最新3济南大学高等数学中值定理及导数的应用-疑难解答汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3济南大学高等数学中值定理及导数的应用-疑难解答

第四章中值定理及导数的应用习题选解

习题4-1 中值定理

1.验证下列各题,确定ξ的值:

(1)对函数«Skip Record If...»在区间«Skip Record If...»上验证罗尔定理;

(3)对函数«Skip Record If...»及«Skip Record If...»在区间«Skip Record If...»上验证柯西中值定理.

解(1)显然«Skip Record If...»在«Skip Record If...»上满足罗尔定理的条件,由罗尔定理知至少有一点«Skip Record If...»使得«Skip Record If...».

解«Skip Record If...»得«Skip Record If...»,取n=0,«Skip Record If...»«Skip Record If...»

显然«Skip Record If...»,故确有«Skip Record If...»使«Skip Record If...».

(3)因为«Skip Record If...»及«Skip Record If...»在«Skip Record If...»上连续,«Skip Record If...»内可导,且«Skip Record If...»在«Skip Record If...»内不为0.由柯西中值定理知,至少«Skip Record If...»使«Skip Record If...»,即1=«Skip Record If...». 故«Skip Record If...»满足柯西中值定理.

2.证明下列不等式:

(3)«Skip Record If...»«Skip Record If...»«Skip Record If...»;

(4) 当«Skip Record If...»时,«Skip Record If...».

(3)当«Skip Record If...»时,显然成立.

当«Skip Record If...»时,令«Skip Record If...»«Skip Record If...»时同理可得,由«Skip Record If...»在«Skip Record If...»上连续,«Skip Record If...»内可导,得

«Skip Record If...» «Skip Record If...»,

即«Skip Record If...» «Skip Record If...»,所以

«Skip Record If...»«Skip Record If...»«Skip Record If...».

(4)令«Skip Record If...»,由于函数«Skip Record If...»在«Skip Record If...»上连续,«Skip Record If...»内可导,所以

«Skip Record If...»即«Skip Record If...»因为«Skip Record If...»,故«Skip Record If...»,所以«Skip Record If...»,即«Skip Record If...».

5.不用求出函数«Skip Record If...»的导数,试判别方程«Skip Record If...»的根的个数.

解由于«Skip Record If...»在«Skip Record If...»上连续,«Skip Record If...»内可导,且«Skip Record If...»,所以由罗尔定理可知:«Skip Record If...»,使«Skip Record If...».同理«Skip Record If...»,使«Skip Record If...»,«Skip Record If...»使«Skip Record If...».显然«Skip Record If...»都是方程«Skip Record If...»的根.

注意到方程«Skip Record If...»为三次方程,它只能有三个根(包括实根、复根),故«Skip Record If...»也就是方程«Skip Record If...»的三个实根.又«Skip Record If...»在«Skip Record If...»上满足罗尔定理的条件,故存在«Skip Record If...»,使«Skip Record If...»,存在«Skip Record If...»,使«Skip Record If...».而«Skip Record If...»是一个二次多项式,至少有两个实根.因此,方程«Skip Record If...»有且仅有两个实根.

6.若函数«Skip Record If...»在«Skip Record If...»内满足关系式«Skip Record If...»且

«Skip Record If...»,证明:«Skip Record If...».

证作函数«Skip Record If...»,

«Skip Record If...»,

故«Skip Record If...»(常数).又«Skip Record If...»,得«Skip Record If...»所以«Skip Record If...»即«Skip Record If...».

习题4-2 洛必达法则

1.用洛必达法则求下列各极限:

(8)«Skip Record If...»;(9)«Skip Record If...»;

(10)«Skip Record If...» ; (11)«Skip Record If...»;

(12)«Skip Record If...» ; (13)«Skip Record If...»;

(14)«Skip Record If...».

(8)«Skip Record If...»

(9) «Skip Record If...»=«Skip Record If...»

(10) «Skip Record If...»

(11) «Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...»

(12) «Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»

(13) 设«Skip Record If...»,则«Skip Record If...»,

«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»

所以«Skip Record If...»

(16)设«Skip Record If...»,则«Skip Record If...»,

«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»,所以«Skip Record If...»

2.验证极限«Skip Record If...»存在,但不能用洛必达法则求出.

解 «Skip Record If...» , 但 «Skip Record If...».

用洛必达法则计算所得到的式子极限不存在(不包括∞),故洛必达法则失效. 习题4-3 导数的应用

1.确定下列函数的单调区间:

(2)«Skip Record If...»; (8)«Skip Record If...»

解(2)«Skip Record If...»,对任意«Skip Record If...»内至少有有限个零点,故«Skip Record If...»在«Skip Record If...»内单调增加,又由M的任意性知,«Skip Record If...»在(-∞,+∞)内单调增加.

相关文档
最新文档