系统抽样-课件

合集下载

系统抽样_PPT课件

系统抽样_PPT课件

分析:本题考查系统抽样的概念,系统抽样适用于个体数较多 但均衡的总体. 解析:因C选项事先不知道总体,抽样方法不能保证每个个体 按事先规定的机会抽取. 答案:C
变式训练2:系统抽样又称为等距抽样,从N个个体中抽取n个个体为样
本,抽样距为 k [ N ]
n
(取整数部分),从第一段1,2,…,k个号码中随机
解析:由题意知,抽取的样本号码首项为3,间隔为6,依次取 10个.
8.某工厂有1003名工人,从中抽取10人参加体检,试用系统抽 样进行具体实施. 分析:由于总体容量不能被样本容量整除,需先剔除3名工人,
使得总体容量能被样本容量整除,取 k 1000 100, 然后 10
再利用系统抽样的方法进行. 解:(1)将每个人编一个号由0001至1003; (2)利用随机数表法找到3个号将这3名工人排除; (3)将剩余的1000名工人重新编号0001至1000;
(3)系统抽样比简单随机抽样的应用范围更广.
题型一 系统抽样的概念
例1:为了解1200名学生对学校某项教改试验的意见,打算从
中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间
隔k为( )
A.40
B.30
C.20
D.12
解析:N=1200,n=30,∴ k N 1200 40. n 30
答案:C
2.中央电视台的动画城节目为了对本周的热心小观众给予奖
励,要从确定编号的一万名小观众中抽取十名幸运小观众,现
采用系统抽样的方法抽取,其组容量为( )
A.10
B.100
C.1000
D.10000
解析:其组容量为
10000 10
1000.
答案:C
3.下列说法错误的个数是( )

系统抽样》课件

系统抽样》课件
减小抽样误差的方法
采用更科学的抽样方法、增加样本量、提高样本代表性等。
非抽样误差
非抽样误差的定义
01
由于非随机因素引起的误差,如调查员的主观偏见、调查方法
的缺陷等。
非抽样误差的来源
02
调查员的主观偏见、调查方法的缺陷、数据处理的错误等。
减小非抽样误差的方法
03
加强调查员的培训和监督、采用更科学的调查方法、加强数据
的质量控制等。
05
CHAPTER
系统抽样的应用案例
某品牌的市场调研系统抽样应用
总结词:高效准确
详细描述:某品牌在进行市场调研时,采用系统抽样方法,按照一定的间隔从总 体中抽取样本,大大提高了调研效率和准确性,为品牌的市场策略制定提供了有 力支持。
某大学的学生满意度调查系统抽样应用
总结词:覆盖全面
详细描述
起始样本的选择可以采用随机方式或指定方式。随机方式可以借助随机数生成器 等工具进行,而指定方式则需要根据研究目的和实际情况进行合理设定。
进行样本抽取
总结词
在确定总体、样本、抽样间隔和起始样本后,即可按照系统 抽样的规则进行样本抽取。
详细描述
按照设定的抽样间隔和起始样本,依次进行样本抽取,直至 达到所需的样本量。在抽取过程中,应保持随机性和代表性 原则,确保样本的有效性。
详细描述:某大学采用系统抽样方法进行学生满意度调查,确保了样本的代表性和广泛性,调查结果能够全面反映学生的需 求和意见,为学校改进教学质量和管理提供了重要依据。
某城市的居民消费水平调查系统抽样应用
总结词:科学合理
详细描述:某城市进行居民消费水平调查时,采用系统抽样方法,按照居民分布和人口比例进行抽样 ,确保了样本的科学性和合理性,为城市经济发展规划和政策制定提供了有力支持。

课件3:2.1.2 系统抽样

课件3:2.1.2 系统抽样
带的号码,如学生证、准考证号等).
N
(2)确定分段间隔 k,对编号进行分段.当_n_______(n 是样本
N
容量)是整数时,取 k=_n_______. (3)在第 1 段用简单随机抽样确定起始个体编号 l(l≤k).
(4)按照一定的规则抽取样本.通常是将 l 加上_间__隔__k_得到第
2 个个体编号_(_l_+__k)_,再加 k 得到第 3 个个体编号(l+2k),
2.1.2 系统抽样
1.系统抽样的定义 一般地,要从容量为 N 的总体中抽取容量为 n 的样本,
可将总体分成均衡的若干部分,然后按照预先制定的规则, 从每一部分抽取一个个体,得到所需要的样本,这种抽样 的方法叫做系统抽样.
2.系统抽样的步骤
(1)先将总体的 N 个个体编号(有时可直接利用个体自身所
解析:A 总体有明显层次,不宜用系统抽样,B,D 宜用 简单随机抽样.故选 C.
答案:C 系统抽样的特点:
①总体个体数目比较大,抽样个体数也较大. ②个体间无明显差异.
【变式与拓展】 C
第一步,将260名学生用随机方式进行编号(分别为000, 001,002,…,259). 第二步,由于样本容量与总体容量的比是1∶13,所以将 总体平均分为 20 个部分,其中每一部分包含 13 个个体. 第三步,在第一段000,001,002,…,012 这13 个编号 中用简单随机抽样确定起始号码 l. 第四步,将编号为l,l+13,l+26,…,l+13×19 的个 体抽出,组成样本.
类别
特点
相互联系 适用范围 共同点
简单随机 从总体中逐个
总体中的个
抽样 系统抽样
抽取 将总体平均分 成几部分,按 事先确定的规 则分别在各部

系统抽样 课件

系统抽样 课件

探究 3 在系统抽样中,N 不一定能被 n 整除,那么系统抽样还公平 吗?【提示】 在系统抽样中,
(1)若 N 能被 n 整除,则将比值Nn作为分段间隔 k.由于起始编号的抽取 采用简单随机抽样的方法,因此每个个体被抽取的可能性是一样的.
(2)若 N 不能被 n 整除,则用简单随机抽样的方法从总体中剔除几个 个体,使得总体中剩余的个体数能被 n 整除,再确定样本.因此每个个体 被抽取的可能性还是一样的. 所以,系统抽样是公平的.
当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个 体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔 除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整 除.
为了了解参加某种知识竞赛的 1 003 名学生的成绩,抽取一 个容量为 50 的样本,选用什么抽样方法比较恰当?简述抽样过程.
【精彩点拨】 编号 → 剔除 → 再编号 → 分段 → 在第一段上抽样 → 在其他段上抽样 → 成样
【尝试解答】 (1)随机地将这 1 003 个个体编号为 1,2,3,…,1 003; (2)利用简单随机抽样,先从总体中随机剔除 3 个个体,剩下的个体数 1 000 能被样本容量 50 整除,然后将 1 000 个个体重新编号为 1,2,3,…, 1 000; (3)将总体按编号顺序均分成 50 组,每组包括 20 个个体; (4)在编号为 1,2,3,…,20 的第一组个体中,利用简单随机抽样抽 取一个号码,比如是 18; (5)以 18 为起始号码,每间隔 20 抽取一个号码,这样得到一个容量为 50 的样本:18,38,58,…,978,998.
以按下列步骤进行系统抽样:
编号
分段间隔k
简单随机抽样

系统抽样课件

系统抽样课件

06 系统抽样的软件实现
软件工具介绍
SPSS
广泛使用的统计软件,提供系统抽样的功能 。
Stata
专为统计和数据分析而设计的软件,支持系 统抽样操作。
R
自由软件,拥有强大的统计分析能力,支持 系统抽样。
软件实现步骤
数据导入软件
将数据导入所选软 件中。
执行抽样
软件自动按照设定 的样本间隔进行抽 样。
确定样本间隔
根据总体大小和样 本量计算样本间隔 。
选择系统抽样命令
在软件中调用系统 抽样命令。
案例二
在Stata中实现系统抽样,分析某地区经济 增长情况。
案例一
使用SPSS进行系统抽样,调查大学生心理 健康状况。
案例三
使用R进行系统抽样,研究消费者购买行为 模式。
与简单随机抽样的比较
简单随机抽样是从总体中随机抽取样本,而系统抽样则是有目的地按照一定间隔抽取样 本,两者各有优缺点。简单随机抽样的优点是操作简单,适用于任何类型的总体,但样 本代表性可能受个体差异影响;系统抽样的优点是样本代表性好、操作简便,但适用范
围有限,仅适用于总体容量较大且个体差异较小的样本调查。
系统抽样按照一定的规则,从总体中抽取一定数量的样本 ,然后对这些样本进行调查和分析,得出市场数据。这种 方法能够保证样本的随机性和代表性,从而减少误差,提 高调查结果的准确性和可靠性。
科学实验
科学实验是一种通过实验来验证假设或发现新知识的科学研究方法。系统抽样在此场景中可以用来选 取实验对象,从而保证实验结果的准确性和可靠性。
首先需要明确研究的总体范围,包括总体中的个体数量和特 性。
确定抽样间隔
根据总体大小和样本量,计算出抽样的间隔,确保样本的代 表性。

《系统抽样》课件

《系统抽样》课件

详细描述
例如,在心理学研究中,研究者可能会选择 一部分被试进行实验或调查,并采用系统抽 样方法确保样本的代表性和可靠性。这种抽 样方法能够为研究者提供较为准确和可靠的 实验结果或数据,从而支持其学术观点或理 论。
需要精确估计的场景
在某些需要精确估计的场景中,例如 预测市场趋势、评估产品性能等,需 要采用系统抽样来保证样本的代表性 和准确性。
系统抽样适用于需要精确估计的场景 ,例如市场预测、产品质量评估等。
04
系统抽样的优缺点
优点
样本代表性
系统抽样能够保证样本的代表性,因为它在总体中均匀地选取样 本,避免了由于主观判断或随机性导致的偏差。
详细描述
全国人口普查通常采用系统抽样方法,按照地理位置、行政区域或人口分布等标准,将全国划分为若干个样本小 区,然后按照固定的间隔或比例从每个小区中抽取一定数量的样本进行调查。这种抽样方法能够保证样本的代表 性和广泛性,从而得到较为准确和全面的数据。
实例二:市场调查
总结词
市场调查中经常采用系统抽样方法,从 目标市场中按照一定的规则和标准抽取 具有代表性的样本进行调查。
系统抽样适用于大规模的普查或市场调查,例如全国人口普查、消费者调查等。
长期跟踪研究
在长期跟踪研究中,例如研究某一群体的健康状况、行为 习惯等,需要定期对研究对象进行抽样调查。系统抽样可 以按照固定的时间间隔对研究对象进行抽取,便于长期跟 踪研究。
系统抽样适用于长期跟踪研究,例如流行病学研究、社会 学研究等。
与分层抽样相比,系统抽样不需要对总体进行分层,操作相 对简单,但分层抽样可以根据不同层的特点进行有针对性的 调查,因此在实际应用中需要根据具体情况选择合适的抽样 方法。
02

《系统抽样》课件

《系统抽样》课件

所以抽取的号码是63.
因第7组抽取的号码个位数字应是3,
解析:依编号顺序平均分成的10个小组分别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,
70~79,80~89,90~99.
这个样本的号码依次是6,18,29,30,41,52,63,74,85,96.
思考:
(1)下列抽样中不是系统抽样的是 ( ) A、从标有1~15号的15个小球中任选3个作为样本,先在1~5号球中用抽签法抽出l号,再将号码为l+5,l+10的球也抽出 ; B、工厂生产的产品,用传送带将产品送入包装车间的过程中,检验人员从传送带上每隔五分钟抽一件产品检验 ; C、搞某市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止. D、电影院调查观众的某一指标,邀请每排(每排人数相等)座位号为14的观众留下来座谈。
C
系统
2
3
4
1
数学运用
例5、某单位在岗职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查。试采用系统抽样方法抽取所需的样本.
解:
将624名职工用随机方式进行编号;
从总体中剔除4人(剔除方法可以用随机数表法),将剩余的620名职工重新编号(分别为000,001,002,…, ,并分成62段;

系统抽样比简单随机抽样的应用范围更广.
系统抽样比简单随机抽样更容易实施,可节约抽样成本;
系统抽样与简单随机抽样比较,有何优、缺点?
点评:
系统抽样的效果会受个体编号的影响,而简单随机抽样的效果不受个体编号的影响;系统抽样所得样本的代表性和具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈现一定的周期性,可能会使系统抽样的代表性很差.例如学号按照男生单号女生双号的方法编排,那么,用系统抽样的方法抽取的样本就可能会是全部男生或全部女生.

系统抽样 完整版课件

系统抽样 完整版课件

3.从1~10的间隔随机内抽取第一个号 码,假如抽到的是6号.
4.从第6号开始每隔10个号码抽取一个, 得到
6,16,26,36,46,…,486,496. 这样得到一个容量为50的样本.
这种获取样本方法就是系统抽样方法.
一般地假设要从容量为N的总体中抽取容量为n 的样本,可按下列步骤进行系统抽样:
下面介绍一种新的抽样方法—系统 抽样法:
探究:某校为了解高一 年级学生对教 师教学的意见,打算从高一年级500名 学生中抽取50名进行调查.
你能用上节内容设计本题的抽 样方法吗?
本题除了用简单随机抽样法,还可 以用如下方法:
1.首先对500名学生编号 ,10,… ,491,… ,500.
1,…
2.按号码顺序以一定间隔进行抽取:由 500/50=10,这个间隔可定为10.
1.先将总体的N个个体编号;
2.确定分段间隔k,对编号进行分段,
当N/n是整数时,取k=N/n.
当N/n不是整数时,可以先从总体中随机 地剔除几个个体,使得总体中剩余的个体数能 被样本容量整除,再对新总体的N’个个体重 新编号;
3.在第1段用简单随机抽样确定第一个个 体编号l ﹙ l ≤k﹚;
4.照一定得规则抽取样本.通常是将l加上 间隔k得到第2个个体编号﹙ l +k﹚,再加 k得到第3个个体编号﹙ l +2k﹚,依次进 行下去,直到获取整个样本.
说明 :
1.个体很多的情况下系统抽样比简单随 机抽样更容 易实施,可节约抽样成本.
2.系统抽样所得样本得代表性和具体的 编号有关,而简单随机抽样所得样本得代 表性与个体的编号无关.
3.一个好的个体编号方案能够使得系 统抽样方法所获得样本的代表性更好.

高中数学:212《系统抽样》课件必修

高中数学:212《系统抽样》课件必修
和可靠性,以确保分析结果的准确性。
03 系统抽样的实例 分析
实例一:某城市居民收入调查
总结词
合理且有效
详细描述
为了了解某城市居民的收入状况,研究者采用了系统抽样方法。他们按照居民的 居住区域进行划分,并按照固定的间隔进行抽样,确保样本的分布均匀且具有代 表性。通过这种方法,他们能够准确地反映该城市居民的收入状况。
确定抽样间隔
总结词
抽样间隔是决定系统抽样效果的关键因素之一,它决定了总体中每隔多少个个体抽取一个样本。
详细描述
抽样间隔的确定需要考虑总体容量、样本容量和抽样精度等因素。一般来说,较大的总体容量需要较小的抽样间 隔,而较小的总体容量则可以设置较大的抽样间隔。同时,抽样间隔也与样本容量的多少有关,样本容量越大, 所需的抽样间隔越小。
实例二:某学校学生身高调查
总结词:简便易行
详细描述:为了了解某学校学生的身高状况,研究者采用了系统抽样方法。他们按照学生的学号进行排序,并按照固定的间 隔进行抽样,确保样本的分布均匀且具有代表性。通过这种方法,他们能够快速地收集到足够的数据,并准确地反映该学校 学生的身高状况。
实例三:某地区空气质量监测
具体解释
系统抽样是从总体中按照一定的间隔 或顺序进行有规律地抽取样本的方法 。例如,从100个学生中每隔10个抽 取一个,或者按照学号尾数进行抽取 。
系统抽样的特点
01
02
Байду номын сангаас
03
样本代表性
由于系统抽样遵循一定的 规律,因此抽取的样本在 总体中具有较好的代表性 。
操作简便
系统抽样相对于其他抽样 方法更为简便,只需按照 一定的规则进行抽取即可 。
确定合适的抽样间隔

课件4:2.1.2 系统抽样

课件4:2.1.2  系统抽样
【答案】40
5.某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的 比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程. 解 (1)先把这253名学生编号001、002、…、253; (2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生; (3)把余下的250名学生重新编号1、2、3、…、250; (4)分段:取分段间隔k=5,将总体均分成50段,每段含5名学生; (5)从第一段即1~5号中随机抽取一个号作为起始号,如l; (6)以后各段中依次取出l+5,l+10,…,l+245这49个号.这样就按1∶5的 比例抽取了一个容量为50的样本.
易错辨析
系统抽样综合应用
例 3.中秋节,相关部门对某食品厂生产的 303 盒中秋月饼进行质量检验,需要 从中抽取 10 盒,请用系统抽样的方法完成对此样本的抽取. [错解] (1)将 303 盒月饼用随机的方式编号. (2)从总体中剔除 3 盒月饼,将剩下的分成 10 段. (3)在第一段中用简单随机抽样抽取起始号码 l. (4)将编号为 l+30,l+2×30,…,l+9×30 的个体取出,组成样本.
(2)为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方 法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( )
A.2
B.3
C.4
D.5
【解析】 (1)由系统抽的特点可知,如果抽样间隔为 k,第一段抽取号 码为 l,则抽取号码依次为 l,k+l,2k+l,….由于抽样比为110,所以共抽取110×200 =20 辆汽车.将 200 辆汽车分成 20 段,每段 10 辆,从第一段(编号为 1~10) 中抽取一个号码 l,则所抽取的号码为 l.∴选 C.
(4)是_不__放__回___抽样.

《系统抽样》课件

《系统抽样》课件
抽样间隔
总体容量
样本抽取:按照确定的抽样间隔,从起始样本开始,依次抽取样本。
系统抽样的应用场景
03
人口普查
系统抽样常用于人口普查中,通过对特定区域内的居民进行有规律的抽样,以估计该区域内的人口数量和特征。
市场细分
在市场调研中,系统抽样用于从不同的市场细分中选择样本,以了解不同细分市场的需求和行为。
随机选择:为了确保起始样本的代表性,可以采用随机选择的方式。通过随机选择起始样本,可以避免人为因素对样本选择的影响,提高样本的客观性和公正性。
代表性
系统抽样所得的样本应该能够代表总体特征。在抽样过程中,应该注意确保每个样本点都有同等的机会被选中,以避免出现偏差。
偏差
如果样本出现偏差,那么分析结果将不准确。因此,在系统抽样过程中,应该采取措施来减少偏差的出现,例如通过随机选择起始样本、确保总体容量和抽样间隔的准抽样有助于确保实验操作的一致性和规范性,降低实验误差和偏差。
系统抽样的优缺点
04
高效性
系统抽样是一种有组织、有计划的抽样方法,能够快速、准确地获取大量样本数据,提高了调查的效率。
准确性
由于系统抽样是按照一定的间隔进行抽样,样本分布相对均匀,因此能够更准确地反映总体特征。
可操作性
系统抽样操作简单,只需要确定样本间隔和起始点即可进行抽样,适合大规模的调查。
稳定性
系统抽样的样本间隔是固定的,因此抽样误差相对较小,稳定性较高。
如果总体中存在周期性变化或异常值,可能会导致系统抽样产生的样本出现偏差。
样本偏差
在某些情况下,由于总体单位的排列顺序难以确定或总体单位存在不稳定性,可能导致系统抽样的实施难度加大。
实施难度
系统抽样假设总体分布是均匀的,如果实际情况不符合这个假设,那么系统抽样的准确性就会受到影响。

系统抽样方法综述PPT(27张)

系统抽样方法综述PPT(27张)

n1
10.29
10.4等概率系统抽样的方差估计
• 10.4.1方差估计的形式
4.将n=mn系统样本分为m个子系统样本,分m次独立抽取, 定义方差估计: 1 m ˆ v4 y Y m(m-1) 1
m 1 ˆ Y y m 1 此方法称为随机分组法。

2
10.27
10.2等概率系统抽样—等距抽样
• 10.2.1总体均值的估计及其性质
y sy改 造 为 无 偏 估 计 的 方 法 : (3)使 用 改 进 估 计 y
* sy
k N
* sy

n
r
j1
y rj k N
Ey
1 k

k
r 1

n
r
j1
y rj
Y
10.2等概率系统抽样—等距抽样
10.2等概率系统抽样—等距抽样
• 1相 关 系 数 来 表 示
2 Sw st N n V a r( y sy )= 1 0 . 1 4 1 ( n 1) w st N N
其 中 : w st
ˆ为: 其中y为第个子样本的均值,Y
10.4等概率系统抽样的方差估计
• 10.4.2各种方差估计的适用场合
1.v1适用排列顺序随机的情形。 2.v2 适用多种情形(周期、线性、随机排列), 需要样本量较 v3大。 3.v3适用多种情形(周期、线性、随机排列), 需要样本量较 v2小。 4.v4 适用多种情形(周期、线性、随机排列), 需要样本量最大。
第十章 系统抽样
10.1概述 10.2等概率系统抽样—等距抽样 10.3线性趋势总体抽样方法的改进 10.4等概率系统抽样的方差估计 10.5不等概率系统抽样

《系统抽样步骤》课件

《系统抽样步骤》课件
REPORT
系统抽样步骤
CATALOG
DATE
ANALYSIS
SUMMARY
目录
CONTENTS
• 系统抽样的定义 • 系统抽样的步骤 • 系统抽样的优缺点 • 系统抽样的应用实例 • 系统抽样的注意事项
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
01
系统抽样的定义
定义
系统抽样是指将总体分成均衡的若干 部分,再从每一部分中抽取一个样本 。
总结词
在系统抽样过程中,应尽量避免主观因素的 影响,以确保样本的客观性和公正性。
详细描述
抽样过程应遵循事先确定的规则和程序,避 免人为干预和主观判断。同时,应定期对抽 样过程进行审查和评估,以确保其持续的公 正性和有效性。此外,应保持抽样记录的完 整性和可追溯性,以便对抽样结果进行复核 和验证。
定起始样本
选择起始样本
根据抽样间隔,选择第一个被抽取的 样本作为起始样本。
连续性
确保起始样本之后,按照固定的抽样 间隔连续抽取样本,直至达到所需的 样本量。
抽取样本
按照确定的抽样间隔,依次抽取样本 。
记录每个样本的信息,包括编号、抽 取时间、地点等。
评估样本
要点一
对比总体和样本
将总体和样本进行对比,评估样本的代表性和可靠性。
注意样本的代表性和广泛性
总结词
系统抽样应确保样本具有代表性和广泛 性,以使样本能够反映总体的特征。
VS
详细描述
在确定样本时,应充分考虑样本的多样性 和广泛性,尽可能覆盖总体的各个部分。 可以通过分层抽样的方式来实现这一目标 ,即按照某些特征将总体分成不同的层, 然后从每一层中抽取样本。

课件4:2.1.2 系统抽样

课件4:2.1.2 系统抽样

解析:因为选项 A 总体有明显的层次,不适宜用系统抽样法, 选项 B 样本容量很小,适宜用随机数表法,选项 C 总体容量较 大,样本容量也较大,适宜用系统抽样法,选项 D 总体容量很 小,适宜用抽签法.
2.为了了解运动员对志愿者服务质量的意见,打算从 1 200 名
运动员中抽取一个容量为 40 的样本,考虑用系统抽样,则分段
1.下列抽样中不是系统抽样的是( C ) A.从标有 1~15 号的 15 个小球中任选 3 个作为样本,按从小 号到大号排序,随机确定起点 i,以后为 i+5,i+10(超过 15 则从 1 再数起)号入样 B.工厂生产的产品,用传送带将产品送入包装车间前,检验 人员从传送带上每隔十分钟抽一件产品检验 C.进行某一市场调查,规定在商场门口随机抽一个人进行询 问,直到调查到事先规定的调查人数为止 D.电影院调查观众的某一指标,通知每排(每排人数相等)座位 号为 14 的观众留下来座谈
1.下列抽样问题中最适合用系统抽样法抽样的是( C ) A.某市的 4 个区共有 2 000 名学生,且 4 个区的学生人数之比 为 3∶2∶8∶2,从中抽取 200 名学生入样 B.从某厂生产的 2 000 个电子元件中随机抽取 5 个入样 C.从某厂生产的 2 000 个电子元件中随机抽取 200 个入样 D.从某厂生产的 20 个电子元件中随机抽取 5 个入样
张,如 15 号,然后按顺序往后将 65 号,115 号,165 号,…抽
出,发票上的销售额组成一个调查样本.这种抽取样本的方法
是( C ) A.抽签法
B.随机数法
C.系统抽样法
D.其他的抽样方法
[解析] 上述抽样方法是将发票平均分成若干组,每组 50 张.从 第一组抽取 15 号,以后各组抽取 15+50(n-1)(n∈N*)号,符 合系统抽样的特点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总体中的个体数N除以样本容量n所得 的商.
思考6:用系统抽样抽取样本时,每段 各取一个号码,其中第1段的个体编号 怎样抽取?以后各段的个体编号怎样 抽取?
用简单随机抽样抽取第1段的个体编 号.在抽取第1段的号码之前,自定义规 则确定以后各段的个体编号,通常是将 第1段抽取的号码依次累加间隔k.
思考7:一般地,用系统抽样从含有N个 个体的总体中抽取一个容量为n的样本, 其操作步骤如何?
思考4:如果从600件产品中抽取60件进 行质量检查,按照上述思路抽样应如何 操作?
第一步,将这600件产品编号为1,2, 3,…,600.
第二步,将总体平均分成60部分,每 一部分含10个个体.
第三步,在第1部分中用简单随机抽样 抽取一个号码(如8号).
第四步,从该号码起,每隔10个号码取 一个号码,就得到一个容量为60的样本. (如8,18,28,…,598)
第一步,将总体中的所有个体编号.
第二步,在随机数表中任选一个数作为 起始数.
第三步,从选定的数开始依次向右(向 左、向上、向下)读,将编号范围内的 数取出,编号范围外的数去掉,直到取 满n个号码为止,就得到一个容量为n的 样本.
2.当总体中的个体数很多时,用简 单随机抽样抽取样本,操作上并不方便、 快捷. 因此,在保证抽样的公平性,不 降低样本的代表性的前提下,我们还需 要进一步学习其它的抽样方法,以弥补 简单随机抽样的不足.

15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/52021/3/52021/3/53/5/2021

16、业余生活要有意义,不要越轨。2021/3/52021/3/5Marc h 5, 2021

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/52021/3/520有 效率为75%.”
“现代研究证明,99%以上的人皮肤感 染有螨虫…….”
“……美丽润肤膏,含有多种中药成分, 可以彻底清除脸部皱纹,只需10天,就 能让你的肌肤得到改善.”
理论迁移
例1 某中学有高一学生322名,为 了了解学生的身体状况,要抽取一个容 量为40的样本,用系统抽样法如何抽样?
6,18,29,30,41, 52,63,74,85,96.
例3 用简单随机抽样和系统抽样, 设计一个调查长沙市城区一年内空气质 量状况的方案,并比较哪一种方案更便 于实施.
小结作业
1.系统抽样也是等概率抽样,即每个 个体被抽到的概率是相等的,从而保 证了抽样的公平性. 2.系统抽样适合于总体的个体数较多的 情形,操作上分四个步骤进行,除了剔 除余数个体和确定起始号需要随机抽样 外,其余样本号码由事先定下的规则自 动生成,从而使得系统抽样操作简单、 方便.

9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021

10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/52021/3/52021/3/53/5/2021 9:27:53 AM

11、越是没有本领的就越加自命不凡 。2021/3/52021/3/52021/3/5M ar-215- Mar-21
知识探究(一):简单随机抽样的基本思想
思考1:某中学高一年级有12个班,每 班50人,为了了解高一年级学生对老师 教学的意见,教务处打算从年级600名 学生中抽取60名进行问卷调查,那么年 级每个同学被抽到的概率是多少?
思考2:你能用简单随机抽样对上述问题 进行抽样吗?具体如何操作?
思考3:联想到师大附中每学期选派学 生评教评学时的做法,你还有什么方法 对上述问题进行抽样?你的抽样方法有 何优点?体现了代表性和公平性吗?
先从总体中随机剔除5个个体,再均衡 分成60部分.
思考3:用系统抽样从含有N个个体的总 体中抽取一个容量为n的样本,要平均 分成多少段,每段各有多少个号码?
思考4:如果N不能被n整除怎么办?
从总体中随机剔除N除以n的余数个个体 后再分段.
思考5:将含有N个个体的总体平均分成 n段,每段的号码个数称为分段间隔, 那么分段间隔k的值如何确定?
第一步,随机剔除2名学生,把余下的 320名学生编号为1,2,3,…320.
第二步,把总体分成40个部分,每个 部分有8个个体.
第三步,在第1部分用抽签法确定起始 编号.
第四步,从该号码起,每间隔8个号码 抽取1个号码,就可得到一个容量为40 的样本.
例2一个总体中有100个个体,随机编 号为0,1,2,…,99,依编号顺序平均 分成10组,组号依次为1,2,3,…,10, 现用系统抽样抽取一个容量为10的样本, 并规定:如果在第一组随机抽取的号码 为m,那么在第k(k=2,3,…,10)组 中抽取的号码的个位数字与m+k的个位数 字相同.若m=6,求该样本的全部号码.
谢谢观赏
You made my day!
我们,还在路上……
第一步,将总体的N个个体编号.
第二步,确定分段间隔k,对编号进 行分段.
第三步,在第1段用简单随机抽样确定 起始个体编号l.
第四步,按照一定的规则抽取样本.
思考8:系统抽样适合在哪种情况下使用? 与简单随机抽样比较,哪种抽样方法更 使样本具有代表性?
总体中个体数比较多;系统抽样更使 样本具有代表性.
思考5:上述抽样方法称为系统抽样, 一般地,怎样理解系统抽样的含义?
将总体分成均衡的n个部分,再按照预先 定出的规则,从每一部分中抽取1个个体, 即得到容量为n的样本.
知识探究(二):系统抽样的操作步骤
思考1:用系统抽样从总体中抽取样本 时,首先要做的工作是什么?
将总体中的所有个体编号.
思考2:如果用系统抽样从605件产品中 抽取60件进行质量检查,由于605件产品 不能均衡分成60部分,对此应如何处理?

12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/52021/3/52021/3/5Fr iday, March 05, 2021

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/52021/3/52021/3/52021/3/53/5/2021

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月5日星期 五2021/3/52021/3/52021/3/5
2.1.2 系统抽样
问题提出
1.简单随机抽样有哪两种常用方法? 其操作步骤分别如何? 抽签法:
第一步,将总体中的所有个体编号,并 把号码写在形状、大小相同的号签上. 第二步,将号签放在一个容器中,并搅 拌均匀. 第三步,每次从中抽取一个号签,连续 抽取n次,就得到一个容量为n的样本.
随机数表法:
思考9:我校共有360名老师,为了支持 海南的教育事业,现要从中随机抽取40 名老师到湖南师大海口中学任教,用系 统抽样选取奔赴海南的教师团合适吗?
思考10:在数字化时代,各种各样的统 计数字和图表充斥着媒体,由于数字给 人的印象直观、具体,所以让数据说话 是许多广告的常用手法.下列广告中的 数据可靠吗?
相关文档
最新文档