表示 45角的直线为OB,其方程为

代入特征方程整理后得
(5 k) 10k j(2 2 5 k ) 0
解:(1)起点:有三个开环极点,所以起点为
p1 0, p2 2 j2 3, p3 2 j2 3
(2)终点:因没有有限零点,所以三条根轨迹都将趋于无穷远。
(3)实轴上的根轨迹:根轨迹存在的区间为(-∞,0]。
(4
(5
①渐近线的倾角:根据渐近线计算公式得
φα
180 (1 2μ) 2
60 ,60 ,180
例:单位反馈控制系统的开环传递函数为
K
G (s)
K
s(s 4)(s 6)
若要求闭环系统单位阶跃响应的最大超调量
σ%≤18%,试确定系统的开环增益。
解:绘出 K由零变化到∞时系统的根轨迹如图所示。当K=17时,根轨迹在实轴
上有分离点。当K≥240时,闭环极点是不稳定的。根据σ%≤18 %的要求,求得阻尼 角应为β≤60°,在根轨迹图上作β=60 °的射线,并以此直线和根轨迹的交点A , B作为满足性能指标要求的闭环系统主导极点,即闭环系统主导极点为
闭环系统的极点为
s 2 1
1, 2
n
n
图中阻尼角β与阻尼比ζ的关 系为
cos1
根据根轨迹我们可以确定系统工作在根轨迹上任一点时所对应的ζ,ωn 值,再根据暂态指标的计算公式
% 12 100%

自动控制原理第4章

自动控制原理第4章

z2 ) p2 )
m
sm z j n1
i 1
(s zm )
(s pn )
m
(zj)
j 1
n
( pi )
i 1
自动控制原理
第四章 复域分析法-根轨迹法
如果开环零、极点的数目满足n-m 2,则 闭环特征方程为
snnp isn 1 n( p i)K *m( zj) 0
证明:系统的闭环特征方程
n
m
D(s) (spi)K* (szj)0
i1
j1
根轨迹有分离点,说明闭环特征方程有重
根。因此,
n
m
(s pi ) K* (s zj ) 0
i1
j1
d
ds
n i1
(s
pi )
K*
m j1
(s zj )
0
自动控制原理
第四章 复域分析法-根轨迹法
将上面两式相除,整理得
自动控制原理
第四章 复域分析法-根轨迹法
4.1 根轨迹的基本概念
一、根轨迹的定义
根轨迹:是指系统开环传递函数中某个参数 (如开环增益K)从零变到无穷时,闭环特征 根在s平面上移动所画出的轨迹。
常规根轨迹:当变化的参数为开环增益时 所对应的根轨迹。
广义根轨迹:当变化的参数为开环传递函 数中其它参数时所对应的根轨迹。
自动控制原理
第四章 复域分析法-根轨迹法
证明: 由根轨迹方程,得
m
(s
j 1
n
(s
zj) pi )
1 K*
i1
令K* =0,得
m
j 1 n
(s (s
zj) pi )
1 K*
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最后绘制出根轨迹如图所示。
例2: •已知系统的开环传递函数
K ( s 1) G(s) H (s) 2 s 3s 3.25
*
试求闭环系统的根轨迹分离点坐标d,并概 略绘制出根轨迹图。
解:根据系统开环传递函数求出开环极点
p1 1.5 j1, p2 1.5 j1
按步骤:
z1 2
0011 0010 1010 1101 0001 0100 1011
4-4 系统闭环零、极点分布 与阶跃响应的关系
主要任务:
G(s)H (s) →闭环极点的根轨迹
零点
由开环
对某K*
求闭环极点 确定闭环传函
闭环系统动态性能
返回子目录
r(t)
4
1
2
* K ( s zj ) m
(s s )
i i 1
j 1 n
zj为闭环传递函数的零点
si为闭环传递函数的极点
4
1
2
设输入为单位阶跃:r(t)=1(t),有:
0011 0010 1010 1101 0001 0100 1011
* K ( s zj ) m
C ( s ) ( s ) R( s )
递函数之间的关系,直接由开环传递函数零、 极点求出闭环极点(闭环特征根)。这给系 统的分析与设计带来了极大的方便。
4.1 根轨迹的基本概念 所谓根轨迹,就是指开环传递函数某个参数(如开环 增益K)从零变化到无穷大时,闭环系统特征根在s平 面上变化的轨迹。 4.1.1 根轨迹的概念
R(s)
k s( s 1)
4
1
2
例4-12
0011 0010 1010 1101 0001 0100 1011
•某系统的闭环传递函数为
1 ( s ) (0.67 s 1)(0.01s 2 0.08s 1)
试近似计算系统的动态性能指标 %, t。 s
解:
这是三阶系统,有三个闭环极点 s1 1.5, s2,3 4 j9.2 其零、极点分布如图4-25所示。
4.3.2 零度根轨迹
特征方程 D s 1 G s H s 根轨迹方程
Gs H s 1
i
幅值方程:
m
K
sz
i 1 n i 1
m
s p
i
1
n
i
相角方程:
s z s p 2k
i 1 i 1 i
0.67 s 1

Ts 1
•稳定性
所有闭环极点位于s平 面的 左半部; 平稳性
n k 1
C ( t ) (0) Ak e sk t
•复数极点设置在s平面中 与负实轴成 450夹角线附近;
4
1
2
快速性
0011 0010 1010 1101 0001 0100 1011
sk t C ( t ) ( 0 ) A e 闭环极点远离虚轴; k k 1 n
①n=2,m=1,有两条根轨迹 ②两条根轨迹分别起于开环极点,终于开环 零点和无穷远零点 ③实轴上根轨迹位于有限零点-1和无穷零点 之间,因此判断有分离点
④渐近线
1.5 j1 1.5 j1 1 a 2 2 1 (2k 1) a 2 1
⑤求分离点坐标d
4
1
2
0011 0010 1010 1101 0001 0100 1011
极点 s1 离虚轴最近,所以 系统的主导极点为 s1 ,而其 他两个极点可以忽略。
图4-25
4
1
2
0011 0010 1010 1101 0001 0100 1011
这时系统可以看做是一阶系统。 传递函数为 1 1
(s)
(s s )
i i 1
j 1 n
1 s
假设(s)中无重极点,上式分解为部分分式
A0 An A0 n Ak A1 C ( s) s s s1 s sn s k 1 s sk
4
1
2
K0100 (s zj ) 0011 0010 1010 1101 0001 1011
可知系统的特称方程为:
4.1.2 根轨迹与系统性能

将K值从零增大到正无穷时,系 统特征根的变化情况绘制在s平 面上如图所示。 稳定性:特征根都在s左半平面;
K=0.5
K=0 -1
K=0.25 -0.5 K=0.5
K=0 O σ
稳态性能:根据系统的稳态误差要 求,可以由根轨迹图确定闭环极点 位置的允许范围; 动态性能:由根轨迹图可知,当 0<K<0.5时,特征根都在负实轴上, 单位阶跃响应为非周期响应…..
Ta s 2 ( s 1) 等效开环传递函数为 G1 ( s ) H1 ( s ) 2 s sK
D(s) s(s 1)(Ta s 1) K 0
等效开环传递函数有3个零点,即0,0,-1;2个极点, 不同K值可计算出不同极点。
按照常规根轨迹的绘制法则可绘制出广义根轨迹如图
*
A0
(s s )
i i 1 s 0
j 1 n

m
( 0)
Ak
K ( s zj )
*
m
s ( s si )
i 1 i k s sk
j 1 n

K ( sk zj )
* j 1 n
m
sk ( sk si )
i 1 i k
一、用闭环零、极点表示的阶跃响应 0011 0010 1010表达式 1101 0001 0100 1011
N阶系统的闭环传递函数可写为:
C ( s ) b0 s m b1 s m 1 bm ( s ) n n 1 R( s ) a0 s a1 s an
C(s)
-
R(s)
-
k s( s 1)
C(s)
K 0, S1 0, S2 1
1 1 K , S1 S 2 4 2 1 1 1 1 1 K , S1 j , S2 j 2 2 2 2 2 1 1 K , S1 j, S2 j 2 2
动态过程尽快消失
Ak 小,闭环极点之间间距
Ak
K ( sk z j )
*
m
大,零点与极点间间距小。
sk
(s
i 1 ik
j 1 n
4
k
1
si )
2
三、主导极点和偶极子
0011 0010 1010 1101 0001 0100 1011
• 主导极点:就是对动态过程影响占主导地
位的极点,一般是离虚轴最近的极点。
如果有两个极点: sk k j k si i j i
i 若 4,极点si的作用就可以忽略。 k
4
1
2
0011 0010 1010 1101 0001 0100 1011
• 偶极子:就是一对靠得很近的闭环零、极点。
当 sk zi sk 0.1时 , 就 可 以 认 为 sk 与zi 是 一 对 偶 极 子 。
试绘制开环系统根轨迹增益 K * 解:该系统是正反馈系统。
, H ( s) 1
0 变化时的根轨迹。
当 K * 0 变化时的根轨迹是零度根轨迹。利用零度根轨 迹法则绘制该系统的闭环根轨迹。 •实轴根轨迹在(3, )和(2, )区间内。 起始于开环极点 p1 3, p2 1 j1, p3 1 j1 终止于开环零点
•解:将开环传递函数写成零、极点形式 2 K ( s 1) G(s) s( s 2)
按绘制根规迹法则逐步进行:
① 法则一,有两条根轨迹
② ③ 法则三,两条根轨迹分别起始于开环极点0、-2,一条 终于有限零点-1,另一条趋于无穷远处。 法则四,在负实轴上,0到-1区间和-2到负无穷区间 是根轨迹。
第四章 控制系统的根轨迹分析法
本章学习目标: 明确根轨迹的概念及基本法则,熟练掌握 常规根轨迹的绘制; 能够利用根轨迹分析系统的性能; 了解特殊根轨迹的有关概念。
闭环控制系统的稳定性和性能指标主要由闭环系统极 点在复平面的位置决定,因此,分析或设计系统时确 定出闭环极点位置是十分有意义的。
根轨迹法根据反馈控制系统的开、闭环传
使用常规根轨迹法绘制零度根轨迹时,对 于与相角方程有关的某些法则要修改
• 实轴上某一区域,若其右方开环实数零、 极点个数之和为偶数,则该区域必是根轨 迹。 • 根轨迹的渐近线
2k A nm
a 计算公式不变。
根轨迹的起始角与终止角
p 2k z
i
m
j 1
j pi
4.1.3 根轨迹的幅值条件与幅角条件
R(s) B(s) G(s) H(s) C(s)
系统的特征方程为:1 G(s) H (s) 0
G(s) H (s) 1
K*
(s z ) (s p )
i 1 i j 1 n j
m
1
为根轨迹方程
K
*
(s z j ) (s p )
j 1 j
为相角条件
同时满足幅值条件与相角条件的s值即为特征根, 即系统的闭环极点。
4.2 绘制根轨迹的基本法则 规则一:根轨迹的分支数等于开环极点数n; 规则二:根轨迹起始于开环极点,终于开环零点; 规则三:根轨迹是连续的,并且关于实轴对称;
规则四:实轴上的根轨迹区域右侧实轴上开环零极点
的个数是奇数; 规则五:根轨迹的渐近线有n-m条,交与实轴
p j pi
相关文档
最新文档