一维变量及其分布

合集下载

第二章 一维随机变量及其分布1

第二章 一维随机变量及其分布1
六、常见的概率分布
两点分布(贝努里分布)
若随机变量只有两个可能的取值 0和1,其概率分布为
01
则称X服从参数为p的两点分布.
应用: 0-1分布 只有“成功”和“失败” 两种对立结局的试验称做伯努 利试验;伯努利试验成功的次数X服从0-1分布,参数——成功的概率, ——失败的概率.例如产品抽样验收:抽到不合格品——成功,抽到合 格品──失败;射击:命中──成功,脱靶──失败……
查泊松分布表可得,,于是这家商店只要在月底保证存货不少于15件就 能以95%以上的把握保证下月该商品不会脱销.
例5 在500个人组成的团体中,恰有5个人的生日是元旦的概率是多 少?
解:该团体中每个人的生日恰好是元旦的概率都是,则该团体中生 日为元旦的人数,恰有5个人的生日是元旦的概率为
泊松定理:设随机变量序列服从二项分布(这里概率与n有关),若 满足(为常数),则有:
x 0.10 0.20 0.40 0.60 0.80 1.00 1.20 1.40 0.53 0.579 0.655 0.726 0.788 0.841 0.885 0.919
解:设A1={ 电压不超过200伏},A2={ 电压在200伏~240伏},A3={电 压超过240伏},B={电子元件损坏} 由于 所以, 又知: 所以 Ⅲ、典型例题分析
则的分布密度为 例3 设随机变量的概率密度为
求:的分布密度函数. 解:由分布函数的定义 当时, 当时, 当即时, 当即时, 因此 分布密度为
例4. 已知X服从区间[0,1]上的均匀分布, 求X的函数Y=3X+1的概率分 布. 解: 根据题意知X的概率密度为: 则Y的分布函数为 对其求导得Y的概率密度与X的概率密度间的关系为 即Y服从在区间[1,4]上的均匀分布. 例5. 已知X~, , 求Y的概率密度. 解: Y的分布函数 因ey总大于0, 而当y大于0时FX(x)为 因此有: 则Y的概率密度为其分布函数的求导:

一维随机变量及其分布

一维随机变量及其分布

第二章一维随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。

2.理解离散型随机变量及其概率分布的概念,掌握0—1分布、二项分布B (n,p)、几何分布、超几何分布、泊松(Poisson)分布P()及其应用。

3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布U(a,b)、正态分布N()、指数分布及其应用,其中参数为的指数分布E()的概率密度为会求随机变量函数的分布。

本章导读本章的核心内容是8大分布函数及其对应的模型;如何根据定义求的函数分布一般方法。

介绍了作者用于分布函数求一维分布的直角分割法秘技。

分布函数的定义历来是使读者感到迷茫的知识点,如为什么要求分布函数必须右连续等问题?目前的教材和参考书的讲法都不清晰,作者系统地揭开了这一神秘数学面纱。

一、随机变量1概念随机试验的每一个可能的结果(即每一基本事件),对应样本间的集合中每一元素,我们都可以设令一个实数来表示该元素,显然,为实值单值函数,称为随机变量。

对,我们试验前无法确定,也就无法事先确定的值,只有在试验后才会知道的值,但取值一定服从某种确定的分布。

随机变量与普通函数区别有三,第一,随机变量定义域为样本空间的基本事件;第二,随机变量取值是随机的,只有它取每一个可能值有确定的概率;第三,随即变量是随机事件的人为数量化,而且这种数值只是一种符号表示。

比如:将一枚硬币抛三次,以表示三次投掷中出现正面的总次数,那么,对于样本空间中的每一个样本点,都有一个值与之对应,即二、随机变量的分布函数2.1 随机变量的分布函数(适合任何类型的随即变量)陈氏第2技随机变量的分布函数的全新揭秘。

● 分布函数定义形式的渊源一般情况下,人们只对某个区间内的概率感兴趣,即研究下列四种可能的区间的概率由于当所以,我们只须定义一个形式就可以了,其他区间形式都可以用它表示出来。

第二章一维随机变量及其分布

第二章一维随机变量及其分布

第⼆章⼀维随机变量及其分布第⼆章⼀维随机变量及其分布⼀、填空题1.已知F (x )=P {}X x ≤,则P {}a2.设随机变量 X 的分布函数为,()0,x A Be F x -?+=?00x x >≤ 则A= ,B= (A,B 均为常数)3.设X 的分布函数为0,11,116()1,1221,2x x F x x x <--≤≤则{}1P X <= ,{}12P X <<= . 4.当常数C= 时,{},1,2,(1)CP X n n n n ===+ 为X 的分布律.5.设X 的密度函数为2,()0,x ke f x -?=??00x x >≤则{}12P X -<<= . 6.设X 服从参数为λ的泊松分布,且{}{}122p X P X ===,则{}3P X == . 7.设(1,4)X N ,则{}1P X <= .8.设X 的分布律为101211114436X -??,则2X 的分布律为 .9.设X 服从[]0,1上的均匀分布,则21Y X =-的密度函数为 .10.设X 的密度函数为f(x),则XY e-=的密度函数为 .⼆、选择题1.设连续型随机变量X 的密度函数为f(x),分布函数为F (x ),则下列结论正确的是()<+=()D 当12x x <时,12()()F x F x <2.设X 的分布函数为F(x),则下列函数中,仍为分布函数的是( )()(21)A F x - ()(1)B F x -3()()C F x ()1()D F x --3.设X 的分布函数为20,()F x x b c ??=-,,x a a x x ≤<≤>则常数a,b,c 的值为( )()A -1,1,1. ()B 1,1,1. ()C 1,0,1. ()D 1,1,0.4.设离散型随机变量X 的分布律为{},1,2,kP X k b k λ=== ,则常数b,λ应满⾜( )()A b>0 ()B 0<λ<1 ()C b=11λ-- ()D 以上都应满⾜5.设X 服从参数为λ的泊松分布,s 表⽰X 取偶数的概率,t 表⽰X 取奇数的概率,则有( )()A s=t ()B st ()D s 与t 的⼤⼩关系不定6.某公司汽车站从上午6点起,每15分钟有⼀班车⽤过,若某乘客到达该站的时间在 8:00到9:00服从均匀分布,则他候车的时间少于5分钟的概率是( )()A 13 ()B 23 ()C 14 ()D 127.设2X N(0,)σ,则对任⼀实数λ,下列结论正确的是( ){}{}()1A P X P x λλ<=-<- {}{}()B P X P X λλ<=> 22()X (0,)C N λλσ 22()(,)D X N λλλσ++8.设22()x xf x CeB ()C ()D9.设X 在[],a b 上服从均匀分布,,λµ的任意两实数,则下列命题正确的是( )()A X 服从均匀分布 ()B 2X 服从均匀分布()C 2(1)X λµ++服从均匀分布 ()D 2(1)X λµ-+服从均匀分布10.设X 为⼀随机变量,Y 为X 的单值函数,则下列命题不正确的是( )()A 若X 为连续型时,Y 未必为连续型 ()B 若X 为连续型时,Y 未必为离散型 ()C 若X 为离散型时,Y 未必为连续型 ()D 若X 为离散型时,Y 未必为离散型三、解答题1.盒中有4只⽩球1只⿊球,现⼀只⼀只地将球取出来,取出后不放回,设X 表⽰取到⿊球的取球次数,求X 的分布律. 2.设甲,⼄,丙三⼈同时向⼀⽬标射击⼀次,命中率分别为0.4,0.5,0.7,设X 表⽰击中,⽬标的⼈数,求X 的分布律. 3.设1cos ,0221()sin ,0220,x x f x x x ππ-≤其它试问f(x)是否为某随机变量X 的密度函数?如果是,求X 的分布函数. 4.设X 的密度函数为2(),0,k xf x Ae k x -=>-∞<<+∞,试求:(1)常数A (2){}(1,0)P X ∈- (3)X 的分布函数()F x5.设X 服从参数为1的泊松分布,{}{}2,50Y X P Y k P Y k ===+≠,k 为某⾮负整数.求{}{}5P Y k P Y k =-=+.⾍卵是否发育成幼⾍是相互独⽴的.证明昆⾍所产的幼⾍数η服从参数为p λ的泊松分布.7.设X 是[]0,1上的连续型随机变量, {}0.290.75,1P X Y X ≤==-,试决定y ,使得{}0.25P Y y ≤=.8.某班有40名学⽣,某次考试的成绩()72,64X N ,已知⼀学⽣成绩为80分.问该学⽣在全班⼤概排到多少位?9.某⼚⽣产的电⼦管寿命()()2N 1600X σ以⼩时计,,若电⼦管寿命在1200⼩时以上的概率不⼩于0.96,求σ的范围.10.已知某电⼦管元件的寿命(X ⼩时)的概率密度为110001,0()10000,0e xf x x -?>?=??≤?求 (1)这种元件能使⽤1200⼩时以上的概率; (2)5个这种元件中⾄少有3个能使⽤1200⼩时以上的概率.11.已知测量误差N 7.5,100X (⽶)(),问必须测量多少次才能使⾄少有⼀次误差的绝对值不超过10⽶的概率⼤于0.9?12设13,3X B ??,Y 服从[]0,3上的均匀分布,且X 与Y 独⽴,问⾏列式1102011X X Y -->的概率是多少? 13.设连续型随机变量X 的密度函数为(),()0,x a x b e f x -?-=??00x x >≤期中,a b 为常数,已知曲线()y f x =在2x =时取得拐点. (1)求,a b 的值;(2)设{}()1(0)g t P t X t t =<<+>,问t 为何值时,()g t 取得最⼤值? 14.(1)设ξ服从参数为λ的泊松分布,证明当[]k λ=时,{}P k ξ==最⼤; (2)设(,)B n p ξ,证明当[](1)k n p =+时,{}P k ξ=最⼤. 15.设X 服从指数分布,证明当,0s t >时,{}{}P X s t X s P X t >+>=>.16.设连续型随机变量X 的密度函数()f x 为偶函数,()F X 为X 的分布函数,证明()(),02x F x f t dt x -=->?.17.设X 的分布律为{}1,1,2,2k P X k k === ,求sin 2Y X π=的分布律.18对圆⽚直径进⾏测量,测量值X 在[]5,6上服从均匀的分布,求圆⽚⾯积Y 的概率密度()Y f y .19.设2(,)X N µσ ,求Y X =的概率密度()Y f y .20.设X 在[]0,2π上服从均匀分布,求Y sinX =的密度函数()Y f y21.设X 在[],a b 上服从均匀分布,Y cx d =+(0)c ≠,证明Y 仍服从均匀分布. 22.设连续型随机变量X 的分布函数为()F x ,若对任意{},(),(,)0a b a b P X a b <∈>,证明()Y F X =服从[]0,1上的均匀分布.23.设Z 为连续型随机变量,分布函数为()Z F z ,且对任意{},(),(,)0a b a b P Z a b <∈>,X 服从[]0,1上的均匀分布,证明1()Z Y F X -=与Z 同分布.24.设X 与Y 独⽴,X 的密度函数为()f x ,1ab Y p p ?? ?-??,证明X Y +的密度函数为()()(1)()h x p x a p f x b =-+--.第⼆章习题答案⼀、填空题1.(0)(),()(0)F b F a F b F a ----.2.1,1A B ==-.3.由题意可得X 的分布律为112111632X -??,故116P X ??<=,{}120X <<=4.由111(1)n cc n n ∞==?=+∑ 5.由20()12x f x dx ke dx k +∞+∞12()21x P X f x dx e dx e ---<<===-??6.12211!2!e e λλλλλ--=?=.{}1136P X e -==7.{}{}111110(0)(1)2X P X P X φφ-?<=-<<==-<<=--[]1111(1)(1)0.84130.3413222φφ=--=-=-= 8.24011176412X ?? ? ?9.2(1)Y X =-服从[]0,2上的均匀分布,故有:1, 02()20,Y y f y ?≤≤?=其他10.1(ln ),0()0,0Y f y y yf y y ?->?=??≤?⼆、选择题1.C6.A7.A8.B9.C 10.D 三、解答题 1.设A i 表⽰第i 次取到⿊球,1,2,3,4,5.i ={}111()5P X P A ==={}{}()()()()()()112112341213124123512344112()()()545543211154325P X P A A P A A A P X P A A A A AP A P A A P A A A P A A A A P A A A A A ====?======所以X 的分布律为X 1 2 3 4 5P15 15 15 15 152.设,,A B C 分别表⽰甲,⼄,丙击中⽬标,由题意知,,A B C 相互独⽴,则{}{}{}{}00.50.30.091230.40.50.70.14P X P ABC P A P B P C P X P ABC ABC ABC P X P ABC ABC ABC P X P ABC ==??===++==+==??=()=()()()=0.6()=0.36(+)=0.41()=所以X 的分布律为X 0 1 2 3 P 0.06 0.36 0.41 0.143.显然()f x ⾮负可积,且2201111()cos sin 12222f x dx xdx xdx ππ+∞故()f x 可为某随机变量X 的密度函数220202()()(),210cos ,022110cos sin ,022210,2xx x x xF x f t dtf t dt x dt tdt x dt tdt tdt x dt x ππππππππ-∞-∞--∞---∞-+∞=?<-+-≤-≥0,21sin ,0221cos ,021,2x x x x x x ππ<-+?-≤4.(1)由()1f x dx +∞-∞=?,得21k xAAedx k+∞--∞==?,所以A k =(2){}0022111(1,0)()(1)2k xk P X f x dx kedx e ----∈-===-??(3)20220,0()(),x kt xxktkt ke dt x F x f t dtp ke dt ke dt x -∞-∞--∞=??+≥221,0211,0kx e x e x -?-≥5.由题意知2k m =,25k n +=,,m n 为两个⾮负整数,225m n -=.()()5n m n m +-=.进⽽得5,1n m n m +=-=.解得3n =,2m =.即有4k =. {}{}{}{}{}{}54923P Y k P Y k P Y P Y P X P X =-=+==-===-=2311111112!3!33e e e e---=-==. 6.{},0,1,2!rP r e r r λλξ-==={}(1),0k k r k r P k r C p p r k ηξ-===-≥≥由全概率公式可得{}{}{}(1)!rk k r k r r kr kP k P r P k r e C p p r λληξηξ∞∞--========-∑∑(1)!(1)!!()!!()!r k rk k r k k r kr kp r e p p e p r k r k k r k λλλλλ-∞∞---==??-??=-=--∑∑(1)()(),0,1,2,!!k k p p p p e e e k k k λλλλλ---===即η服从参数为p λ的泊松分布.7.{}{}{}110.25P Y y P X y P X y ≤=-≤=≥-=.有对⽴事件的概率公式8.{}72807287280111888X P X P P --->=>==-≤1(1)10.84130.1587φ=-=-=400.1587 6.348?= 因此该学⽣在全班排在⼤约第七位.9.{}16001200160040012000.96X P X P σσσ--??>=>=-≥?16004004000.04,()0.04X P φσσσ-??≤-≤-≤?,即得400400400()0.96,1.75228.61.75φσσσ≥≥?≤≈ 10.(1){}6100051200112000.30121000x P X e dx e --+∞>==≈?(2)5个元件中⾄少有3个能使⽤1200⼩时以上的概率为6618612555555553()(1)101560.1674iiii C ee ee e -----=??-=-+≈∑ 11.设测量n 次,则有{}1(17.510)0.9n P X ---≤>解得2n >,故n ⾄少取3.12.{}1120(1)(2)0101XX P Y P X Y ?-->=-->{}{}{}{}{}{}223300333310,2010,201212121112223(()())()()333333381P X Y P X Y P X P Y P X P Y C C C =->->+-<-<=>>+<<=++=13.(1)当0x >时,()(1),()(2)x x f x a b x e f x a x b e --'''=+-=--,由当2x =时,()y f x =取得拐点知(2)0f ''=,得0b =.⼜()11x f x a xe dx a +∞+∞--∞=?==?,即 1a =所以,0,()0,0.x xe x f x x -?>=?≤?(2)111()()()t t t x tttg t f x dx f x dx xe dx +++-===?[](1)(1)()(1)1(1)tt tg t t e t e ee t -+--+'=+-=-- 令()0g t '=,得11t e =-,且易知当11t e =-时,()g t 取得最⼤值.14.{}{}11,(1)1,!(1)!11,kk k P k ee k k k P k k k λλλξλλλλξλ--->?表明{}P k ξ=随着k 的增⼤,由递增变成递减,若λ为整数,则k λ=及1λ-时,{}P k ξ=最⼤;若λ不为整数,则[]k λ=时,{}P k ξ=最⼤. (2)⽅法同上.15.设X 的密度函数为,()0,x e f x λλ-?=??00x x >≤{}{}{}{}{},P X s t X s P X s t P X s t X s P X s P X s >+>>+>+>==>>()x s t t s t s x se dxe e e e dxλλλλλλλ+∞--+-++∞--===??{}x t tP X t e dx e λλλ+∞-->==?所以{}{}P X s t X s P X t >+>=> 16.(1)()()()x xF x f t dt t uf u du --∞+∞-==---?()1()1()x xf u du f t dt F x +∞-∞==-=-?所以 ()()1F x F x +-=(2)01()()()()()2xx xF x f t dt f t dt f t dt f t dt --∞-∞--==-=-?17.由于1,sin 0,21,n π-??=??412241n m n m m =-==+故Y 只取1,0,1-三个值.{}{}{}{}{}41121121412151102232181115315m m mm P Y P X m P Y P X m P Y ∞-=∞==-==-=========--=∑∑所以Y 的分布律为Y 1- 0 1P215 13 81518.2224X Y X ππ??==,且X 在[]5,6上服从均匀分布.{}2()4Y F y P Y y P X y π??=≤=≤.当254y π<时,()0Y F y =;当9y π>时,()1Y F y =;当2594y ππ<<时,()55Y F y P X P X =-≤≤=≤≤=??2594()()0,Y Y y f y F y ππ<<'==?其他19.{}{}{}()X Y F y P Y y P y P y X y =≤=≤=-≤≤ 当0y ≤时,()0Y F y =;当0y >时,()Y y X y y y F y P µµµµµσσσσσ-------=≤≤=Φ-Φ?? ? ???????,1,0()()0,0Y Y y y y f y F y y µµ??σσσ??---?+>? ? ???'==???≤20.{}{}()sin Y F y P Y y P X y =≤=≤. 当1y ≤-时,()0Y F y =;当1y ≥时,()1Y F y = 当1a y ≤<时,arcsin 20arcsin 111()(2arcsin )222yY y F y dx dx y ππππππ-=+=+?;当10y -<<时,2arcsin arcsin 11()(2arcsin )22yY yF y dx y πππππ+-==+?.11()()0,Y Y y F y F y -<<'==?其他22.由(){},0P X a b ∈>知,()F x 单增,进⽽有反函数.由于0()1F x ≤≤,故当0y <时,()0Y F y =;当1y >时,()1Y F y =;01y ≤≤时,{}11()()(()).Y F y P X F y F F y y --=≤==1,01()()0,Y y y F y F y ≤≤?'==?其他23.本题只须证明Z ()()Y F y F y =.{}{}{}1Z ()(X)()()Y Z Z F y P Y y P F y P X F y F y -=≤=≤=≤=.24.{}{}{},,P X Y x P Y a X Y x P Y b X Y x +≤==+≤+=+≤{}{}{}{}{}{},,()(1)()x a x bP Y a X x a P Y b X x b P Y a P X x a P Y b P X x b p f t dt p f t dt ---∞-∞==≤-+=≤-==≤-+=≤-=+-?求导便得X Y +的密度函数为()()(1)()h x pf x a p f x b =-+--.。

概率第二章

概率第二章
且P{ξη =0}=1 P{ξη
0 1 1 1 η ~ 2 2
(1)求ξ和η的联合分布列 (1)求 (2)问 (2)问ξ和η是否独立?为什么? 是否独立?为什么?
19
§2.3
随机变量函数的分布列
一、随机变量的函数 问题:已知随机变量ξ的分布, f(ξ 问题:已知随机变量ξ的分布,令η=f(ξ), 的分布。 求η的分布。 定理1 设ξ是(Ω,F,P)的一个随机变量,f(x)是一个 P)的一个随机变量 f(x)是一个 的一个随机变量, 定理1 可测函数, f(ξ 也是( P)上的的一个随机量 上的的一个随机量. 可测函数,则η=f(ξ)也是(Ω,F,P)上的的一个随机量.
引例3 引例 掷一枚硬币 , Ω = {ω1,ω2} 引例4 掷一枚硬币 , 10件产品,5件次品任取 件,其 引例 件产品, 件次品任取3件 件产品 件次品任取 中的次品数ξ=0。 中的次品数ξ=0。1,2,3
1
定义1 ,P)是概率空间, 是定义在Ω 定义1:设( Ω, F,P)是概率空间, ξ=ξ(ω)是定义在Ω 上的实值函数, 上的实值函数,如果 ∀x∈ R 有:{ω ξ (ω) < x}∈ F ∈ 则称ξ 随机变量。 则称ξ为随机变量。 定义2 离散型随机变量) 定义2:(离散型随机变量)
x1
x2
p2
x2 L p2 L
L
L
P p1
x1 p 1
或:
3
假设有10种同种电器元件,其中有2只废品, 10种同种电器元件 例5 假设有10种同种电器元件,其中有2只废品,装配仪 器时,从这批元件任取一只,如果是废品,扔掉再取, 器时,从这批元件任取一只,如果是废品,扔掉再取, 直到取出正品, 表示取出正品之前已取出的废品个 取出正品之前已取出的废品个, 直到取出正品,令ξ表示取出正品之前已取出的废品个, 数求ξ的分布列。 数求ξ的分布列。 例6 n=5的Bernoulli试验中 试验中, P(A)=p, 表示5 在n=5的Bernoulli试验中,设P(A)=p,令ξ表示5次

第二章 一维随机变量及其分布

第二章 一维随机变量及其分布
x ® x0 - 0
公式。 由于上式中根本不可能出现 F ( x + 0 ) 的形式, F ( x + 0 ) = F ( x ) 对上述 5 种关系没有任何影响,即
F ( x ) 右连续,即 F ( x0 + 0 ) = F ( x0 ) ; F ( x0 - 0 ) ¹ F ( x0 ) 。当然,由于连续型在一点的概率恒为零,
ì P { x1 < ï P { x1 £ 当e ® 0 Þ ï í ï P { x1 £ ïP x < î { 1
X £ x2 } = P { X £ x2 } - P { X £ x1} X £ x2 } = P { X £ x2 } - P { X £ x1 - e } X < x2 } = P { X £ x2 - e } - P { X £ x1 - e } X < x2 } = P { X £ x2 - e } - P { X £ x1}
连续型的密度函数不一定连续,例如 X ~ ( a, b ) ,则 f ( x ) 在 x = a 或 b 两个端点处不连续,所以,
ì 1 ì 1 , a< x<b , a£ x£b ï ï 一般把均匀分布密度函数写成 f ( x ) = í b - a ,而不写成 f ( x ) = í b - a ,这一 ï ï other other î0, î0,
显然,我们只须定义一个 P { X £ x} 形式就可以了,其他区间形式都可以用它表示出来。 于是定义 F ( x ) = P { X £ x} 为 X 的普适分布函数。它就是 X 落在任意区间 ( -¥, x ] 上的概率,本质上 是一个累积函数,对于离散点,采用叠加,对于连续点,使用一元积分。 引入随机变量的目的是从数量上来研究随机现象的统计规律,即把随机试验的不同结果用一个变量 来表示,由于试验出现的结果是偶然的,因而随机变量的取值方式也是偶然的,试验前只能知道它的取 值范围 X £ x ,试验后才能确定它的具体值 x 。另外,对于随机变量 X ,我们不仅要知道它取各种可能 值的概率,更重要的是要知道 X 在任意区间 [ x1 , x2 ] 内的取值分布规律,这正是分布函数所反映的内容 -----求事件的概率。 随机变量和分布函数共同架起了随机现象和高等数学之间的桥梁。 2.2 分布函数的 4 个重要性质

一维随机变量函数的分布

一维随机变量函数的分布
连续随机变量
如果随机变量的取值范围是某个区间上的所有实 数,则称该随机变量为连续随机变量。
随机变量的分类
离散型随机变量
根据其取值特点,可以分为二项 式、泊松、几何、超几何等类型 。
连续型随机变量
根据其概率密度函数的特点,可 以分为均匀、指数、正态等类型 。
随机变量的分布函数
分布函数
对于任意实数x,分布函数F(x)表示随机变量 X小于或等于x的概率。
性质的应用
这些性质在概率论和统计学中有着广泛的应用,如概率密度函数的计算、随机变量的期望和方差的计 算等。
05
CATALOGUE
随机变量的运算性质
随机变量的和与积
要点一
随机变量的和
若X和Y是两个随机变量,则X+Y也是一个随机变量。其分 布依赖于X和Y的联合概率分布。
要点二
随机变量的积
若X和Y是两个随机变量,则X×Y也是一个随机变量。其分 布依赖于X和Y的联合概率分布。
均匀分布
均匀分布是一种特殊的连续随机 变量,其概率密度函数在一定区 间内保持恒定,常用于描述某些 物理量在一定范围内的均匀分布 情况。
04
CATALOGUE
随机变量的函数
随机变量函数的定义
随机变量函数的定义
随机变量函数是指将一个或多个随机 变量作为输入,经过某种运算或变换 后得到另一个随机变量。
离散随机变量的所有可能取 值的集合。
离散随机变量的值域
离散随机变量取到的所有可 能值的集合。
离散随机变量的分布律
01
分布律
描述离散随机变量取各个可能值 的概率的表格。
02
分布律的性质
分布律中的概率值总和为1,即 所有概率值的和等于1。

第二章 一维随机变量及其分布

第二章  一维随机变量及其分布

第二章一维随机变量及其分布第一节随机变量及其分布函数一、内容精要(一)随机变量1.随机变量的引入的背景2.随机变量的严格定义(二)分布函数1.分布函数的定义2.分布函数的性质3.分布函数表示的概率计算公式二、 常考题型分析(一) 与分布函数有关的性质1. 判定给定函数是否为分布函数例1 ()下列函数中,可以做随机变量的分布函数的是()()21.1A F x x =+ ()()31arctan .42B F x x π=+ ()()0,0,,0.1x C F x xx x≤⎧⎪=⎨>⎪+⎩ ()()2arctan 1.D F x x π=+2. 含参数的分布函数形式已知,求未知参数例2 ()()1212F x F x X X 设与分别为随机变量和的分布函数.为使 ()()()12=F x aF x bF x -()是某一随机变量的分布函数,在下列给定的各组值中应取()32,.55A a b ==- ()22,.33B a b == ()13,.22C a b =-= ()13,.22D a b ==-例3 ()()0,1,11,11,84,11,1,1,x x X F x P X ax b x x <-⎧⎪⎪=-⎪===⎨⎪+-<<⎪≥⎪⎩设随机变量的分布函数且,.a b 求未知参数3. 分布函数的连续性例4 ()000X x P X x ==设随机变量对于任意实数有的充要条件为()A X 为离散随机变量. ()B X 不是离散随机变量.()()C X F x 的分布函数为连续函数.()()D X f x 的概率密度为连续函数.例5 ()()()()1221F x X P x X x F x F x <<=-设为随机变量的分布函数,则()()F x 成立的充要条件是在()1A x 处连续. ()2B x 处连续. ()12C x x 和至少一处连续. ()12D x x 和都不连续.例6 ()()1F x F x --设为某个随机变量的分布函数,讨论函数是否为分布.函数(二) 已知分布函数求区间或某点的概率例7 ()()()00,1=01,121,1,xx F x x P X e x <⎧⎪⎪≤<=⎨⎪-≥⎪⎩,设随机变量的分布函数,则为()0.A ()1.2B ()11.2C e -- ()11.D e --例8 3164一个边长为的正立方体容器盛有的液体,假设一个小孔出现在容器 个表面的任何一个部位是等可能的,现在表面出现了一个小孔,液体经此小孔流出,试求()X F x (1)容器中剩余液体液面的高度的分布函数; 3().4P X =(2)例9 ()=()X x R F x P X x ∈<设为随机变量,对于任意,定义函数,且00,1()=01,21,1,x x F x x e x -≤⎧⎪⎪<≤⎨⎪->⎪⎩,,(1)_____________.P X ==则第二节一维随机变量及其分布一、内容精要(一)一维离散型随机变量及其分布1.分布律和性质2.分布函数3.常见分布(二)一维连续型随机变量及其分布1.概率密度及其性质2.分布函数的性质3.常见分布二、 常考题型分析(一) 与概率分布的性质相关的问题1. 判断函数是否为概率密度例1 12()()F x F x 设,为分别两个随机变量的分布函数,其相应的概率密度()12()()f x f x 分别为,,这两个函数均是连续函数,则必为概率密度的是()12()()A f x f x ()21()()B f x F x()12()()C f x F x ()1221()()()()D f x F x f x F x +2. 概率分布已知,求分布中的位置参数 例2 X 设随机变量的概率分布为()()()11,2,,,n kk kn P X k A C p p k n -==⋅-=,01___________.n Z p A +∈<<=其中为已知,则例3 ()1()1,2,2k kP X k k X θ-==⋅= 设为随机变量的分布律的充要条件 为__________.例4 []12()()1,3f x f x -设为标准正态分布的概率密度,为上均匀分布的()()12(),0,()0,0,(),0,af x x f x a b a b bf x x ≤⎧=>>⎨>⎩概率密度,若为概率密度,则应满足例5 2,0,()______.0,0,x ax e x X f x a x -⎧>==⎨≤⎩设随机变量的概率密度函数为则例6 22(),______.x xX f x ae a -+==设随机变量的概率密度函数为则(二) 已知随机试验中的随机变量,求分布律和分布函数例7 413设有三个盒子,第一盒子有个红球,个黑球;第二个盒子装有个红 223球,个黑球;第三盒子装有个红球,个黑球,现在从三个盒子中任取一盒,然后从中任取3个球,试求所取到的红球个数的分布律与分布函数.例8 ()01,p p <<某人向同一目标独立重复射击,每次射击命中概率为2X 记随机变量为第次射中目标所进行的射击的次数.求X 得分布律.(三) 已知分布函数求分布律或已知概率密度函数求分布函数1. 已知分布函数求分布律例9 X 设随机变量的分布函数为()0,1,0.4,11,0.8,13,1,3,x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩ .X 试求的分布律例10 X 已知随机变量的概率分布律为()()22123211X P θθθθ--()()32.4P X X F x θ≥=且,求未知参数及的分布函数2. 已知概率密度函数求分布函数例11 X 设连续型随机变量的密度函数为()12,0,211,1,2332,1,20,,x x x f x x x ⎧≤<⎪⎪⎪<≤⎪=⎨⎪-<≤⎪⎪⎪⎩其它 ().X F x 试求的分布函数(四) 与常见分布有关的概率问题1. 离散型常见分布例12 ()()12~,,X P p p X λ设分别为随机变量取偶数和奇数的概率,则()12.A p p = ()12.B p p < ()12C p p > ()12,D p p 大小关系不定.例13 X 设随机变量的概率密度函数为()()+1,01,0,k k x x f x ⎧<<=⎨⎩其它, 137264Y X A X ⎛⎫=≤ ⎪⎝⎭以表示对的三次独立的重复观察中,事件至少发生一次的概率为,,95%n A X 试求常数使得事件至少发生的一次的概率超过,对至少要做多少次独立重 .复的观察例14 ()01,p p <<某人向同一目标独立重复射击,每次射击命中概率为.X X 直至射中目标为止,记随机变量为射击的次数.求为偶数的概率例15 ()(),,.X B n p k P X k =设随机变量服从二项分布当取何值时,最大2. 连续型常见分布例16 ()()()~,0,0,X E s t P X s t X sλ>>>+>设则对于任意则().A t s 与无关,随的增大而增大 ().B t s 与无关,随的增大而减少 ().C s t 与无关,随的增大而增大 ().D st 与无关,随的增大而减少例17 ()()()2~,1X N P X μσμ<+设,则().A μ随的增大而增大 ().B μ随的增大而减少 ().C σ随的增大而不变 ().D σ随的增大而减少例18 ()211,X N Y μσ设随机变量服从正态分布,随机变量服从正态分布()12.A σσ< ()12.B σσ> ()12.C μμ< ()12.D μμ>例19 ()()21,0,0,03X Y N P X Y σ≤>设随机变量均服从,若概率=, ()0,0______.P X Y ><则=例20 1009010有个零件,其中个一等品,个二等品,随机地取两个,安装在 ()20,1,2i i =一台设备上,若个零件中有个二等品,则该设备的使用寿命服从参数 =1i λ+为的指数分布,试求()11设备寿命超过的概率;()212.若已知该设备寿命超过,则安装在该设备上的个零件均为一等品的概率第三节 一维随机变量函数的分布一、 内容精要(一) 一维离散型随机变量函数的分布律(二) 一维连续型随机变量函数分布求解二、 常考题型分析(一) 求可列无穷多取值的离散型随机变量函数的分布律例1 ()1,1,2,,sin .22n X P X n n Y X π⎛⎫==== ⎪⎝⎭设的分布律为求的分布律(二) 已知连续型随机变量的概率密度,求非单调函数的概率密度例2 X 设随机变量的概率密度为()1,10,21,02,40,.X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其它2.Y X Y =令,求的概率密度函数例3 ()20,423X Y X X Y =--设服从区间上的均匀分布,随机变量,试求的 .密度函数例4 1X =max ,.Z X X λ⎛⎫ ⎪⎝⎭设随机变量服从参数为指数分布,求的分布函数(三) 抽象的随机变量函数的分布例5 ()(),,X F x Y F x =设连续型随机变量的分布函数为令求随机变量函数 .Y 的概率分布例6 (),1__________.X F x Y X =-随机变量的分布函数为则的分布函数为。

一维随机变量及其概率分布

一维随机变量及其概率分布

⼀维随机变量及其概率分布1. 随机变量的概念顾名思义,随机变量就是“其值随机会⽽定”的变量。

随机变量的反⾯是“确定性变量”,即其值遵循某种严格的规律的变量,⽐如从北京到上海的距离。

但是从绝对意义上讲,许多通常视为确定性变量的量,本质上都有随机性,只是由于随机性⼲扰不⼤,以⾄在所要求的精度之内,不妨把经作为确定性变量来处理。

根据随机变量其可能取的值的全体的性质,可以把随机变量分为2⼤类,⼀类是离散型随机变量,⽐如检验100件产品中的次品个数;⼀类是连续型随机变量,⽐如⼀个灯泡的寿命。

但是连续型变量这个概念只是数学上的抽象,因为任何量都有单位,都只能在该单位下量到⼀定的精度,所以也⼀定是离散的,⽐如灯泡的寿命如果只精确到秒,那它的寿命也是可以离散表⽰的。

研究随机变量的根本原因是,我们需要研究⼀些事物⾝上表现出来的会变动的因⼦,这些因⼦的值随机⽽定,但可能存在某种规律(⽐如总是取到某些特殊的值),我们需要研究这些规律(⽐如分布规律),⽽对这些因⼦做预测。

2. 离散型随机变量的分布我们研究随机变量,并不是只关⼼它能取到哪些值,往往也关⼼的是它取到某些值的频率如何,即取到该值的概率。

这个特性,我们称之为分布。

定义2.1设 为离散型随机变量,其全部的可能值为,则称为 的概率函数。

且有下⾯的性质:的概率函数给出了:全部概率1是如何在其可能的值之间分配的,所以也把它称为随机变量 的“概率分布”。

因为离散型的随机变量的概率分布通常以⼀个表的形式给出,所以有时把它称为 的分布表。

定义2.2设 为⼀随机变量,则函数称为 的分布函数。

对离散型随机变量⽽⾔,概率函数与分布函数在下述意义下是等价的。

由 求 是显然的,⽽由 求 ,只需注意:对于任何随机变量 ,其分布函数具有下⾯的⼀般性质:1)是单降⾮降的:当 时,有 ;2)当 时, ;当 时, ;研究分布函数的直接原因是可以根据分布函数求概率,另⼀个原因我觉得是针对于连续型随机变量,因为它研究取某个值的概率没有意义,所以更多的关⼼的⼀个范围,⽐哪灯光寿命1万⼩时-1.2万⼩时的可能性⼤⼩,像这样范围内的概率⽤分布函数更容易求得。

一维随机变量函数的分布

一维随机变量函数的分布
1 又 X 的概率密度 f X ( x) e 2 ( x )2 2 2
, x .
由定理 4.1, Y 的概率密度为
y b 1 1 1 fY ( y) f X ( ) e a a a 2
其中 y .
y b 2 ) a 2 2 (
1 1 4
0 1 6 0
1
1 1 4 1 1
2 1 3 4 2
1 1
②适当合并,得 0 1 4 Y ~ 1 1 1, 6 2 3 1 2 Z ~ 2 1. 3 3
3
1 例 4.2 随机变量 X 的分布律为 P{ X k} k , k 1, 2,3, . 2
第二步: 对其中 Y 取值相同的项适当进行概率合并, 即得Y 的分布律.
2
1 0 1 2 例 4.1 设随机变量 X ~ 1 1 1 1 , 分别求出 4 6 4 3
Y X 2 和 Z max{X ,1} 的概率分布.
解 ①作下列列表计算
X
P Y Z
解 由于 Y 的取值为 1, 0 和 1 , 所以 Y 为离散型随机变量, 求Y 的概率分布就是要求 Y 的分布律.因为
1 P{Y 1} P{ X 0} , P{Y 0} P{ X 0} 0 , 3 1 0 1 2 . P{Y 1} P{ X 0} ,故 Y 的分布律为 Y ~ 1 2 3 0 9 3 3
2

X S 的分布函数为 FS (s) P{S s } P{
当 s 4 时, FS (s) 0 ;
2
s } .
当 s 9 时, FS ( s) 1 ;当 4 s 9 时,

一维离散型随机变量及其分布律

一维离散型随机变量及其分布律
20 k 20 k 20 − k k=2
其概率为p{ξ ≥ 2}=∑ C 0.01 0.99 则η
0.2k −0.2 ≈∑ e = 0.0175 k =2 k !
20
类似,用η 表示90台设备中同时发生故障的台数, B(90,0.01),此时λ = np = 0.9
90
而当η ≥ 4设备得不到及时维修, 则p{η ≥ 4}=∑ C 0.01 0.99
p{ξ = k} =
λk
k!
e − λ , k = 0,1,L
其中λ > 0为常数,则称ξ 服从参数为λ 的泊松分布, 记为: ξ
π (λ )
注1:泊松分布中的参数 表示平均特征,如 ξ 表示单位时间 内某电话交换台接到的呼叫次数,即λ 表示在这单位时间内 接到的呼叫次数的平均数。
10
泊松定理:
在n次贝努利试验中,若A发生k次的概率为
k 90 k k=4 90 − k
0.9k −0.9 ≈∑ e = 0.01346 k! k =4
90
14
第2-1节 一维离散型随机变量及其分布律
1.一维离散型随机变量的分布律 (1)定义 设离散型随机变量 ξ 的所有可能取值为 xk ,且 ξ 取值为 xk 的概率,即事件{ξ = xk } 的概率为:
P{ξ = xk } = pk ,
k = 1, 2,L
(2.1)
若 pk 满足条件:
1) 2)
∑p
k =1
4
2. 几个常用的离散型分布 (0-1)分布 (两点分布) 设随机变量 ξ 的可能取值仅为0或1,其概率分布为
ξ
p
则称
0 1-p
1 p
ξ 服从参数为p 的(0-1)分布 。

概率论与数理统计2-1 一维随机变量及其分布 (3)

概率论与数理统计2-1 一维随机变量及其分布 (3)
第一节 一维随机变量 及其分布(3) 及其分布
五、连续型随机变量 六、典型的连续型 随机变量及其分布

停 下
五、连续型随机变量 连续型随机变量
1. 密度函数 对于随机变量X, 定义 对于随机变量 ,若存在非负可积函 使得X 数 p(x) ( x∈R), 使得 的分布函数 ∈
F ( x) = ∫
或概率密度. 数,或概率密度 或概率密度
1 , 2 ≤ x ≤ 5, p( x ) = 3 0, 其它.
表示“ 设 A 表示“对 X 的观测值大于 3”, 即 A={ X >3 }.
由于 P ( A) = P { X > 3} = ∫
51
3
2 dx = , 3 3
进行3次独立观测中 设Y 表示对 X进行 次独立观测中 观测值大于 进行 次独立观测中, 3的次数 的次数, 的次数 则
P {a < X ≤ b} = P { a < X < b } = P{a ≤ X < b}
= P{a ≤ X ≤ b}
连续型随机变量的概率与区间的开闭无关 3º
P( A) = 0 P( A) = 1
A= ∅ A= Ω
的分布函数为: 例1 设连续型随机变量X的分布函数为: F( x) = A+ Barctan x − ∞ < x < ∞
1 x − 1 − e 2000 , F ( x) = 0,
x ≥ 0, x < 0.
(1) P { X > 1000}= 1 − P { X ≤ 1000} = 1 − F (1000)
1 − 1 − e 2000x , x ≥ 0, F ( x) = 0, x < 0.

一维随机变量函数的分布

一维随机变量函数的分布

例1 设随机变量 X 的分布律如下表所示
X -1 0 1 2
pk 0.1 0.4 0.2 0.3
求随机变量 Y ( X 1)2 的分布律。
二、一维连续型随机变量函数的分布
设随机变量 X 的概率密度为 fX (x),则 X
的函数 Y g(X ) 的分布函数为:
FY y P{Y y} P{g(X ) y} fX (x)dx g(x) y
fY ( y) .
例4 设随机变量 X ~ N (, 2) ,试证明 X
的线性函数 Y aX b(a 0) 也服从正态分布.
例5 设随机变量 X 的分布函数 F(x) 严格单调连续, (1) 求随机变量 Y F X 的概率密度;
(2) 求随机变量 Z 2ln F(X ) 的概率密度.
1 1
x0 x0
概率论与数理统计
例6 若函数 g(x) 在区间 (x0, x1] 内取常量,即
g(x) yi
x (x0, x1]
试用随机变量X的分布函数 FX (x) 和 g(x) 表示事件
{Y yi} 的概率.
例7 若随机变量 X ~ Exp(0.5),求随机变量
.
Y g(X ) 的分布函数 FY ( y) ,其中
g(x)
h( y) 是函数 g(x) 的反函数.
注1:若 X 的概率密度 fX (x) 在有限区间 a,b
以外等于零,则只需假设在 a,b 上有 g(x) 0(或
g(x) 0)此时 min g(a), g(b), maxg(a), g(b)
注2:如果函数 y g(x) 非单调变化,则先将 y g(x) 的单调区间求出,在每个单调区间上都使用这个公式, 然后再将各单调区间的结果相加可得 fY ( y) 。

一维随机变量及其分布

一维随机变量及其分布

⼀维随机变量及其分布离散型随机变量如果⼀个随机变量X全部可能取值为有限个或可列多个。

离散型概率分布:P(X=x k)=p k(0-1)分布随机变量X的所有可能取值为0或1P(X=k)=p k(1-p)1-k,k=0,1⼆项分布⽤于描述可重复进⾏独⽴试验的随机现象。

在n次独⽴重复的伯努利试验中,设每次试验中事件A发⽣的概率为p。

超⼏何分布有N件产品,有M件次品,随机取n件进⾏抽查,其中有k件次品泊松分布若随机变量X的所有可能取值为⼀切⾮负整数。

以固定的平均瞬时速率λ(或称密度)随机且独⽴地出现时,那么这个事件在单位时间(⾯积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。

(X服从参数为λ的泊松分布)⼏何分布在重复独⽴试验中,考察事件A发送与否,且P(A)=p。

以X表⽰事件A⾸次发⽣时的试验次数。

巴斯卡分布进⾏重复独⽴试验,事件发⽣⼀次的概率为p,则考察事件发⽣r次的概率连续型随机变量及其分布设随机变量X的分布函数为F(X),如果存在⾮负函数f(x),使得对任意实数x,有,则称X是连续型随机变量,称f(x)为X的概率密度函数。

概率密度f(x)性质:1. f(x)>=02.3. 对任意实数x1,x2(x1<x2)有:4. 若f(x)在点x处连续,则有F'(x)=f(x)均匀分布若随机变量X的概率密度函数为:X的分布函数为:X落在(a,b)中任⼀⼦区间(c,c+l)内(其中a<c<c+l<b)的概率仅与⼦区间的长度l成正⽐,⽽与⼦区间的位置⽆关,这说明X落在两个长度相等的⼦区间内的概率是相等的。

指数分布若随机变量X的概率密度函数为:X的分布函数为:正态分布若随机变量X的概率密度函数为:X的分布函数为:概率密度f(x)具有以下性质:1. f(x)的图形关于x=µ对称2. x=µ时,f(x)取得最⼤值3. 在x=µ+σ,µ-σ处有拐点4. 概率密度曲线y=f(x)以x轴为渐近线正态分布的参数µ,σ有重要意义:1. 若固定σ,改变µ,则f(x)的图形沿x轴平⾏移动,⽽不改变形状。

第二章 一维随机变量及其分布

第二章 一维随机变量及其分布

注:一般X(ω) 简单记为X,
{ω∣X(ω) ≤ x} 记为{X ≤ x}
一维随机变量的分布函数
分布函数
设X是一个随机变量,x是任意实数,函 数F(x)=P{ω∣X(ω) ≤ x}称为随机变量X的分 布函数,记作FX(x)或F(x)。 X 的分布函数也常简记为FX(x)= P{X≤x}
分布函数的性质
任一随机变量X的分布函数F(x),x∈(-∞, +∞),具有下列性质:
(1) 0≤ F(x) ≤ 1
(2) 若x1<x2,则 F(x1) ≤ F(x2) 证明: 若x1<x2 ,则有
X x2 X x1
根据概率的性质,得P{X<x2} ≥P{X<x1} 即 F(x2) ≥F(x1)
0.0169


19
若用泊松近似公式(λ=np=20×0.01=0.2) ,
则有
PX 2
k 2 k!

20

k
e


k 2

20 0.2 k

k!
e
0.2
0.0176
(2)设Y表示同一时刻发生故障的设备数,则
Y~B(80,0.01)。 当同一时刻至少有4台设备发生故障时,就不 能及时维修。 用泊松近似公式 (λ=np=80×0.01=0.8) ,得 80 k 80 0.8 k 0.8
(2) 0≤F(x) ≤1 ,且
x x
lim F x F 0
lim F x F 1
对任意实数 x0 ,有
(3) 右连续性
F x0 0 F x0 其中F x0 0 lim F x

§3.1 一维连续型随机变量及其分布

§3.1 一维连续型随机变量及其分布

求分布函数 F ( x ).
设随机变量X的分布函数为 例 设随机变量 的分布函数为
A / 2e x , x≤0 F ( x ) = 0.5, 0 < x ≤ 1 B + Ce −( x −1) , x > 1 求A,B,C的值 .
A 设随机变量X有密度 例 设随机变量 有密度 f ( x ) = x , x ∈ R, −x e +e
面积为 F ( x )
f ( x)
O
x
x
连续型随机变量的分布函数的性质: 连续型随机变量的分布函数的性质: 1) 0 ≤ F ( x ) ≤ 1;
F 2)F(x)单调不减,即当 x1 ≤ x2 时, ( x1 ) ≤ F ( x2 ); 单调不减, 单调不减
3) F ( −∞ ) = xlim F ( x ) = 0, F ( +∞ ) = xlim F ( x ) = 1; → −∞ → +∞ 4)F(x)右连续,即对任意实数 x , F ( x + 0) = F ( x ). 右连续, 右连续
密度函数一定连续吗? 问题 (1) 密度函数一定连续吗? (2) 对于一个给定的连续型随机变量, 对于一个给定的连续型随机变量, 其密度函数唯一吗? 其密度函数唯一吗? (3) 连续型随机变量与离散型随机变量 的本质区别是什么? 的本质区别是什么
连续型随机变量与离散型随机变量的本质 区别在于: 区别在于:连续型随机变量取单个值的概率 为零,也离散型不一定, 为零,也离散型不一定,这主要是由于积分 的性质.由此,便有下列的等价形式: 的性质 由此,便有下列的等价形式: 由此
d F ( x ) = f ( x ). dx
设连续型随机变量X有分布函数 例 设连续型随机变量 有分布函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F () a b 1,解得 a 1 , b 1 .
2

2 由⑴知, F (x)
1
1
2 arctan x , x ,故
ห้องสมุดไป่ตู้P1
X
0
2
F(0) F(1)
1
[1
1
(
)]
1

2 2 4 4
P X 3 1 F( 3 0)
1 lim (1 1 arctan x) 1 (1 1 ) 1 .
例如在抛一枚硬币 的随机试验中,令
0, “出现反面”, X 1, “出现正面”,
则 X 为随机变量.
例如:掷骰子出现的点数, 一批产品中的次品个数, 等车所需的时间等等
均为随机变量.
3
引入随机变量后,可利用随机变量的某种逻辑关系 表示随机事件.
例如在抛硬币的随机试验中,事件
“正面向上” {X 1} {X 1}, 2
2 0
x 3
2 3 6 12
{0 X 1} {X 2} {X 1} , 2
{X 1} {X 0} . 2
进而有 P{X 1} 1 , P{X 2} 1, P{X 1} 0 等等.
2
2
4
一般地,设 X 为一随机变量, L 为某实数集,则 {X L}
表示一个随机事件.
特别地,如果 a, b 为实数,则 {a X b}, {X b}, {X a}, {X a}, {X a}
( 2)分布 函数 F(x) 的直 观意义为 随机变量 X 落 在区间 (, x]上的概率.
6
定理 1.1 对于任意实数 a, b (a b) ,则有 P{a X b} F(b) F(a) .
证明:事实上,由
P{a X b} P{X b} P{X a} F(b) F(a)
即可证得
等均表示随机事件.
5
二、分布函数
定义 1.2 设 X 为一随机变量,对于任意实数 x ,称函数
PX x为 X 的分布函数.记为 F(x) .即随机变量 X 的分布函数为 F(x) PX x, x .
【注意】(1)不论随机变量 X 如何取值,其分布函数 F(x) 的 定义域总是 (, ) .
F(x) PX x P{X 0} P(A) 1 ;
2
当 x 1时, F(x) PX x P() 1.
10
续解 综上可得 X 的分布函数为
0,
F
(x)
1 2
,
1,
x 0, 0 x 1,
x 1.
不难发现, F(x) 在区间 (, 0), (0,1) 和 (1, ) 内均连
性质 1.3 设 F(x) 为任一分布函数,则 F(x) 单调不减,
即对于任意实数 x1, x2 ,当 x1 x2 时, F (x1) F (x2 ) . 性质 1.4 设 F(x) 为任一分布函数,则 F(x) 处处右连续,
即对于任意给定的 一点
x0

F
( x0
0)
lim
x xo
F
(x)
F
( x09)
续,而点 x 0 和 x 1均为 F(x) 的跳跃间断点.事实上,F(x)
在点 x 0 和 x 1处均右连续,而不左连续.
11
例 1.2 已知随机变量 X 的分布函数为 F(x) a b arctan x ,
x .⑴求常数 a, b ;⑵计算概率 P1 X 0 和
P{X 3} . 解 ⑴ 由 分 布 函 数 的 性 质 1.2 知 F () a b 0 ,
Pa X b F(b 0) F(a 0)
8
分布函数 F(x) 的基本性质. 性质 1.1 设 F(x) 为任一分布函数,总有 0 F(x) 1 .
性质 1.2 设 F(x) 为任一分布函数,则有
lim F(x) 0 , lim F(x) 1 ,
x
x
简记为 F() 0 , F () 1.

例 1.1 在抛一枚硬币的随机试验中,记事件 A 表示硬币正面向
上,令
X
0, 1,
若A不发生, 若A发生,
求随机变量 X 的分布函数 F(x) ,并讨论 F(x) 的连续性.
解 由题意知 P(A)=P(A)= 1 . 2
当 x 0 时, F(x) PX x P() 0 ;
当 0 x 1时,
第二章 一维随机变量及其分布
1
§1 随机变量及其分布函数
一、随机变量的概念
定义 1.1 设随机试验 E 的样本空间为 ,对每一个样本点
,均有一个惟一确定的实数 X 与之对应,就称 X 为一
个定义在 上的随机变量,也记为 X X () .通常随机变 量用 X ,Y , , 等符号表示.
由定义 1.1 知随机变量 X 为样本点 的函数.
推论 1.1 设 x0 为任一给定实数,则有
PX x0 F(x0) F(x0 0) .
7
【注】利用定理 1.1 和推论 1.1
PX a 1 F(a) , PX a 1 F(a 0) ,
PX b F(b 0) ,
Pa X b F(b 0) F(a)

Pa X b F(b) F(a 0) ,
相关文档
最新文档