染色质和染色体
3,染色体
离心,去上清液(1000rpm/10 min)
重复固定三次
制片,染色,观察,染色体分析
一、人类中期染色体形态和类型
短臂q
着丝点 主缢痕 着丝粒
长臂p 副缢痕
端粒(telomere)
短臂( P )
着丝粒
随体
长臂(q )
中着丝粒染色 体1/2-5/8
亚中着丝粒染 色体5/8-7/8
近端着丝粒染 色体7/8-末端
Lyon假说:1961年,Marry Lyon提出 了X染色质失活的假说
(1)雌性哺乳动物体细胞中,两条染色体 中仅有一条在遗传上有活性;另一条在 遗传上是失活的,在间期核中异固缩为 X染色质; (2)失活发生在胚胎早期,如人类大约在 妊娠的第16天; (3)X染色体的失活是随机的. (4)一旦某一特定的细胞内的一个X失活, 那么由此细胞而来的所有细胞保持相同 的失活特点。
一、荧光原位杂交FISH
fluorescence in situ hybridization
1986年Pankel在原位杂交基础上,将放射性同位素 标记改用非放射性同位素即荧光素标记探针而建立了 技术。利用该技术,可以精确地把一DNA片段定位到 某条染色体的特定区带上。
利用FISH技术诊断Down综合征 图示:利用21号染色体 特异性探针对一位高龄妊 娠妇女进行产前诊断,未 培养的羊水细胞进行荧光 原位杂交, 显示所检测的 细胞均 有3个杂交信号, 经选择性人工流产后确诊 为Down综合征患儿。
兼性异染色质
含有一系列重复序列 的 DNA , 在 某 些 细 胞类型或一定的发育 阶段, 原来的常染色 质聚缩, 并丧失基因 转录活性, 变为异色 质,如X染色质
《医学遗传学》第四章 人类染色体和染色体病
第四章人类染色体和染色体病The human chromosome and chromosome disease第一节人类染色体的基本特征染色质和染色体人类染色体的数目、结构和形态性染色体和性别决定染色体的研究方法真核生物的基因大部分存在于位于细胞核内的染色体上,故染色体是遗传物质的载体,是人类细胞遗传学的主要研究对象。
通过细胞分裂,遗传物质随着染色体的传递而传递。
一个生物物种的染色体数目、结构、形态是恒定的,构成了生物的遗传特性。
一、染色质和染色体染色质与染色体是遗传物质在细胞周期的不同阶段的不同表现形式。
化学组成相同:(一) 染色质(chromatin)染色质是DNA和蛋白质的复合体。
基本结构单位是核小体。
1.根据核蛋白分子的螺旋化程度及功能状态不同,细胞间期染色质分成两类:常染色质:螺旋程度低,结构松散,具转录活性,常位于细胞核中央。
异染色质:螺旋程度高,结构紧密,不具转录活性,常位于细胞核边缘。
2.异染色质:分为两种结构性异染色质(constitutive heterochromatin):在各种细胞中总是处于凝缩状态,一般为高度重复的DNA序列。
如着丝粒区,端粒区,次缢痕区等。
兼性异染色质(facultative heterochromatin):即功能性异染色质,在特定细胞的某一特定发育阶段,由常染色质凝缩转变而成。
如X染色质。
(二) 性染色质性染色质(sex chromatin) 是在间期细胞核中性染色体显示的一种特殊结构。
1. X 染色质(X chromatin)(1)1949年,雌猫神经细胞内凝缩的深染小体―Barr小体。
Barr小体普遍存在于雌性哺乳动物(包括人类)的间期细胞核中,是一条发生遗传学失活的X 染色体,呈异固缩状态(浓染小体),贴于核膜内侧缘。
(2) Mary Lyon 假说uX染色质的失活发生在胚胎早期(人类在胚胎第十六天)vX染色体的失活是随机的―父方或母方。
4染色质与染色体
医学细胞生物学染色质与染色体一、染色质与染色体•1879年,W. Flemmin提出了染色质(chromatin),用以描述细胞核中能被碱性染料强烈着色的物质。
•1888年,Waldeye提出了染色体(chromosome)。
电镜下染色质光镜下的染色体化学组成D N A蛋白质少量RNA组蛋白:H1H2A H2B H3 H4非组蛋白二、染色质和染色体的化学组成(一)DNA核苷酸•生物的遗传信息贮存在DNA的核苷酸序列中,生物界物种的多样性也寓于DNA分子4种核苷酸千变万化的排列之中。
(二)组蛋白组蛋白是真核生物染色体的基本结构蛋白,带正电荷,含Arg、Lys,属碱性蛋白,共5种:A、H2B、H3、H4 –核心组蛋白(core histone):H2–连接组蛋白(linker histone):H1(三)非组蛋白•酸性蛋白质,带负电荷,富含天冬氨酸、谷氨酸。
•约有500多种不同的种类。
•功能:帮助DNA折叠以形成不同的结构域;协助启动DNA复制;控制基因转录;调节基因表达等。
(四) RNA•含量不到DNA量的10%。
•大部分是新合成的各类RN A前体,包括tRNA、rRNA、mRNA、hnRNA。
•还有部分RNA具有促使染色体结构稳定的作用,如端粒RNA。
染色体与染色质的比较•在化学本质上没有差异•在构型上不同•是遗传物质在细胞周期不同阶段的不同表现形式复习题1.什么是染色质?2.简述染色质的化学组成。
3.比较染色质和染色体的异同。
参考文献及网站参考文献1.医学细胞生物学,丰慧根,中国医药科技出版社,20162.医学细胞生物学,刘佳,高等教育出版社,20143.医学细胞生物学,杨保胜,科学出版社,2013。
第十八章 染色质和染色体
• ß-like globins gene family: Contains 5 functional genes
Tandemly repeated genes encoding rRNAs, tRNAs, snRNAs, and histones
Repetitious DNA Simple-sequence DNA Interspersed repeats
Unclassified spacer DNA
Copy Length Number
Chromatin and Chromosome
郑州大学基础医学院 细胞生物学教研室 徐朝阳
染色质和染色体形态差别很大
但他们的化学本质相同
染色体
DNA
蛋白质
染色质
染色体的组装过程很复杂
Chapter 01 Chromatin
1. 染色质的分类
异染色质(浓缩染色质、非功能性染色质)
• 高度螺旋和盘曲、染色深、功能上不很活跃。可分为结 构异染色质和兼性异染色质两种。
X染色体
21
Y染色体
13号染色体
18号染色体 21号染色体
Clinical link
• Microsatellites occasionally occur within transcription units.
• Some individuals are born with a larger number of repeats in specific genes than observed in the general population, presumably because of daughter-strand slippage during DNA replication in a germ cell from which they developed.
染色体和染色质
染色体和染色质
染色质和染色体的关系
1、染色质和染色体,既有在主要成分方面的相同之处,又有在
形态方面的不同之处。
它们都是细胞分裂中重要的遗传物质,它们却又出现在细胞分裂的不同阶段。
2、染色质和染色体的主要成分都是脱氧核糖核酸(DNA)和蛋白质。
两者在所含化学元素方面没有本质区别,都含有氢、氧、氮和磷等常见元素。
3、染色质和染色体在细胞生物进行有丝分裂的时候,起着传递
遗传物质的重要作用。
在细胞有丝分裂过程中,染色体通过解开螺旋变成染色质,染色质进行间期复制。
复制之后的新旧染色质被分配到新旧两个细胞中。
染色质重新螺旋变成染色体,细胞分裂环节进而完成。
4、在形态上,染色质呈现丝状,染色体呈现螺旋状。
染色质出
现在间期复制阶段,染色体出现在细胞分裂的前期和后期。
两者同属一个相同的遗传物质,区别仅仅在于外观。
同学们可以通过显微镜观察洋葱细胞有丝分裂过程,从而掌握两者的形态区别。
5、染色质和染色体是高中生物必修二——遗传与进化中的重要
内容。
同学们应当注意分清染色质和染色体的形态区别,并且掌握两者在细胞分裂中的重要作用,从而更好地理解遗传与进化的基础内容。
染色质与染色体
18章染色质与染色体染色质与染色体有共同的组成成分,是同一物质在细胞周期不同功能阶段中所呈现的不同构象。
一,染色质和染色体的化学组成,染色质和染色体的主要成分是DNA,组蛋白,非组蛋白及少量 RNA。
其中组蛋白和DNA含量高且较为稳定,两者约占染色质化学组成的98%以上,非组蛋白和RNA的含量可随细胞生理状态不同而有很大变化。
基因组:真核细胞单倍染色体组中所含有的全部遗传信息称为1个基因组。
所含有的DNA量称为有机体的C值。
C值反应基因组的大小。
基因组中的遗传信息分为结构基因与调控基因两类:1结构基因:负责编码蛋白质的氨基酸序列,大约占基因组的10%-15%;2调控基因:可以调控结构基因在不同细胞周期、个体发育不同阶段、不同组织细胞中表达的序列。
真核细胞的染色体DNA序列可分为三种———单一序列,中度重复序列,高度重复序列。
组蛋白是真核细胞特有的染色体基本结构蛋白,富含带正电荷的氨基酸,属于碱性蛋白质。
与DNA结合不要求特殊的核苷酸序列。
功能:1. 组蛋白在S期与DNA同时合成后,立即转移到细胞核内,与DNA装配成染色质。
2.参与染色体的构建,维持染色体结构;通过甲基化、乙酰化等修饰调节DNA的复制和转录。
非组蛋白是染色体中除组蛋白以外的所有蛋白质的统称,富含酸性氨基酸带负电荷,可与特异的DNA序列结合。
功能:①帮助DNA分子折叠,以形成不同的结构域,从而有利于DNA的复制和基因的转录;②协助启动DNA复制;③控制基因转录,调节基因表达。
组蛋白与非组蛋白的比较:第二节染色质和染色体的亚微结构一级结构后:核小体是染色质的基本结构单位,每个核小体单位包括一个组蛋白核心和200bp左右的DNA。
是染色质包装的一级结构,将DNA分子长度压缩1/7。
二级结构:螺线管是染色质的二级结构,6个核小体缠绕一圈形成的中空性管. Φ外30nm; Φ内10nm,组蛋白H1位于螺旋管内侧。
将串珠状小体长度压缩5/6;DNA分子长度压缩1/42,螺旋管即为30nm的染色质纤维。
人类染色体及染色体病---知识点资料整理总结
人类染色体及染色体病1.染色质和染色体:是细胞核内易被碱性染料染成深色的物质,是遗传物质的存在形式。
●染色质:存在于细胞周期的间期,DNA的螺旋结构松散呈细丝状,形态不规则,弥散在细胞核内。
●染色体:细胞分裂期,染色质高度螺旋折叠而缩短变粗,形成条状或棒状。
组成成分:DNA、组蛋白、非组蛋白、RNA。
●从DNA到染色体的四级结构模型:DNA→核小体→螺线管→超螺线管→染色单体●人的46条染色体中,23条来自父亲,23条来自母亲,为23对染色体,称为二倍体(2×23),精子和卵子称为单倍体。
●人类染色体的结构:主要结构包括染色体臂,着丝粒,初级缢痕,次缢痕,核仁组织区(异染色质区),随体,端粒。
2.分裂中的染色体行为●细胞周期:细胞从前一次有丝分裂结束到下一次有丝分裂完成所经历的全过程。
●有丝分裂期的染色体行为:有丝分裂过程中,体细胞染色体复制1次,细胞分裂1次,得到2个染色体数目与亲代细胞完全相同的子代细胞。
●减数分裂期的染色体行为Ⅰ:Ⅱ:减数分裂过程中,精原细胞或卵母细胞染色体复制1次,细胞分裂2次,最后形成4个精子或1个卵子,细胞内染色体数目减少一半。
3.人类染色体分析技术●人类染色体研究常用技术的发展:低渗法制片技术:1952年,美籍华人徐道觉(T.C.Hsu);使细胞遗传学进入低渗时期。
秋水仙素处理法:1956年,华裔学者蒋有兴(Tjio J.H)和Levan A应用秋水仙素和压片技术,在流产胎儿肺组织中发现人类染色体数是2n=46条,标志着现代细胞遗传学的诞生。
目前国际认可的三大细胞遗传学技术共存:染色体显带技术、FISH、ACMG &ISCA 共同推荐芯片技术。
●人类染色体检测技术:核型分析、荧光原位杂交(Fluorescence in situ hybridization,FISH)、微阵列比较基因组杂交(Array-based Comparative Genomic Hybridization, aCGH)4.核型分析●核型(Karyotype):指一个体细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图像。
染色质、染色体、基因和基因组
细胞分裂过程中,棒状结构,有利于 平均分配
一、染色质和染色体的形态
(一)染色质
间期核中,染色质以两种状态存在: 常染色质(enchromatin):
位于核中央,伸展开的呈电子透亮状态, 一定条件下可活跃的复制转录。
异染色质(heterochromatin): 一般是卷曲凝缩状态。
一条染色体有常染色质,也有异染色质。
人类NOR位于13、14、15、21、22号 染色体短臂的次缢痕上。
6、端粒(telomere):
端粒为染色体端部的特化部分,位于染 色体的端部,由端粒DNA与端粒蛋白构成。 功能: 与维持染色体的稳定性、保证DNA的完全复 制和染色体在核内的分布有关。
在同源染色体配对时,端粒能结合在核膜上; 端粒长时,细胞能分裂和存活;端粒短时, 细胞不能分裂甚至不能存活。这与端粒酶的 表达与否有关。
细胞分裂和细胞周期
主要内容
第一节 第二节 第三节 第四节
染色质和染色体 纺锤体 细胞周期 植物细胞减数分裂 与世代交替
第一节 染色质和染色体
染色质(Chromatin)和染色体 ( Chromosome)是细胞核内同一物 质(遗传物质)在细胞增殖周期中不 同阶段的存在形式。
染色质:
间期细胞,网状不规则,有利于复制 和表达
Eucaryotic Cell Cycle
细胞分裂间期(interphase):
包括G1期、S期和G2期;
主要进行DNA复制、中心粒复制、 细胞体积增大等准备工作。
纺锤体有四种微管结构:
①极间微管(polar mt)两极间的微管, 在纺锤体中部重叠,重叠部位结合有分子 马达 。 ②着丝点微管(kinetochore mt),是从 着丝点到另一极的微管; ③星体微管(astral mt),由中心粒放射 出来的微管。植物没有中心粒和星体,其 纺锤体称无星纺锤体。 ④ 中间微管,不与两极和着丝点相连。
【高中生物】高中生物知识点:染色体与染色质的关系
【高中生物】高中生物知识点:染色体与染色质的关系染色体与染色质的关系:
它们是同一物质的两种形式。
染色质和染色体的主要成分:DNA和蛋白质。
它们之间的区别只是同一物质在间期和分裂中的不同形式。
染色质出现在间期,光镜下呈颗粒状。
核内分布不均,主要集中在核膜内表面。
由于染色较深,在光学显微镜下常被误认为是核界膜。
染色体出现在分裂阶段,形状不同,如厚柱状和杆状,数量基本不变(取决于生物体的种类)。
例如,人类细胞有23对染色体,总共46对。
染色体由染色质浓缩而成,内部处于紧密状态,呈现高度卷曲的结构。
知识点拨:
1.扩展的染色质形态有助于DNA中储存的信息在其上的表达,而高度螺旋状的杆状染色体有助于细胞分裂中遗传物质的二分法。
2、根据染色体组成成分的分析,可知它在细胞分裂间期仍然存在而不是消失,只不过这时它的结构呈稀疏和分散状态。
有的部分非常稀疏,因而在光镜下看不到有的部分螺旋盘绕得比较紧密,因而在适当染色后呈颗粒状,这就是染色质。
3.现在已知染色体与遗传关系密切,因为染色体中包含的DNA是遗传物质。
第二章 染色质、染
16S
七个重复 大肠杆菌的rRNA基因的七个拷贝
五、真核生物基因特征
I. 基因不连续性 II. 基因家族 III. 重复基因结构
基因的不连续性
1、相关概念 2、内含子的特点
基因的不连续性(interrupted)
不连续基因(discontinuous genes):在 DNA分子上基因的编码序列是不连续的,被 不编码的序列所隔开的基因 外显子(exon):编码成熟mRNA某一部 分序列的DNA区域
卫星DNA、隐蔽卫星DNA、小卫星
DNA和微卫星DNA
卫星DNA (satelite
DNA)
卫星DNA:在蔗糖或氯化铯密度梯度离心
中的浮力密度曲线图上观察到的位于DNA主 带旁边的小带DNA
富含AT
主带
隐蔽卫星DNA
碱基组成与主体DNA碱基组成相差不大,
可以用复性的手段把该DNA分离出来, 该DNA也串联集中分布,这样的DNA叫 隐蔽卫星DNA
六、细胞器基因
大多数动物只有线粒体,植物细胞中既有线粒 体又有叶绿体
线粒体基因 细胞器基因
叶绿体基因
线粒体DNA
遗传方式:母性遗传 含有两条链:重链(H)和轻链(L) 人类的mtDNA有16 569bp,其中有2个rRNA、22 个tRNA和13个蛋白质编码序列 特点: 1、mtDNA比核DNA重复性小,信息密度高,不含 内含子 2、mtDNA的部分区域呈基因重叠 3、mtDNA的突变频率高于核DNA,并缺乏修复功 能
ε 2
γ 1 γ 2 Ψβ 1
δ
β
重复序列
按出现的频率分
低度重复序列 中度重复序列 高度重复序列
重复序列
染色质染色体和染色单体的区别
染色质、染色体和染色单体的区别(1)染色质和染色体的主要成分都是DNA和蛋白质,它们之间的不同,不过是同一物质在细胞分裂间期和分裂期的不同形态表现而已。
染色质出现于间期,呈丝状。
它们在核内的螺旋程度不一,螺旋紧密的部分,染色较深,有的螺旋松疏染色较浅,染色质在光镜下呈现颗粒状,不均匀地分布于细胞核中。
细胞分裂时染色质细丝高度螺旋化形成较粗的柱状和杆状等不同的形状。
不同生物的染色体(习惯不称染色质)数目、形态不同,具有种的特异性,而且比较恒定。
(2)每个染色体一般具有两个臂或一个臂,两臂之间有着丝点(是纺缍丝附着的地方)。
细胞分裂间期由于染色体(习惯不称染色质)复制形成由一个共同着丝点连在一起的两个染色单体被称为姐妹染色单体,这时的染色体仍为一条染色体。
当细胞进入细胞有丝分裂后期,着丝点一分为二,姐妹染色单体也随着分开,各有了自己的着丝点,这时就不再是染色单体而叫染色体了,随之染色体数目加倍,染色单体消失。
①染色体的组成:一个染色体一般呈棍棒状(如图),包含一个着丝点(c)和两个臂(a、b)。
着丝点是纺锤丝附着的地方,少数染色体的着丝点位于一端。
一个染色体只有一个着丝点。
因此,对染色体计数时就是看着丝点的数目。
②在细胞周期中,染色体的形态有两种,并且通过一定的方式相互转化。
下图中,A是通常所说的一个染色体。
B是经过复制的染色体,包含两个姐妹染色单体,两个姐妹染色单体是完全相同的,其含有的物质也与A完全相同。
B的着丝点分裂后,就变成了两个完全相同的染色体,称之为姐妹染色体。
也就是说,染色体复制后至着丝点分裂之前,染色体的个数不变,但包含有染色单体,也仅在这一段时间内有染色单体。
③A的一个染色体上有一个DNA分子,而B的染色体中含2个DNA分子,分别位于2个染色单体上。
随着着丝点分裂,B形成了C中的2个染色体,因而每个染色体只含一个DNA分子。
④要计算细胞中染色体上的DNA分子数:有染色单体时,DNA 分子数=染色单体数,没有染色单体时,DNA分子数=染色体数。
染色体
染色体
第二章遗传的染色体基础遗传物质脱氧核糖核酸(DNA)是以与蛋白质相结合成染色质的形式存在于间期细胞核中,它具有贮存遗传信息、准确地自我复制、转录和调控各种复杂的生命活动等功能。
通过精卵生殖细胞的形成和受精,遗传物质又以染色体的形式由亲代传给子代。
因此,生殖细胞是联系亲代与子代的桥梁,染色体是遗传物质的载体,是复杂的遗传与变异现象的细胞基础。
第一节染色质和染色体1882年Flemming将细胞核内易被碱性染料着色的物质称为染色质(chromatin)。
电镜下,间期核内的染色质呈细微纤丝状,当细胞进入分裂时期,细微纤丝状的染色质经过盘绕折叠成高度凝集的染色体(chromosome)。
因此,染色质和染色体是同一物质在细胞周期的不同时期不同形态结构表现。
一、染色质与染色体的化学组成和结构单位(一)染色质的化学组成通过对多种细胞的染色质进行分析,证明染色质的主要组成成分是DNA、组蛋白、非组蛋白和少量的RNA。
DNA和组蛋白的含量比较稳定,非组蛋白和RNA的含量常随细胞生理状态的不同而改变。
1.DNA 生物体的遗传信息就蕴含于DNA分子的核苷酸序列之中。
因此,DNA就是遗传信息的载体。
DNA的结构性质稳定,不会因细胞的分化而丢失,在同种生物的各类细胞中其含量恒定,生殖细胞中DNA的含量是体细胞的一半。
人类一个体细胞内的DNA重约7.0×10-8g,总长度约2m。
一个基因组的DNA分子大约3×109个碱基对。
真核细胞的DNA总是和大量的蛋白质结合在一起以染色质或染色体的形式存在,每条染色单体只含一个DNA分子。
这类DNA分子中含有单一序列(unique sequence)和重复序列(repetitive sequence),重复序列又按其重复程度分为中等重复序列和高度重复序列。
2.组蛋白(histone)组蛋白是染色质中富含精氨酸和赖氨酸等碱性氨基酸的蛋白质,带正电荷。
根据其所含精氨酸和赖氨酸的比例不同而分为5种类型:即H1、H2A、H2B、H3、H4。
《染色质与染色体》课件
染色质上的DNA甲基化和组蛋白修饰等变化,可能影响基因 的表达,与肿瘤、神经退行性疾病等多种疾病的发生密切相 关。
05
染色质与染色体的研究意义
在遗传学研究中的应用
染色质与染色体的结构和功能研究有助于深入了解基因的表达和调控机制,从而揭示遗传信 息的传递和表达规律。
通过研究染色质与染色体的变异和异常,可以探究人类遗传性疾病的发病机制,为遗传性疾 病的诊断、预防和治疗提供理论依据。
染色质与染色体的研究有助于推动基因治疗、细胞治疗和再生医学等生 物技术的进步,为医学领域的发展提供重要推动力。
THANKS
感谢观看
《染色质与染色体》PPT课件
目 录
• 染色质与染色体的关系 • 染色质的结构与组成 • 染色体的结构与组成 • 染色质与染色体的功能 • 染色质与染色体的研究意义
01
染色质与染色体的关系
染色质与染色体的联系
染色质和染色体是同一物质在不同时 期的两种表现形式。
染色质和染色体都承载着遗传信息, 是基因的载体。
染色体中的蛋白质组成
染色体中的蛋白质主 要是组蛋白和非组蛋 白。
非组蛋白则与DNA 的复制、转录和修复 等过程相关。
组蛋白与DNA紧密 结合,维持染色体的 结构。
染色体的结构模型
染色体的结构模型通常采用螺 旋模型或折叠模型来描述。
螺旋模型描述了DNA双螺旋结 构与组蛋白的结合方式。
折叠模型则描述了染色体的三 维空间结构,包括各种不同的 折叠和包装层次。
染色质的结构模型对于理解染色质的 形成、功能和变化具有重要意义。
03
染色体的结构与组成
染色体的DNA组成
DNA是染色体的主要成分,负责储存 和传递遗传信息。
细胞生物学课件染色质和染色体
为异染色质。
X小体
X染色质
兼性异染色质的总量随细胞类型 而变化;
一般胚胎细胞含量少,高度分化 的细胞含量较多,说明随着细胞分化, 较多的基因渐次以聚缩状态而关闭。 因此,染色质的压缩折叠可能是关闭 基因活性的一种途径。
常、异染色质的区别
常染色质 异染色质
第二节 染色质和染色体
(Chromatin & chromosome)
概念: 染色质与染色体是由DNA、组蛋
白、非组蛋白及RNA等组成的核酸和 蛋白质的复合体,是遗传信息的载体。 是同一种物质在细胞周期的不同时期 中所表现的两种不同的存在形式。
※ 染色质是细胞间期核内伸展 开的DNA蛋白纤维。
※ 染色体是高度螺旋化的DNA 蛋白纤维,是在细胞分裂期看得见 的可用染料染色的条状结构。
存在于核心颗粒,形成 核小体
核小体结构图解
3.组蛋白的化学修饰
乙酰化:可改变赖氨酸所带的电荷, 降低组蛋白与DNA的结合, 调节转录的进行。
磷酸化:同乙酰化
甲基化:可增强组蛋白和DNA的相互 作用,调节转录活性
(三)非组蛋白
非组蛋白是染色体上与特异 DNA序列结合的蛋白质,能识别特 异的DNA序列,识别信息存在于 DNA本身。
1.特 性:
① 酸性蛋白质,带负电荷,富含 天门冬AA,谷AA等酸性AA
② 种类多
③ 具有种属和组织特异性
④ 整个周期都能合成
2.非组蛋白的功能
① 参与构建染色体 ② 启动DNA的复制 ③ 调控基因的转录
组蛋白与非组蛋白的比较
非组蛋白 有种属和细胞特异性 活动的染色质中含量高 整个细胞周期中都能合成 与DNA结合对基因 表达起正调控作用
1.在细胞周期中(除复制期外)都呈浓 缩状态,由高度重复的DNA序列构成。
第二章染色质和染色体总结
4.随体:从次缢痕到短臂末端有一种圆形或略呈长形的
染色体节段。可作为鉴定标志之一。
5.端粒(telomere):末端特化的着色较深部位。 由端粒DNA和端粒结合蛋白(TBP)组成。富含G 的高度重复的短序列组成,末端形成t环。
1978年Blackburn E.B.在研究四膜虫的rDNA 时发现染色体末端有6nt的串联重复:5`— G4T2—3`,重复几十次, 总长度为:370-520bp, Cn(A/T)m, n>1,m1~4 单链长14-16nt
(三)非组蛋白(non-histone)
序列特异性DNA结合蛋白。特性:
• 带负电,富含天冬氨酸、谷氨酸,属酸性蛋白。
种类多达数百种,含量少
主要为结构蛋白和酶类
具有种属和组织特异性
• 整个细胞周期都合成,组蛋白只在S期合成。
(三)非组蛋白(non-histone)
1.
功能:
参与染色体的构建:帮助染色质纤维的 进一步折叠、盘曲 启动基因的复制 基因表达调节、基因产物转运、核内信 息传递,细胞周期中核亚微结构的变化
2. 3.
p39,表2-1
(四)RNA和酶
含量极少,与同源DNA高度杂交 调节基因表达 染色质是多种酶的底物
三、染色质和染色体的功能
是遗传信息贮存、传递及表达(蛋白质) 的物质基础 (一)染色质在遗传中的作用 1、有丝分裂 2、减数分裂
细胞周期
连续分裂的细胞,从一次分裂完成时开始,到下 一次分裂完成时为止。
• 纺锤体呈现典型的纺锤样。 • 位于染色体两侧的动粒微管长度相等, 作用力均衡。
赤道板
第十章 染色质与染色体
(二)灯刷染色体
存在动物的卵母细胞中。其中两栖类卵母细胞的灯刷染色体最典型,在植物中也有报道。
灯刷染色体 是卵母细胞进行减数第一次分裂时停留在双线期的染色体,它是一个二价体,包括4条染色单体 。
DNA--核小体--螺线管--环--微带--染色体
染色体包装的骨架—放射环结构模型示意图:
上述两种关于染色体高级结构的组织模型,前者强调螺旋化,后者强调环化与折叠 。以(图8-14)作为融两种机制在内的染色体包装模型。
四﹑常染色质的异染色质
染色质可分为常染色质的异染色质。
1﹑ 常染色质
配对结构域:
②次缢痕
除主缢痕外,在染色体上其他的浅染缢缩部位称为次缢痕,它在染色体上的位置是固定不变的。
③ 核仁组织区(nucleolar organizing region, NOR)
位于染色体的次缢痕部位,但并非所有次缢痕都是NOR.细胞分裂结束时,核仁总是出现在次缢痕处,它是rRNA的基因所在部位.与间期细胞核仁形成有关。
(二)染色体的骨架----放射环结构模型
直径2nm的双螺旋DNA与组蛋白八聚体构建成的核小体串珠结构,其直径10nm.然后盘绕成30nm的螺线管。由螺线管形成DNA复制环,每18个复制环呈放射状平面排列,结合在核基质上形成微带。微带是染色体高级结构的单位.大约106个微带沿纵轴构建成子染色体。
Z-DNA:也是B-DNA的变构形式,是左手螺旋DNA。
三种构型DNA中,特别是大沟的特征在遗传信息表达过程中起关键作用。此外沟的深浅及宽窄也直接影响调控蛋白对DNA信息的识别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、染色体的形态和数目
• 一染色体的形态特征: • 染色体是细胞核中最重要的组成部份。几乎所有 的生物细胞中,包括噬菌体在内,在光学显微镜 或电子显微镜下都能看到染色体的存在。 • 染色体是遗传物质的载体。 • 各物种的染色体都有特定的形态特征。 • 有丝分裂的中期,染色体收缩得最粗最短,也最 明显和典型,是观察染色体的最好时期 。
基本概念
细胞(cell)是多细胞生物最小的“建筑”单位,细胞只可能 由另一个细胞通过分裂而产生。 原核生物(prokaryote)是最简单的单细胞生物,如细菌。 原核生物缺乏由膜包被的核,以二等分裂(binary fission)来 繁殖。原核生物的遗传物质是单个环状的DNA分子,DNA 上结合有少量的蛋白质。 真核生物(eukaryote)的细胞中,遗传物质位于有膜包被的 核中,遗传物质分布在各条线状染色体上,每条染色体都 由很多蛋白质和DNA组成。
增大,染色体复制, 初级精母细胞形成
间期
◎ 精原细胞体积
增大,染色体复制, 初级精母细胞形成
间期
◎ 精原细胞体积
增大,染色体复制, 初级精母细胞形成
间期
◎ 精原细胞体积
增大,染色体复制, 初级精母细胞形成
间期
染色体复制, 精原细胞体积增大, 姐妹染色单体形成
返回 再来一次
◎ 同源染色体联
会, 四分体出现
G2期,25% 4nDNA S期,40% 2-4nDNA M期,10%
G1期,25% 2nDNA
有丝分裂的过程
可分为四个阶段,前期、中期、后期、末期
前期(prophase)
染色体开始逐渐缩短变粗,形成螺旋状。当 染色体变得明显可见时,每条染色体已含有两 条染色单体 (chromatids),互称为姐妹染色单体 (sister chromatids),通过着丝粒把它们连接在一 起。至前期末,核仁(nucleoli)逐渐消失,核膜开 始破裂,核质和细胞质融为一体。
b b
B B
精子形成过程
A
b
A
b
次级精母细胞 精细胞 a B 精子
a B
◎ 精原细胞体积
增大,染色体复制, 初级精母细胞形成
◎ 精原细胞体积
增大,染色体复制, 初级精母细胞形成
◎ 精原细胞体积
增大,染色体复制, 初级精母细胞形成
◎ 精原细胞体积
增大,染色体复制, 初级精母细胞形成
间期
◎ 精原细胞体积
染色体的分类:
• • • • • 1、中间着丝点染色体:“V型” 2、近中着丝点染色体:“L型” 3、近端着丝点染色体:“棒状” 4、端着丝点染色体:“棒状” 5、粒状染色体:“颗粒状”
染色体(chromosome)
随体 副缢痕
短 臂
着丝粒 中 间 着 丝 粒 近 端 着 丝 粒 端 着 丝 粒
◎ 同源染色体排
列在赤道板两侧
◎ 同源染色体排
列在赤道板两侧
◎ 同源染色体排
列在赤道板两侧
◎ 同源染色体排
列在赤道板两侧
减Ⅰ中期
同源染色体排列 在赤道板两侧
返回
◎ 同源染色体的
分离
◎ 同源染色体的
分离
◎ 同源染色体的
分离
◎ 同源染色体的
分离
◎ 同源染色体的
分离
减Ⅰ后期
同源染色体的分离 非同源染色体自由组合
返回
◎ 形成两个次级
精母细胞,染色体 数目减半
◎ 形成两个次级
精母细胞,染色体 数目减半
◎ 形成两个次级
精母细胞,染色体 数目减半
◎ 形成两个次级
精母细胞,染色体 数目减半
◎ 形成两个次级
精母细胞,染色体 数目减半
◎ 形成两个次级
精母细胞,染色体 数目减半
◎ 形成两个次级
精母细胞,染色体 数目减半
着丝粒
后期(anaphase)
Fluorescent microscope image of a cultured cell in anaphase.
末期(telophase)
末期子细胞的染色体凝缩为一个新核, 在核的四周核膜重新形成,染色体又变为 均匀的染色质,核仁又重新出现,又形成 了间期核。末期结束时,纺缍体被降解, 细胞质被新的细胞膜分隔为两部分,结果 产生了两个子细胞,其染色和原来细胞中 的完全一样。
染色质与染色体
• 染色质: 真核细胞间期细胞核内伸 展开的DNA蛋白质纤维。 • 染色体: 真核细胞有丝分裂期高度 螺旋化的DNA蛋白质纤维, 是间期染色质进一步紧密 盘绕折叠的结果。 • 染色质和染色体是真核细 胞内遗传物质DNA分子的存 在形式;这种结构形式对 遗传信息的稳定、传递和 表达都有极为重要的影响。
◎ 形成两个次级
精母细胞,染色体 数目减半
◎ 形成两个次级
精母细胞,染色体 数目减半
减Ⅰ末期
形成两个次级 精母细胞,染色体 数目减半,但不是平分
返回 再来一次
◎ 中期:染色体的着丝
点排列在赤道板上 ◎ 后期:着丝点分裂, 染色体一分为二,姐妹染 色体向两极移动
◎末期:分裂结果形成
四个精细胞
◎ 变形:精细胞变形形成四个蝌蚪
纺缍丝
中 期(metophase)
Scanning electron micrograph of the centromeric region of a metaphase chromosome
后期(anaphase)
在后期,着丝粒纵裂为二,姐妹染 色单体彼此分离,各自移向一极。染色 体的两臂由着丝粒拖着移动,这时染色 体是单条的,称为子染色体
• 多核细胞:细胞核进行多次重复分裂, 细胞质不分裂,形成一个细胞中(质) 具有多个核。 • 核内染色体分裂:核内染色体分裂 (染色线连续复制),而细胞核不分 裂,形成多线染色体或巨型染色体。 如果蝇的唾腺染色体。
果 蝇 唾 腺 染 色 体
减数分裂
概 念: 对象: 进行有性生殖的生物 范围: 原始生殖细胞 成熟生殖细胞
◎末期:分裂结果形成
四个精细胞
◎ 变形:精细胞变形形成四个蝌蚪
状的精子
◎ 中期:染色体的着丝
点排列在赤道板上 ◎ 后期:着丝点分裂, 染色体一分为二,姐妹染 色体向两极移动
◎末期:分裂结果形成
四个精细胞
◎ 变形:精细胞变形形成四个蝌蚪
状的精子
◎ 中期:染色体的着丝
点排列在赤道板上 ◎ 后期:着丝点分裂, 染色体一分为二,姐妹染 色体向两极移动
◎末期:分裂结果形成
四个精细胞
◎ 变形:精细胞变形形成四个蝌蚪
状的精子
◎ 中期:染色体的着丝
点排列在赤道板上 ◎ 后期:着丝点分裂, 染色体一分为二,姐妹染 色体向两极移动
◎末期:分裂结果形成
四个精细胞
◎ 变形:精细胞变形形成四个蝌蚪
1 3
联会:
同源染色体 两两配对的现象。 联会始于偶线期, 中止在双线期。
同源染色体
4
2
同源染色体
非同源染色体:形状和大小不同,不能联会的染
色体。其来源不限,如:1和3,1和4,2和3,2和4。
四分体:联会后的每对同源染色体会有4条染色单体。
1个四分体 = 1对同源染色体 = 2条染色体 = 4条单体 = 4个DNA
长 臂
染色体数目是生物物种的特征性标志之一
人染色体
果蝇染色体 4对
有丝分裂(mitosis)
细胞周期(cell cycle):从一个新产生的细胞到它 分裂产生子细胞这一过程称为细胞周期。它可 分成四个阶段:M期、S期、G1期和G2期。 M是分裂期,通常是细胞周期中最短的时期, 约占整个时期的5-10%的时间。 DNA的合成发生在S期(systhesis). G1(gap1)和G2(gap2)是S期和M期之间的两个间 隙期。G1、S、G2合称为间期(interpahse)。此 期染色质均匀地分布于核中,所以在显微镜下 看不到染色体。
中心体
核仁
染色体
早前期(early prophase) (图例为洋葱根尖切片)
晚前期(late prophase)
中期(metophase)
在此期纺缍体(spindle)逐渐明显, 这个鸟笼状的结构在核区形成,由细胞 两极间一束平行的纤丝构成。着丝粒附 着在染色体上,染色体向细胞的赤道板 (equatorial plane)移动
状的精子
◎ 中期:染色体的着丝
点排列在赤道板上 ◎ 后期:着丝点分裂, 染色体一分为二,姐妹染 色体向两极移动
◎末期:分裂结果形成
四个精细胞
◎ 变形:精细胞变形形成四个蝌蚪
状的精子
◎ 中期:染色体的着丝
点排列在赤道板上 ◎ 后期:着丝点分裂, 染色体一分为二,姐妹染 色体向两极移动
◎末期:分裂结果形成
特点: 细胞连续分裂两次,而染色体只复制 一次 结果: 成熟生殖细胞中的染色体数目减少一半
注:第一次分裂称为减数第一次分裂;第二次称为减数第二次分裂。
减数分裂(meiosis)
减数分裂(又称成熟分裂):是在配子形成过 程中进行的一种特殊的有丝分裂。包括两次连 续的核分裂而染色体只复制一次,每个子细胞 核中只有单倍数的染色体的细胞分裂形式。
交叉(chiasma):非姐妹染色单体间若干处相互交叉 缠结,交叉是染色单体发生交换的结果。
交换(crossing over):非姐妹染色单体间发生遗传物 质的局部交换。
四分体中的非姐妹染色单体间常交换部分片段。
a a’b b’
c c’d d’
A B
C D
初级精母细胞 A 联会 A a a
两次连续的核分裂分别称为第一次分裂和第二 次分裂。每次分裂都可以分成前、中、后、末 四期。其中最复杂和最长的时期是前期I,又可 分为细线期、偶线期、粗线期、双线期和终变 期。