初高中数学衔接精讲精练(全集共4课时)

合集下载

韦达定理及其应用课件-2022年初高衔接数学

韦达定理及其应用课件-2022年初高衔接数学

方法总结
当 = −1时,
方程为 2 − 16 + 5 = 0,∆> 0满足题意;
当 = 17时,
方程为 2 + 30 + 293 = 0,
∆= 302 −4 × 1 × 293 < 0 ,不满足题意,
所以舍去;
综上所述: 的值为−1.
点拨精讲
变式探究2:
已知1 和2 一元二次方程4 2 − 4 + + 1 = 0的
则有
−± 2 −4

2
−+ 2 −4
−− 2 −4
−2

1 + 2 =
+
=
=− ;
2
2
2

−+ 2 −4 −− 2 −4
2 −( 2 −4)
1 ∙ 2 =

=
2
2
42
4
= 2= ;
4

知识梳理
所以,一元二次方程的根与系数之间存在下列关系:
因此这两个数是−2和6.
总结提炼
本节课重点研究了一元二次方程韦达定理的
综合应用,能够利用韦达定理求一些与实数根有
关代数式的值,并能够利用根的情况逆向构造所
需要的一元二次方程,这种思想的渗透与领悟希
望大家细细品味,学会用数学的眼光思考世界!
项系数为1)是 2 −(1 + 2 ) + 1 ∙ 2 = 0.
点拨精讲
探究一:已知方程求代数式的值
例1、 若1 和2 分别是一元二次方程2 2
+5-3=0的两根,试求下列各式的值:
(1)(1 − 5)(2 − 5)
(2)|1 − 2 |

人教版高一数学A必修1全册例题讲解及练习题(65页)

人教版高一数学A必修1全册例题讲解及练习题(65页)

(i)若 a = 0 时,得 N = Æ ,此时, N Í M ;
(ii)若 a ¹ 0 时,得 N
1 ={ }.
若N
ÍM
,满足 1
= 2或 1
= -3 ,解得 a =
1 或a = - 1 .
a
a
a
2
3
故所求实数 a 的值为 0 或 1 或 - 1 . 23
点评:在考察“ A Í B ”这一关系时,不要忘记“ Æ ” ,因为 A = Æ 时存在 A Í B . 从而需要分情况讨
第 1~27 练 答案 …………………………(55~65)
《新课标高中数学必修①精讲精练》——精讲
第一章 集合与函数概念
第 1 讲 §1.1.1 集合的含义与表示
¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、 集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用 数集及其记法、集合元素的三个特征.
A ¹Ì B(或 B ¹É A).
4. 不含任何元素的集合叫作空集(empty set),记作 Æ ,并规定空集是任何集合的子集. 5. 性质: A Í A ;若 A Í B , B Í C ,则 A Í C ;
若 A I B = A ,则 A Í B ;若 A U B = A ,则 B Í A .
={x |
x
=
2n +1,n 2
Î Z} ,易知
B ¹Ì
A,故答案选
A.
{ } 【例 3】若集合 M = x | x2 + x - 6 = 0 , N = {x | ax - 1 = 0} ,且 N Í M ,求实数 a 的值.

2021-2022学年新高一数学暑期衔接讲义-第3讲 不等式的进阶——一元二次不等式(解析版)

2021-2022学年新高一数学暑期衔接讲义-第3讲 不等式的进阶——一元二次不等式(解析版)

进门测试建议5min①关于x 的二次方程x 2+2(m +3)x +2m +14=0有两根,且一个大于1,一个小于1,求m 的范围; ②关于x 的二次方程x 2+2(m +3)x +2m +14=0有两根,且在内,求m 的范围;③关于x 的二次方程x 2+2(m +3)x +2m +14=0有两根,且在[1,3]之外,求m 的范围;④关于x 的二次方程mx 2+2(m +3)x +2m +14=0有两根,且一个大于4,一个小于4,求m 的范围. 【答案】(1);(2);(3);(4). 课堂导入建议10min柯西柯西1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职.由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒.他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方.精讲精练214m <-2755m -<≤-214m <-19013m -<<[0,1]2=++x px【解析】由px q x+≥对于一切实数q≥①, q=-2p-26.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离. 在某种路面上,某种型号汽车的刹车距离s (m)与汽车的车速(km/h)满足下列关系:s =n v 100+v 2400(n 为常数,且n ∈N *),做了两次刹车试验,有关试验数据如图所示,其中⎩⎪⎨⎪⎧6<s 1<814<s 2<17.(1)求n 的值;(2)要使刹车距离不超过12.6 m ,则行驶的最大速度是多少?【答案】(1)n=6,(2)60 km/h【解析】(1)依题意得⎩⎨⎧6<40n 100+1 600400<814<70n 100+4 900400<17,解得⎩⎪⎨⎪⎧5<n <1052<n <9514,又n ∈N *,所以n =6.(2)s =3v 50+v 2400≤12.6⇒v 2+24v -5 040≤0⇒-84≤v ≤60,因为v ≥0,所以0≤v ≤60,即行驶的最大速度为60 km/h.7. 设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.【解析】(1)当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,解集为{x |-1<x <2}. (2)由函数F (x )=f (x )-x 的两个零点为m ,n ,得f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .温故知新建议15min课后巩固1、将本节课错题进行组卷,进行二次练习,培养错题管理习惯;2、对笔记本进行复习,培养复习习惯。

初高中衔接课程(10)

初高中衔接课程(10)

目录课程说明 (2)使用说明 (3)第一讲基本运算问题 (4)第二讲方程与方程组 (14)第三讲一次函数与反比例函数 (24)第四讲二次函数 (35)第五讲不等式 (46)第六讲函数的综合应用 (58)第七讲三角形与四边形 (70)第八讲锐角三角函数 (79)第九讲圆 (79)第十讲高中数学常见的思想方法 (79)课程说明课程名称初高中数学衔接课程课程定位关注初高中数学教材编排特点;关注初高中学生的思维发展水平;总体课程目标通过本课程的学习,能够起到以下效果:一、弥补基础知识的不足,夯实学习高中数学的良好基础.二、训练运算能力、空间想象能力、逻辑推理能力和分析问题解决问题的能力.三、初步掌握高中数学思想方法,形成良好的学习习惯.课程适用区域(省或直辖市)适用使用新课标教学的地区课程研发理念和思路高中数学难,难就难在初高中数学无论是在知识的广度和难度上,还是在思维模式和学习方法上,都存在较大的差异,形成了一个“高台阶”.特别在新一轮课程改革后,初中数学的教学要求有所降低,有些学习高中数学所必须具备的基础知识、常用方法和基本能力,在初中的教材中都进行了淡化处理,有的甚至不做要求.《初高中数学衔接课程》旨在帮助即将进入高中的学生弥补知识储备的漏洞,掌握基本的数学思想方法,形成良好学习习惯,提振学习信心,闯过高中数学的第一道坎.主要内容编号课题课程容量第一讲基本运算问题120分钟第二讲方程与方程组120分钟第三讲一次函数与反比例函120分钟第四讲二次函数120分钟第五讲不等式120分钟第六讲函数的综合应用120分钟第七讲三角形与四边形120分钟第八讲锐角三角函数120分钟第九讲圆120分钟第十讲高中数学常见的思想方法120分钟使用说明本课程适合在即将学习高中数学课程的初中毕业生中使用.共分十讲,每讲安排有教学目标、重难点提示、基础知识梳理、主要方法归纳、典型例题精讲和课后巩固练习等栏目.无论在小组课还是一对一授课过程中,老师都可以进行二次开发,更需要根据学生的具体情况进行个性化处理,让我们共同成为精品课程的开发者.第10讲高中数学常见的思想方法教学内容方法一配方法我们知道,在数学运算中,a a =+0,a a =⨯1,即给任何一个数学式加上0或乘以1仍然等于这个数学式.这就告诉我们,对一个数学式进行加上0,或者乘以1的转换是等价转换.我们还知道,0=-b b ,)0(1≠=c cc,即0可以表示为任意一个数自身相减,1可以表示为任意一个不为零的数自身相除.于是有,b b a a -+=,)0(≠=c caca .从形式上看,我们将数学式a 化为b b a -+或)0(≠c cac使数学式化繁了,但是,如果当这种“化繁”后能使问题更加明朗,并最终能化简问题,解决问题,那这种化繁是必要的.同时,正是因为我们习惯于化简,而是这种化繁的方法更具有技巧性.例如,设31=--c a c b ,则=--c b ba . 将cb b a --化为cb c b c a ----)()(,代数式化繁了,但问题却已明朗了. 在处理数学问题的过程中,根据解题需要通过“配”与“凑”这种重要的等价转换手段,使问题趋于明朗,并顺利获解的解题方法,称为配凑法.运用配凑法的目的是使问题获解,因而合理的配凑应该能使我们更好地利用题设条件和已有的知识储备,更加接近我们所需要的结论.课时数量 2课时(120分钟)适用的学生水平☐优秀 ☐中等 ☐基础较差教学目标帮助学生初步把握常见的数学解题的通法,抓住配方法、换元法、待定系数法、图像法的本质,为科学有效地学习高中数学做准备.通过典型例题的分析,常规方法的总结,有限习题的训练,形成相对固定的解题思维链,获取解答无限同类问题的智慧.教学重点、难点 重点:理解数学方法的本质,有效运用所学方法解决问题 难点:方法的选择与灵活运用 建议教学方法讲练结合√很多情况下,我们需要将一个数学式配出一个完全平方式来,再利用完全平方式的性质找到已知和未知的联系,使问题得到解决.例如,我们研究函数xx x f 1)(+=在0>x 时的最小值. 当0>x 时,22)1(1)(22+-+=+=xx x x x f =2)1(2+-xx ≥2.∴当1=x 时,21=)(=)(min f x f . 这里就是配凑出完全平方式后利用2)1(xx -≥0的性质得出结论的.这种将数学式配凑出完全平方式的方法,称为配方法.配方法是特殊的配凑法.配方法的基本依据是完全平方公式.常见的配方可以分成为下面两类: (1)形如ab a 22+的二次式的配方.很明显,在这种情形下,可以通过加上并且减去平方项2b ,把它配成一个完全平方与另一项的和(或差),即222222)(22b b a b b ab a ab a -+=-++=+.其实,一般一元二次三项式c bx ax ++2的配方就是这种类型的配方..442]442[]2222[222222222a b ac a b x a a b ac a b x a a c a b a b x a b x a a c x a b x a c bx ax -+⎪⎭⎫ ⎝⎛+=-+⎪⎭⎫ ⎝⎛+=+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+⋅⋅+=⎪⎭⎫ ⎝⎛++=++这种形式的配方应用比较广泛.在初中我们曾用此法导出一元二次方程c bx ax ++2=0的求根公式.作二次函数=y c bx ax ++2的图象和求它的极值时,也都是这样进行配方的.(2)形如22b a +的二次式的配方.这个二次式是两个单项式的平方和,所以只要加上并且减去这两个单项式乘积的两倍,就可以把它配成一个完全平方与另一项的和(或差),即ab b a ab b ab a b a 2)(2222222-+=-++=+;或ab b a ab b ab a b a 2)(2222222+-=++-=+. 这种形式的配方,在解某些问题中也常要用到.方法二 图像法利用图像这种特殊且形象的数学语言工具,来表达各种现象的过程和规律,这种方法称为图像法.数形结合思想:是应用客观事物中数与形的对应关系,把抽象的数学语言与直观的图形结合起来,①寻求解题的切入点②简化解题过程③转换命题④验证结论的正确与完整;数形结合的思想就是利用图形进行思维简缩,对选择、填空题的求解住住能大大简化思维过程,争取解题时间;数形结合往往借助:①函数与图像的对应关系②方程与曲线的对应关系③以几何元素,几何条件建立的概念。

第九讲 充分必要条件(精讲)(解析版)

第九讲  充分必要条件(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第九讲充分必要条件(精讲)(解析版)【知识点透析】一:充分条件与必要条件的概念命题真假若“p ,则q ”为真命题“若p ,则q ”为假命题推出关系p ⇒qp ⇏q条件关系p 是q 的充分条件q 是p 的必要条件p 不是q 的充分条件q 不是p 的必要条件【注意】(1)前提p ⇒q ,有方向,条件在前,结论在后;(2)p 是q 的充分条件或q 是p 的必要条件;(3)改变说法:“p 是q 的充分条件”还可以换成q 的一个充分条件是p ;“q 是p 的必要条件”还可以换成“p 的一个必要条件是q 二、充分条件、必要条件与集合的关系A ⊆B p 是q 的充分条件q 是p 的必要条件A B p 是q 的不充分条件q 是p 的不必要条件B ⊆A q 是p 的充分条件p 是q 的必要条件B A q 是p 的不充分条件p 是q 的不必要条件充分必要条件判断精髓:小集合推出大集合,小集合是大集合的充分不必要条件,大集合是小集合的必要不充分条件;若两个集合范围一样,就是充要条件的关系;三、充要条件的概念一般地,如果既有p ⇒q ,又有q ⇒p ,就记作p ⇔q .此时,我们说,p 是q 的充分必要条件,简称充要条件.【知识点精讲】题型一充分条件与必要条件的判断【例题1】(2023·山东威海高一期末)2x =是260x x +-=的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件【答案】A【解析】首先2026x x x +-⇒==,其次2260x x x +-==⇔或3x =-,则2260x x x +-==⇒,所以:2x =是260x x +-=的充分不必要条件,故选A.【例题2】(2022·广东·化州市第三中学高一期末)已知命题p :x 为自然数,命题q :x 为整数,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】根据两个命题中的x 取值范围,分析是否能得到p ⇒q 和q ⇒p .【详解】若x 为自然数,则它必为整数,即p ⇒q .【例题3】(2022春•山西太原高一期中)已知非零复数a ,b ,那么“2a ab =”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】①若0a =,1b =时,满足2a ab =,但a b =不成立,∴充分性不成立,②若a b =时,则2a ab =,∴必要性成立,2a ab ∴=是a b =的必要不充分条件,故选B.【例题4】.(2022·河南安阳高一课时检测)设计如图所示的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是()A .B .C .D .【答案】C【分析】利用充分条件、必要条件的定义,逐项分析判断作答.【详解】对于A,若开关A 闭合,则灯泡B 亮,而开关A 不闭合C 闭合,灯泡B 也亮,即“开关A 闭合”是“灯泡B 亮”的充分不必要条件;对于B,灯泡B 亮当且仅当开关A 闭合,即“开关A 闭合”是“灯泡B 亮”的充要条件;对于C,开关A 闭合,灯泡B 不一定亮,而开关A 不闭合,灯泡B 一定不亮,即“开关A 闭合”是“灯泡B 亮”的必要不充分条件;对于D,开关A 闭合与否,只要开关C 闭合,灯泡B 就亮,“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C【例题5】(2023·江苏高一专题检测)若命题:2p x >;命题2:320q x x -+>,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】.A【解析】命题:2p x >.由命题2:320q x x -+>,解得:命题:{|1q x x <或2}x >.p q ∴⇒.即p 是q 的充分不必要条件.故选:A【例题6】.(2022·甘肃·兰州市第五十五中学高三开学考试(文))已知x ∈R ,则“31x -<”是“260x x --+<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例题7】(2022·甘肃景泰二中高一课时检测)使不等式成立的一个充分不必要条件是)A .0x <B .0x ≥C .{3,5}D .35x ≤【答案】A 【解析】由-5x +3≥0,得{x |x ≤35},只有选项A 中x 的范围为其真子集.故选:A.【例题8】(2022·湖北武汉高一课时检测)伟人毛泽东的《清平乐•六盘山》传颂至今,“天高云淡,望断南飞雁.不到长城非好汉,屈指行程二万,六盘山上高峰,红旗漫卷西风,今日长缨在手,何时缚住苍龙?”现在许多人前往长城游玩时,经常会用“不到长城非好汉”来勉励自己,由此推断,“到长城”是“为好汉”的()A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】.B【解析】解:设p ⌝为不到长城,推出q ⌝非好汉,即p q ⌝⇒⌝,则q p ⇒,即好汉⇒到长城,故“到长城”是“好汉”的必要条件,故选:B .【例题9】(2022·江苏高一专题检测)设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,则甲是丁的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】.A【解析】记甲、乙、丙、丁各自对应的条件构成的集合分别为A ,B ,C ,D ,由甲是乙的充分不必要条件得,B A ⇒由乙是丙的充要条件得,C B ⇒,由丁是丙的必要不充分条件得,DC ⇒所以DA ⇒,故甲是丁的充分不必要条件.故选:A.【变式1】(2022·陕西榆林高一期末)下列“若p ,则q ”形式的命题中,p 是q 的充分条件的是()A .若两个角是对顶角,则两个角相等B .若5x >,则10x >C .若ac bc =,则a b =D .若x y +是偶数,则x ,y 都是偶数【答案】A【解析】对于A ,对顶角相等,正确;对于B ,若5x >,则10x >,错误;对于C ,若ac bc =,则a b =条件是0c ≠,故C 错误;对于D ,x ,y 是奇数x y +是偶数,故D 不是充要条件.故选A.【变式2】(2022·广东佛山市·高二期末)已知x ∈R ,则“2x =-”是“2560x x -->”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】解:不等式2560x x -->即为:1)60()(x x -+>,解得:1x <-或6x >,因为()()2,16,-∈-∞-+∞ 可知:“2x =-”是“2560x x -->”的充分不必要条件.故选:A .【变式3】.(2022·河北张家口高二期末)已知,a b 为实数,则“22a b >”是“330a b >>”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【分析】根据充分与必要条件的定义,结合不等式的性质判断即可【详解】当2,1a b =-=时,2222(2)411a b =-=>==,而3381a b =-<=,所以22a b >成立不是330a b >>成立的充分条件;因为330a b >>,所以0a b >>,所以22a b >,所以22a b >成立是330a b >>成立的必要而不充分条件.故选:B.题型二充分条件与必要条件的应用【例题10】(2023·山东青岛高三专题模拟)已知p :1x >或2x <-,q :x a >,若q 是p 的充分不必要条件,则a 的取值范围是()A.{}2a a <-B.{}2a a >-C.{}21a a -<≤D.{}1a a ≥【答案】D【解析】设p 表示的集合为{|1A x x =>或}2x <-,q 表示的集合为{}|B x x a =>,由q 是p 的充分不必要条件,可得B 是A 的真子集,利用数轴作图如下:所以1a ≥,故选:D.【例题11】.(2023·江苏无锡高三专题模拟)已知p 2>,q :0m x -<,若p 是q 的充分不必要条件,则m 的取值范围是()A .3m <B .3m >C .5m <D .5m >【例题12】.(2022·长沙市南雅中学高二月考)已知集合{}2680A x x x =-+<,()(){}10B x x a x a =---<,若x A ∈是x B ∈的必要条件,则a 的取值范围是()A .()2,3B .[]2,3C .()(),23,-∞+∞D .(][),23,-∞⋃+∞【答案】.B【解析】由{}{}268024A x x x x x =-+<=<<,1a a +> ,{}1B x a x a ∴=<<+,若x A ∈是x B ∈的必要条件,则必有B 是A 的真子集;142a a +≤⎧∴⎨≥⎩,23a ≤≤;故答案选:B【例题13】.(2022·新疆师范大学附属中学高二阶段练习(文))已知条件p :x a >,条件q :1>02xx -+.若p 是q 的必要不充分条件,则实数a 的最大值是________.【答案】2-【分析】利用不等式的解法化简q ,根据必要不充分条件即可得出范围,进而求出最值.【变式1】.(2023·湖北省孝感市第一高级中学高一开学考试)已知p :2x a +<,q :x a ≥,且p 是q 的充分不必要条件,则实数a 的取值范围是()A .1a ≤-B .1a <-C .1a ≥D .1a >【答案】.A由||2x a +<可得22a x a --<<-∴p :22a x a--<<-又p 是q 的充分不必要条件,且q :x a ≥,∴2a a --≥∴1a ≤-【变式2】.(2022·云南曲靖高一课时检测)已知命题2:320p x x -+≤,命题22:440q x x m -+-≤.若p 是q 的充分不必要条件,则m 的取值范围是()A .(,0]-∞B .[1,)+∞C .{0}D .(,1][1,)-∞-+∞ 【答案】.D2:320p x x -+≤,12x ≤≤,22:440q x x m -+-≤,22m x m -≤≤+,p 是q 的充分不必要条件,则2122m m ⎧-≤⎪⎨+≥⎪⎩,1m ≥,∴1m ≤-或m 1≥.故选:D.【变式3】.(2023·江苏省海头高级中学高一月考)设全集U =R ,集合2{|650}A x x x =-+-≥,集合{|122}B x a x a =--≤≤-.(1)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.【答案】.(1)7a ≥;(2)13a <.【解析】解不等式2650x x -+-≥可化为2650x x -+≤,解得15x ≤≤,所以{|15}A x x =≤≤(1)因为“x A ∈”是“x B ∈”的充分条件,所以A B ⊆,所以12125a a --≤⎧⎨-≥⎩,解得7a ≥,所以实数a 的取值范围是7a ≥;(2)因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆.当B =∅时,122a a -->-,解得13a <;当B ≠∅时,所以12125212a a a a --≥⎧⎪-≤⎨⎪-≥--⎩,无解.综上,实数a 的取值范围是13a <.题型三充分性与必要性的证明【例3】(2022·河北保定高一课时检测)已知0ab ≠,求证:1a b +=的充要条件是33220a b ab a b ++-=-.【答案】见解析【解析】证明必要性:因为1a b +=,所以10a b +-=.所以()()()33222222a b ab a b a b a ab baab b ++--=+-+--+()()221a b a ab b =+--+0=.证明充分性:因为33220a b ab a b ++--=,即()()2210a b a ab b+--+=,又0ab ≠,所以0a ≠且0b ≠.因为22223024b a ab b a b ⎛⎫-+=-+> ⎪⎝⎭,所以10a b +-=,即1a b +=.综上可得当0ab ≠时,1a b +=的充要条件是33220a b ab a b ++--=.【变式】(2023·云南曲靖高一课时检测)求证:关于x 的方程20ax bx c ++=有一个根为1的充要条件是0a b c ++=.【答案】证明见解析【解析】充分性:0a b c ++= ,c a b ∴=--,代入方程20ax bx c ++=得20ax bx a b +--=,即()()10x ax a b -++=.∴关于x 的方程20ax bx c ++=有一个根为1;必要性: 方程20ax bx c ++=有一个根为1,1x ∴=满足方程20ax bx c ++=,2110a b c ∴⨯+⨯+=,即0a b c ++=.故关于x 的方程20ax bx c ++=有一个根为1的充要条件是0a b c ++=.。

4.5 函数的应用(二)(精练)-2022版高中数学新同步精讲精炼(必修第一册)(教师版含解析)

4.5 函数的应用(二)(精练)-2022版高中数学新同步精讲精炼(必修第一册)(教师版含解析)

4.5 函数的应用(二)【题组一 零点的求解】1.若函数()2f x x ax b =-+的两个零点是2和3,则函数()21g x bx ax =--的零点是A .1-和16 B .1和16- C .12和13 D .12-【答案】B 【解析】函数()2f x x ax b=-+的两个零点是2和3, 由函数的零点与方程根的关系知方程2=x ax b -+的两根为2和3.结合根与系数的关系得2323a b +=⎧⎨⨯=⎩,即56a b =⎧⎨=⎩, ∴()2651g x x x =--,∴g (x )的零点为1和16-,故选B.2.(2020·北京高一期中)已知函数21ln ()xf x x-=,那么方程f (x )=0的解是( ) A .1=x eB .x =1C .x =eD .x =1或x =e【答案】C【解析】依题意()21ln 0xf x x-==,所以1ln 0,ln 1,x x x e -===.故选:C 3.(2020年广东湛江)若函数()2f x x ax b =-+的两个零点是2和3,则函数()21g x bx ax =--的零点是A .1-和16 B .1和16- C .12和13 D .12-【答案】B 【解析】函数()2f x x ax b=-+的两个零点是2和3, 由函数的零点与方程根的关系知方程2=x ax b -+的两根为2和3.结合根与系数的关系得2323a b +=⎧⎨⨯=⎩,即56a b =⎧⎨=⎩, ∴()2651g x x x =--,∴g (x )的零点为1和16-,故选B.【题组二 零点区间的判断】1.(2020·浙江高一课时练习)在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭【答案】C【解析】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩,所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 2.(2020·浙江高一课时练习)设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00,x y ,则0x 所在的区间是( )A .0,1B .1,2C .()2,3D .()3,4【答案】B【解析】因为根据题意可知,当x=1时,则23102x x -⎛⎫< ⎪⎝⎭-,而当x=2时,则23102x x -⎛⎫-> ⎪⎝⎭,故选B.3.(2020天津高一期中)在下列个区间中,存在着函数3()239f x x x =--的零点的区间是( ) A .(1,0)- B .(0,1)C .(1,2)D .(2,3)【答案】C 【解析】由()()1239100,2166910f f =--=-=--=.由零点存在定理知函数()3239f x x x =--在()1,2上必有零点。

专题03 二次函数y=ax2+bx+c的图像和性质(解析版) 初升高数学无忧衔接(沪教版2020)

专题03  二次函数y=ax2+bx+c的图像和性质(解析版) 初升高数学无忧衔接(沪教版2020)

热身练习
一、单选题
1.(2020·河北邯郸市·高一开学考试)抛物线 y x2 bx c 图象向右平移 3 个单位再向下平移 4 个单位,
所得图象的解析式为 y x2 2x 2 ,则 b 、 c 的值为( )
A. b 4 , c 9
【答案】A
B. b 4 , c 9 C. b 4 , c 9
又 b 1,所以 b 2a ,代入得 a 2a +c>0 ,
2a 所以 3a c 0 成立,故②正确; 当 x 1 时, y 0 ,所以 a+b+c 0 ,即 a+c b ,
又 a+c>b ,所以 a+c2 b2 0 ,故③正确;
对称轴是 x 1 ,当 x 1 时,有最小值 a+b+c , 所以 a+b+c am2 +bm+c ,所以 a b m(am b) ,故④正确,
综上得结论正确的是②③④, 故选:C. 【点睛】本题考查二次函数的图像与系数的关系,属于基础题.
知识精讲
一、二次函数图像的伸缩变换 问题 函数 y=ax2 与 y=x2 的图象之间存在怎样的关系?
为了研究这一问题,我们可以先画出 y=2x2,y= 1 x2,y=-2x2 的图象,通过这些函数图象与函数 y=x2 2
,得
,故 正确,
故选:C. 例 2.下列说法错误的是( ) A.二次函数 y=-2x2 中,当 x=0 时,y 有最大值是 0 B.二次函数 y=4x2 中,当 x>0 时,y 随 x 的增大而增大 C.在三条抛物线 y=2x2,y=-0.5x2,y=-x2 中,y=2x2 的图象开口最大,y=-x2 的图象开口最小 D.不论 a 是正数还是负数,抛物线 y=ax2(a≠0)的顶点一定是坐标原点 【答案】C 【解析】 A、a=-2<0,抛物线开口向下,当 x=0 时,y 有最大值是 0,故该选项正确; B、二次函数 y=4x2 中,当 x>0 时,y 随 x 的增大而增大,故该选正确; C、因为|2|>|-1|>|-0.5|,所以,y=2x2 的图象开口最小,y=-0.5x2 的图象开口最大,故该选错误; D、不论 a 是正数还是负数,抛物线 y=ax2(a≠0)的顶点一定是坐标原点,故该选正确. 故选 C.

2013高中数学精讲精练(新人教A版)第09章_圆锥曲线

2013高中数学精讲精练(新人教A版)第09章_圆锥曲线

2012高中数学精讲精练第九章圆锥曲线【方法点拨】解析几何是高中数学的重要内容之一,也是衔接初等数学和高等数学的纽带。

而圆锥曲线是解析几何的重要内容,因而成为高考考查的重点。

研究圆锥曲线,无外乎抓住其方程和曲线两大特征。

它的方程形式具有代数的特性,而它的图像具有典型的几何特性,因此,它是代数与几何的完美结合。

高中阶段所学习和研究的圆锥曲线主要包括三类:椭圆、双曲线和抛物线。

圆锥曲线问题的基本特点是解题思路比较简单清晰,解题方法的规律性比较强,但是运算过程往往比较复杂,对学生运算能力,恒等变形能力,数形结合能力及综合运用各种数学知识和方法的能力要求较高。

1. 一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质.2.着力抓好运算关,提高运算与变形的能力,解析几何问题一般涉及的变量多,计算量大,解决问题的思路分析出来以后,往往因为运算不过关导致半途而废,因此要寻求合理的运算方案,探究简化运算的基本途径与方法,并在克服困难的过程中,增强解决复杂问题的信心,提高运算能力.3.突出主体内容,要紧紧围绕解析几何的两大任务来学习:一是根据已知条件求曲线方程,其中待定系数法是重要方法,二是通过方程研究圆锥曲线的性质,往往通过数形结合来体现,应引起重视.4.重视对数学思想如方程思想、函数思想、数形结合思想的归纳提炼,达到优化解题思维、简化解题过程第1课 椭圆A【考点导读】1. 掌握椭圆的第一定义和几何图形,掌握椭圆的标准方程,会求椭圆的标准方程,掌握椭圆简单的几何性质;2. 了解运用曲线方程研究曲线几何性质的思想方法;能运用椭圆的标准方程和几何性质处理一些简单的实际问题. 【基础练习】1.已知△ABC 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是2.椭圆1422=+y x 的离心率为233.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是221164x y += 4. 已知椭圆19822=++y k x 的离心率21=e ,则k 的值为544k k ==-或 【范例导析】 例1.(1)求经过点35(,)22-,且229445x y +=与椭圆有共同焦点的椭圆方程。

集合的基本运算(精讲)(原卷版)--2023届初升高数学衔接专题讲义

集合的基本运算(精讲)(原卷版)--2023届初升高数学衔接专题讲义

2023年初高中衔接素养提升专题讲义第八讲集合的基本运算(精讲)(原卷版)【知识点透析】一、交集1、文字语言:对于两个给定的集合A ,B ,由属于A 又属于B 的所有元素构成的集合,叫做A ,B 的交集,记作A ∩B ,读作“A 交B ”2、符号语言:A ∩B ={x |x ∈A 且x ∈B }3、图形语言:阴影部分为A ∩B4、性质:A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅∩A =∅,如果A ⊆B ,则A ∩B =A5、解题思路:单个数字交集找相同,不等式的交集画数轴,不同集合高度画不同。

二、并集1、文字语言:对于两个给定的集合A ,B ,由两个集合的所有的元素组成的集合,叫做A 与B 的并集,记作A ∪B ,读作“A 并B ”2、符号语言:A ∪B ={x |x ∈A 或x ∈B }3、符号语言:阴影部分为A ∪B4、性质:A ∪B =B ∪A ,A ∪A =A ,A ∪∅=∅∪A =A ,如果A ⊆B ,则A ∪B =B .5、解题思路:两个集合所有元素集中在一起,但是重复元素只写一次,要满足集合中的互异性三、补集1、全集:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.记法:全集通常记作U .2、补集(1)文字语言:如果给定集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合,叫做A 在U 中的补集,记作A C U .(2)符号语言:}|{A x U x x A C U ∉∈=且(3)符号语言:(4)性质:A ∪∁U A =U ;A ∩∁U A =∅;∁U (∁U A )=A .【注意】并不是所有的全集都是用字母U 表示,也不是都是R,要看题目的。

四、利用交并补求参数范围的解题思路1、根据并集求参数范围:=⇒⊆ A B B A B ,若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 2、根据交集求参数范围:=⇒⊆ A B A A B若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 【知识点精讲】题型一并集、交集、补集的运算【例题1】(2022·浙江·杭十四中高一期中)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4,5S T ==,则S T ⋃=()A .{}3,5B .{}2,4C .{}1,2,3,4,5D .{}1,2,3,4,5,6【例题2】(2021春•山西大同期中)设集合{|1}A x x =<,{|22}B x x =-<<,则(A B = )A .{|21}x x -<<B .{|2}x x <C .{|22}x x -<<D .{|1}x x <【例题3】.(2022·江苏·高二期末)已知集合{}1,2A =,{}21,2B a a =-+,若{}1A B ⋂=,则实数a 的值为()A .0B .1C .2D .3【例题4】.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))已知集合{}21A x x =-<≤,{}0B x x a =<≤,若{|23}A B x x =-<≤ ,A B = ()A .{|20}x x -<<B .{|01}x x <≤C .{|13}x x <≤D .{|23}x x -<≤【例题5】.(2021·北京昌平区·高二期末)已知全集{0,1,2,3,4,5}U =,集合{0,1,2,3}A =,{3,4}B =,则()U A B = ð___________.【例题6】.(2022·四川南充高一课时检测)已知全集{}16A x x =≤≤,集合{}15B x x =<<,则A B =ð().A .{}5x x ≥B .{1x x ≤或}5x ≥C .{1x x =或}56x <≤D .{1x x =或}56x ≤≤【例题7】.41.(2021·陕西商洛市·镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.(1)若4m =,求A B ;(2)若A B =∅ ,求实数m 的取值范围.【变式1】.(2022·河北邢台高二期末)若集合{}|24M x x =-<≤,{}|46N x x =≤≤,则A .M N ⊆B .{}4M N =C .M N ⊇D .{}26|M N x x =-<< 【变式2】.(2022·江苏常州高三开学考试)设集合{}11A x x =-<<,{}220B x x x =-≤,则A B ⋃=()A .(]1,2-B .()1,2-C .[)0,1D .(]0,1【变式3】(2022·青海·海东市第一中学模拟预测(文))已知集合{}1,1,2M =-,{}2N x x x =∈=R ,则M N ⋃=()A .{}1B .{}1,0-C .{}1,0,1,2-D .{}1,0,2-【变式4】.(2022·浙江·三模)已知集合{}{}25,36P x x Q x x =≤<=≤<,则P Q = ()A .{}25x x ≤<B .{}26x x ≤<C .{}35x x ≤<D .{}36x x ≤<题型二并集、交集、补集综合运算及性质的应用【例题8】.(2022·河南洛阳高一课时检测)已知全集U ,集合{}1,3,5,7,9A =,{}2,4,6,8U C A =,{}1,4,6,8,9U C B =,则集合B =()A .{}1,5,7B .{}3,5,7,9C .{}2,3,5,7,9D .{}2,3,5,7【例题9】.(2022·重庆·西南大学附中模拟预测)已知集合{}|10A x ax =-=,{}*|14B x x =∈≤<N ,且A B B ⋃=,则实数a 的所有值构成的集合是()A .11,2⎧⎫⎨⎬⎩⎭B .11,23⎧⎫⎨⎬⎩⎭C .111,,23⎧⎫⎬⎭D .110,1,,23⎧⎫⎨⎬⎩⎭【例题10】.(湖北省“宜荆荆恩”2022-2023学年高三上学期起点考试)已知集合(,1][2,)A =-∞⋃+∞,{|11}B x a x a =-<<+,若A B =R ,则实数a 的取值范围为()A .(1,2)B .[1,2)C .(1,2]D .[1,2]【例题11】.(2022·云南昆明一中高一检测)已知A ,B 都是非空集合,(){}&A B x x A B =∈⋃且()x A B ∉ .若{}02A x x =<<,{}0B x x =≥,则&A B =()A .{}0x x ≥B .{}02x x <<C .{0x x =或}2x <-D .{0x x =或}2x ≥【例题12】.(2021·江苏高一专题练习)已知集合{}42A x x =-<<,{}110B x m x m m =--<<->,.(1)若A B B ⋃=,求实数m 的取值范围;(2)若A B ⋂≠∅,求实数m 的取值范围.【变式1】(2022·辽宁沈阳高一课前预习)集合{}2320A x x x =-+=,{}2220B x x ax =-+=,若A B A ⋃=,求实数a 的取值范围.【变式2】.(2023·浙江高二开学考试)已知R a ∈,设集合{}22210A x x ax a =-+-<,{}2B x x =>,(1)当2a =时,求集合A .(2)若R A B ⊆ð,求实数a 的取值范围.【变式3】.(2022·四川乐山市高一单元测试)已知集合{}211A x a x a =-<<+,{}01B x x =≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中任选一个作为已知条件,求A B ;(2)若R A B A ⋂=ð,求实数a 的取值范围.题型三Venn 图的应用【例题13】.(2021·贵州省思南中学高三月考(理))已知全集U =R ,集合{}23,A y y x x R ==+∈,{}24B x x =-<<,则图中阴影部分表示的集合为()A .[]2,3-B .()2,3-C .(]2,3-D .[)2,3-【例题14】.(2021·全国高三其他模拟)已知全集U x y ⎧⎫=∈=⎨⎩Z ,集合{}13M x x =∈-<Z ,{}4,2,0,1,5N =--,则下列Venn 图中阴影部分表示的集合为()A .{}0,1B .{}3,1,4-C .{}1,2,3-D .{}1,0,2,3-【例题15】.(2021·山东济南·高一期中)国庆期间,高一某班35名学生去电影院观看了《长津湖》、《我和我的父辈》这两部电影中的一部或两部.其中有23人观看了《长津湖》,有20人观看了《我和我的父辈》则同时观看了这两部电影的人数为()A .8B .10C .12D .15【变式】.(2021·广东·广州外国语学校高一检测)某公司共有50人,此次组织参加社会公益活动,其中参加A 项公益活动的有28人,参加B 项公益活动的有33人,且A ,B 两项公益活动都不参加的人数比都参加的人数的三分之一多1人,则只参加A 项不参加B 项的有()A .7人B .8人C .9人D .10人。

集合的基本运算(交集与并集)(教师版)--初升高数学专项训练

集合的基本运算(交集与并集)(教师版)--初升高数学专项训练

集合的基本运算(交集与并集)--初升高数学专项训练学习目标1.理解并集、交集的概念,会用文字语言、符号语言及图形语言来描述这些概念2.了解并集、交集的一些简单性质,会求两个简单集合的并集与交集3.能借助Venn图来探讨集合之间的关系及运算规律4.初步掌握集合的基本运算的常用语言及有关符号,并会正确地运用它们进行集合的相关运算5.重点提升数学抽象和数学运算素知识精讲高中必备知识点1:并集和交集的定义定义并集交集自然语言一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集,记作A∪B一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}图形语言[知识点拨](1)简单地说,集合A和集合B的全部(公共)元素组成的集合就是集合A与B的并(交)集;(2)当集合A,B无公共元素时,不能说A与B没有交集,只能说它们的交集是空集;(3)在两个集合的并集中,属于集合A且属于集合B的元素只显示一次;(4)交集与并集的相同点是:由两个集合确定一个新的集合,不同点是:生成新集合的法则不同.高中必备知识点2:并集和交集的性质并集交集简单性质A ∪A =A ;A ∪∅=A A ∩A =A ;A ∩∅=∅常用结论A ∪B =B ∪A ;A ⊆(A ∪B );B ⊆(A ∪B );A ∪B =B ⇔A ⊆BA ∩B =B ∩A ;(A ∩B )⊆A ;(A ∩B )⊆B ;A ∩B =B ⇔B ⊆A典例剖析高中必会题型1:并集的运算1.已知集合{0,1,2,3}A =,{||1|0}B x x =->,则A B = ________【答案】R由题解|1|0x ->得()(),11,x ∈-∞⋃+∞所以()(){||1|0},11,B x x =->=-∞⋃+∞,{0,1,2,3}A =,所以A B = R .故答案为:R2.已知集合A =1122⎧⎫⎨⎬⎩⎭,,,B ={}2|,y y x x A =∈,A ∪B =_______.【答案】1112424⎧⎫⎨⎬⎩⎭,,,,因为B ={y |y =x 2,x ∈A }=1144⎧⎫⎨⎬⎩⎭,,,所以A ∪B =1112424⎧⎫⎨⎬⎩⎭,,,,.故答案为:1112424⎧⎫⎨⎬⎩⎭,,,,3.集合{}21,M y y x x R ==+∈,{}25,N y y x x R ==-∈,则M N ⋃=______.【答案】R因为{}21,M y y x x R ==+∈,所以{}1M y y =≥,因为{}25,N y y xx R ==-∈,所以{}5N y y =≤,则M N R = ,故答案为:R .4.已知集合{0,1}A =,{0,1,2,3}B =,则A B 中的元素个数为________.【答案】4因为{0,1}A =,{0,1,2,3}B =所以0,1,3}2,{A B = 则A B 中的元素个数为4.故答案为:45.已知集合{}02A x x =<<,集合{}1B x x =>,则A B = ______.【答案】{}x x >{}{}02,1A x x B x x =<<=> ,{}0A B x x ∴⋃=>.故答案为:{}0x x >.高中必会题型2:交集的运算1.集合A ={x |2k <x <2k +1,k ∈Z },B ={x |1<x <6},则A ∩B =_______.【答案】{x |2<x <3或4<x <5}在数轴上表示集合A ,B ,如图:所以A ∩B ={x |2<x <3或4<x <5}.故答案为:{x |2<x <3或4<x <5}2.已知集合{}=1,2A ,{}2=1,B a -,若{}A B a = ,则实数a =__________.【答案】1根据题意,若{}A B a = ,则A 和B 必然含有共同元素a ,又由{}=1,2A ,{}2=1,B a -,则有2a a =,且21a =或22a =,故解得1a =故答案为:13.已知集合{}1,0,1,2M =-,集合{}220N x x x =+-=,则集合M N = ____________.【答案】{}1{}1,0,1,2M =- ,{}{}2202,1N x x x =+-==-,因此,{}1M N ⋂=.故答案为:{}1.4.已知集合{}{}(,)46,(,)4A x y x y B x y x y =+==-=,则A B = _______.【答案】{(2,2)}-由464x y x y +=⎧⎨-=⎩得22x y =⎧⎨=-⎩,所以A B = {(2,2)}-.故答案为{(2,2)}-.5.已知集合{2,3,4,1}A =--,23{|}B x x =-≤≤,则A B = ________【答案】{2,3,1}--解:因为集合{2,3,4,1}A =--,23{|}B x x =-≤≤,{2,3,1}A B ∴--= .故答案为:{2,3,1}--.高中必会题型3:交集、并集中的参数问题1.已知集合2{|3100}A x x x =+-(1)若集合[21B m =-+,1]m --,且A B A ⋃=,求实数m 的取值范围;(2)若集合{|211}B x m x m =-+--,且A B A ⋃=,求实数m 的取值范围.【答案】(1)23m <;(2)3m .(1)由23100x x +-,解得52x -,[5A ∴=-,2].A B A =Q U ,B A ∴⊆,因为区间[],a b 表示集合时,必须满足a b <.∴21512m m -+-⎧⎨--⎩,且211m m -+<--,解得23m <.∴实数m 的取值范围是23m <.(2)A B A =Q U ,B A ∴⊆.若B ≠∅,则21512m m -+-⎧⎨--⎩,解得33m -,B =∅可得211m m -+>--,解得2m <,综上可得3m .故实数m 的取值范围是3m 2.集合{|12}A x x =-≤≤,{|}B x x a =<.(1)若A B A = ,求实数a 的取值范围;(2)若A B =∅ ,求实数a 的取值范围.【答案】(1)2a >;(2)1a ≤-(1)由集合{|12}A x x =-≤≤,{|}B x x a =<,因为A B A = ,所以A B ⊆,则2a >,即实数a 的取值范围为2a >.(2)因为A B =∅ ,且B ≠∅,所以1a ≤-,故实数a 的取值范围为1a ≤-.3.已知集合{}4A x x a =-<,{}2450B x x x =-->.(1)若1a =,求A B ;(2)若A B R = ,求实数a 的取值范围.【答案】(1){}31A B x x ⋂=-<<-;(2)()1,3.解:(1)∵1a =时,集合{}{}1435A x x x x =-<=-<<,{}{24501B x x x x x =-->=<-或}5x >.∴{}31A B x x ⋂=-<<-.(2)∵集合{}{}444A x x a x a x a =-<=-<<+,{}{24501B x x x x x =-->=<-或}5x >,A B R= ∴4145a a -<-⎧⎨+>⎩,解得13a <<.∴实数a 的取值范围是()1,3.4.设集合{|11}A x a x a =-<<+,{|1B x x =<-或2}x >.(1)若A B =∅ ,求实数a 的取值范围;(2)若A B B ⋃=,求实数a 的取值范围.【答案】(1)0≤a ≤1;(2)2a ≤-或3a ≥.(1)因为A ∩B =∅,所以1112a a -≥-⎧⎨+≤⎩,解得0≤a ≤1,所以a 的取值范围是{a |0≤a ≤1}.(2)因为A ∪B =B ,所以A ⊆B ,所以a +11≤-或12a -≥,解得2a ≤-或3a ≥,所以a 的取值范围是2a ≤-或3a ≥.5.已知集合{}13A x x =<<,集合{}21B x m x m =<<-.(1)当1m =-时,求A B ;(2)若A B ⊆,求实数m 的取值范围;(3)若A B =∅ ,求实数m 的取值范围.【答案】(1){}23A B x x ⋃=-<<;(2)(],2-∞-;(3)[)0,+∞.(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<;(2)由A B ⊆知122113m mm m ->⎧⎪≤⎨⎪-≥⎩,解得2m ≤-,即m 的取值范围是(],2-∞-;(3)由A B =∅ 得①若21m m ³-,即13m ≥时,B =∅符合题意;②若21m m <-,即13m <时,需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩.得103m ≤<或m ∈∅,即103m ≤<.综上知0m ≥,即实数的取值范围为[)0,+∞.对点精练1.设集合(1,3]A =-,{2,3,4}B =,则A B 的子集个数为()A .4B .7C .8D .16【答案】A(1,3]A =-,{2,3,4}B =,则{}2,3A B = ,∴A B 的子集个数为224=个,故选:A .2.已知集合A ={-1,0,1,2},B ={x |x 2≤1},则A ∩B =()A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}【答案】A因为集合A ={-1,0,1,2},B ={x |-1≤x ≤1},则A ∩B ={-1,0,1}.故选:A3.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B = ()A .{0,2}B .{}1,2C .{}0D .{2,1,0,1,2}--【答案】D{0,2},{2,1,0,1,2},{2,1,0,1,2}==--=--U A B A B 故选:D4.已知集合{22}A x x =-<<∣,若A B A ⋃=,则B 可能是()A .{}1,1-B .{}2,3C .[)1,3-D .[]2,1--【答案】A因为A B A ⋃=,所以B A ⊆,四个选项中只有{}1,1-是集合A 的子集.故选:A.5.集合{}22A x x =-<<,{}13B x x =-≤<,那么A B = ()A .{}23x x -<<B .{}12x x -≤<C .{}21x x -<≤D .{}23x x <<【答案】A{}22A x x =-<< ,{}13B x x =-≤<,{}23A B x x ∴⋃=-<<.故选:A6.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则下列结论正确的是()A .B A ⊆B .{}1,5U A =ðC .{}3A B = D .{}2,4,5A B = 【答案】B已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =.对于A 选项,B A ⊄,A 选项错误;对于B 选项,{}1,5U A =ð,B 选项正确;对于C 选项,{}2,3,4,5A B ⋃=,C 选项错误;对于D 选项,{}3A B ⋂=,D 选项错误.故选:B.7.已知集合{}{}221,0P xx Q x x x ===-=∣∣,那么P Q ⋃=()A .{1,0,1}-B .{1}C .{0,1}D .{1,1}-【答案】A{}{}{}{}2211,1,00,1P x x Q x x x ===-=-== ∣∣,{}1,0,1P Q ∴⋃=-.故选:A.8.已知集合{2}A x x =<,{320}B x x =->则()A .32AB x x ⎧⎫⋂=<⎨⎬⎩⎭B .A B φ⋂=C .32A B x x ⎧⎫⋃=<⎨⎬⎩⎭D .A B R= 【答案】A3{320}{}2B x x x x =->=<,∴32A B x x ⎧⎫⋂=<⎨⎬⎩⎭,故选:A.9.若集合A ={x |x 2﹣x ﹣2<0},且A ∪B =A ,则集合B 可能是()A .{0,1}B .{x |x <2}C .{x |﹣2<x <1}D .R【答案】A集合A ={x |x 2﹣x ﹣2<0}={x |﹣1<x <2},因为A ∪B =A ,所以B ⊆A .分析各选项,只有{0,1}⊆A ,满足题意,故选:A .10.已知集合{}2230A x x x =--≥,{}14B x x =<<,则A B ()A .()1,3-B .[)3,4C .()[),34,-∞+∞UD .()(),13,-∞-+∞ 【答案】B解:依题意,{}(][)2230,13,A x x x =--≥=-∞-⋃+∞,所以[)3,4A B ⋂=,故选:B11.设集合{0,1}M =,{|01}N x x =<≤,则M N ⋃=()A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A∵集合{0,1}M =,集合{|01}N x x =<≤,∴{|01}M N x x ⋃=≤≤,即M N ⋃=[0,1].故选A12.若集合A ={0,1,2,x},B ={1,x 2},A ∪B =A ,则满足条件的实数x 有()A .1个B .2个C .3个D .4个【答案】B 【解析】∵A ={0,1,2,x},B ={1,x 2},A ∪B =A ,∴B ⊆A ,∴x 2=0或x 2=2或x 2=x ,解得x =0或1.经检验当x 时满足题意,故选B.13.设集合{0,1,2,3,4},{2,3},{|13}A B C x Z x ===∈≤<,则()A B C ⋂⋃=______.【答案】{1,2,3}由题意,集合{0,1,2,3,4},{2,3},{|13}{1,2}A B C x Z x ===∈≤<=,可得{2,3}A B = ,所以(){1,2,3}A B C = .故答案为:{1,2,3}.14.已知集合{1,2}A =-,2{,}B a a =,若{}1A B ⋂=,则实数a 的值为___【答案】1-解:∵{1,2}A =-,2{,}B a a =,{}1A B ⋂=,∴21a =,且1a ≠,∴1a =-.故答案为:1-.15.已知集合A ={x |2<x <4},B ={x |a <x <3a }.若A ∩B ={x |3<x <4},则a 的值为_______.【答案】3由A ={x |2<x <4},A ∩B ={x |3<x <4},如图,可知a =3,此时B ={x |3<x <9},即a =3为所求.答案:316.若A ={x |x 2+(m +2)x +1=0,x ∈R},且A ∩R +=∅,则m 的取值范围是__.【答案】m >﹣4.解:A ∩R +=∅知,A 有两种情况,一种是A 是空集,一种是A 中的元素都是小于等于零的,若A =∅,则∆=(m +2)2﹣4<0,解得﹣4<m <0,①若A ≠∅,则∆=(m +2)2﹣4≥0,解得m ≤﹣4或m ≥0,又A 中的元素都小于等于零∵两根之积为1,∴A 中的元素都小于0,∴两根之和﹣(m +2)<0,解得m >﹣2∴m ≥0,②由①②知,m >﹣4,故答案为:m >﹣4.17.学校开运动会,设{A x x =是参加100m 跑的同学},{B x x =是参加200m 跑的同学},{C x x =是参加300m 跑的同学},学校规定,每个参加上述比赛的同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .【答案】规定说明:A B C =∅ ;(1){A B x x ⋃=是参加100m 或参加200m 跑的同学};(2){A C x x ⋂=是参加100m 且参加300m 跑的同学}.每个参加上述比赛的同学最多只能参加两项比赛,用集合运算说明为:A B C =∅ ;(1)由已知可得{A B x x ⋃=是参加100m 或参加200m 跑的同学};(2)由已知可得{A C x x ⋂=是参加100m 且参加300m 跑的同学}.注:集合的并是“或”的关系,集合的交是“且”的关系.18.已知集合A ={y |y =x 2-2x },B ={y |y =-x 2+2x +6}.(1)求A ∩B .(2)若集合A ,B 中的元素都为整数,求A ∩B .(3)若集合A 变为A ={x |y =x 2-2x },其他条件不变,求A ∩B .(4)若集合A ,B 分别变为A ={(x ,y )|y =x 2-2x },B ={(x ,y )|y =-x 2+2x +6},求A ∩B .【答案】(1)A ∩B ={y |-1≤y ≤7};(2)A ∩B ={y |-1≤y ≤7};(3)A ∩B ={y |y ≤7};(4)A ∩B ={(3,3),(-1,3)}.(1)因为y =x 2-2x =(x -1)2-1≥-1,所以A ={y |y ≥-1},因为y =-x 2+2x +6=-(x -1)2+7≤7,所以B ={y |y ≤7},所以A ∩B ={y |-1≤y ≤7}.(2)由已知得A ={y ∈Z |y ≥-1},B ={y ∈Z |y ≤7},所以A ∩B ={-1,0,1,2,3,4,5,6,7}.(3)由已知得A ={x |y =x 2-2x }=R ,B ={y |y ≤7},所以A ∩B ={y |y ≤7}.(4)由22-2-26y x x y x x ⎧=⎨=++⎩,,得x 2-2x -3=0,解得x =3,或x =-1,所以33x y =⎧⎨=⎩,,或-13x y =⎧⎨=⎩,,所以A ∩B ={(3,3),(-1,3)}.19.已知602x A x x ⎧⎫-=>⎨⎬-⎩⎭,()(){}110B x x a x a =---+≤.(1)当2a =时,求A B ;(2)当0a >时,若A B B ⋃=,求实数a 的取值范围.【答案】(1){}23A B x x ⋂=<≤;(2)[)5,+∞.(1)由602x x ->-得:26x <<,则{}26A x x =<<;当2a =时,由()()110x a x a ---+≤得:()()310x x -+≤,则{}13B x x =-≤≤;{}23A B x x ∴⋂=<≤;(2)若A B B ⋃=,则A B ⊆,当0a >时,{}11B x a x a =-≤≤+,又{}26A x x =<<,则1216a a -≤⎧⎨+≥⎩,解得:5a ≥,∴实数a 的取值范围为[)5,+∞.20.设集合{}(3)()0,A x x x a a =--=∈R ,{}(4)(1)0B x x x =--=,求A B ,A B .【答案】答案见解析解:因为{}(4)(1)0B x x x =--=所以{}1,4B =又因为{}(3)()0,A x x x a a =--=∈R ,当3a =时{}3A =,所以{}1,3,4A B = ,A B =∅当1a =时{}1,3A =,所以{}1,3,4A B = ,{}1A B ⋂=当4a =时{}4,3A =,所以{}1,3,4A B = ,{}4A B ⋂=当1a ≠且3a ≠且4a ≠时{},3A a =,所以{}1,3,4,A B a = ,A B =∅ 21.已知全集U =R ,A ={x |2≤x <7},B ={x |x 2﹣10x +9<0},C ={x |a <x <a +1}.(1)求A B ,()U A B ð;(2)如果A C ⋂=∅,求实数a 的取值范围.【答案】(1){}|19A B x x =<< ,(){|12U A B x x =<< ð或}79x ≤<;(2){|1a a ≤或}7a ≥.(1){}|27A x x =≤<,{}|19B x x =<<,所以{}|19A B x x =<< ,{|2U A x x =<ð或}7x ≥,(){|12UA B x x =<< ð或}79x ≤<。

三元一次方程组的解法与简单的二元二次方程组课件-2022年初高衔接数学

三元一次方程组的解法与简单的二元二次方程组课件-2022年初高衔接数学
+ 2 − = 3 这类方程组中含有三个未知
2 − + 2 = −4
数,含未知数的项的次数都是1,这样的方程组叫
做三元一次方程组.
解三元一次方程组的基本思想与解二元一次方
程组一致,通过消元转化为我们会解的方程组:
消元
消元
三元一次方程组
二元一次方程组
一元一
点拨精讲
+ + = 12 ,
2的整式方程,叫做二元二次方程.由含有相同的两个
未知数的两个二元二次方程,或一个二元二次方程和
一个二元一次方程,组成的方程组叫做二元二次方程
组.
解二元二次方程组就是求方程组中两个方程的公
共解.解二元二次方程组的基本思想是消元和降次,
消元就是把二元化为一元,降次就是把二次降为一次,
其目的是把二元二次方程组转化为二元一次方程组、
化归为二元一次方程组,再化归为一元一次
方程.实际上,消元是解一次方程组的主要方
法.解一次方程组的消元“化归”基本思想,
可以推广到“四元”“五元”等多元方程组.
点拨精讲
探究二:简单的二元二次方程组
像 2 + 2 = 1, 2 − 2 2 + + 3 = 10这类含
有两个未知数,并且含有未知数的项的最高项次数是
一元一次方程.解二次一元方程组的
基本方法有代入消元法和加减消元法.消元的目
的是把二元一次方程组化归为一元一次方程.
在现实生活中,我们遇到未知数不止两个
的方程,下面我们就来学习三元一次方程组.
点拨精讲
+ + = 12
像 + 2 + 5 = 22 ,

因式分解的拓展(精讲)(解析版)--2023届初升高数学衔接专题讲义

因式分解的拓展(精讲)(解析版)--2023届初升高数学衔接专题讲义

2023年初高中衔接素养提升专题讲义第一讲因式分解的拓展(精讲)(解析版)【知识点透析】因式分解定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

【方法精讲】一.提公因式法提取公因式法:把一个多项式各项都有的公因式提到括号外边来.符号语言:)(c b a m mc mb ma ++=++【例1】因式分解3(2)(2)x x x ---.【解析】提取公因式,原式=)13)(2(+-x x .【变式】因式分解324(1)2(1)q p p -+-.【解析】提取公因式,原式=)424()1(]2)1(4[)1(22pq q p p q p -+-=+--.【例2】计算9879879879871232684565211368136813681368⨯+⨯+⨯+⨯.【解析】原式=987)521456268123(1368987=+++⨯.【变式1】(2022·广东汕头·一模)已知4m n +=,5mn =-,则22m n mn +=________.【答案】20-【解析】∵m +n =4,mn =-5,∴m 2n +mn 2=mn (m +n )=-5×4=-20.故答案为:-20.【变式2】(2022·湖南娄底·七年级期中)因式分解:2229612abc a b abc -+;【答案】()23324ab c ab c -+【解析】:()222296123324abc a b abc ab c ab c -+=-+;二.公式法公式法:利用乘法公式的逆变换对多项式进行因式分解.常见的公式如下:(1)a 2-b 2=_))((b a b a -+_;(平方差公式)(2)a 2±2ab +b 2=_2)(b a ±_;(完全平方公式(两个数))(3)a 3±b 3=_))((22b ab a b a +± _;(立方和差公式)(4)a 3±3a 2b +3ab 2±b 3=_3)(b a ±_;(完全立方公式)(5)a 2+b 2+c 2+2ab +2bc +2ac =_2)(c b a ++_;(完全平方公式(三个数))【例3】因式分解22(2)(31)a a +--.【解析】法一:原式=)14)(23()132)(132(+-=+-+-++a a a a a a 法二:原式=)14)(23(310816944222+-=++-=-+-++a a a a a a a a .【变式】(2022·福建省泉州实验中学八年级期中)因式分解:(1)42−16+16;(2)2−+16−.【答案】(1)4−22;(2)−+4−4【解析】(1)先提取公因式,再利用完全平方公式分解即可求解;(2)先进行公式变形为2−−16−,再提取公因式,最后用平方差公式分解即可(1)解:42−16+16=42−4+4=4−22;(2)解:2−+16−=2−−16−=−2−16=−+4−4;【例4】.(2022·上海外国语大学尚阳外国语学校七年级阶段检测)多项式的乘法公式中,除了平方差公式,完全平方公式之外,还有立方和公式与立方差公式如下:立方和公式:()()2233a b a ab b a b+++=+立方差公式:()()2233a b a ab b a b -++=-如果把公式逆运用,则成为因式分解中的立方和与立方差公式.根据以上材料,请完成下列问题:(1)因式分解:99a b +(2)因式分解:66a b -(3)已知:6631a b ab a b +==+,,的值【答案】(1)(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)(a −b)(a+b)(a 4+a 2b 2+b 4).(3)322【详解】(1)因式分解:a 9+b 9=(a 3)3+(b 3)3=(a 3+b 3)(a 6−a 3b 3+b 6)=(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)因式分解:a 6−b6=(a 2)3−(b 2)3=(a 2−b 2)(a 4+a 2b 2+b 4)=(a −b)(a+b)(a 4+a 2b 2+b 4);(3)∵a+b=3,ab=1,∴a 2+b 2=(a+b)2−2ab=7,∴a 6+b 6=(a 2+b 2)(a 4−a 2b 2+b 4)=[(a+b)2−2ab][(a 2+b 2)2−2a 2b 2−a 2b 2]=7×(49−3×1)=322.【变式1】因式分解52(2)(2)x x y x y x -+-.【答案】原式=)1)(1)(2(22++--x x x y x x .【解析】原式=)1)(1)(2()1)(2())(2(223225++--=--=--x x x y x x x y x x x x y x 【变式2】分解下列因式(1)38x +(2)34381a b b -【解析】:(1)333282(2)(42)x x x x x +=+=+-+(1)3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++【变式3】分解因式:(1)30.12527b -(2)76a ab -【解析】:(1)中应先提取公因式再进一步分解;(2)中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.(1)333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++(2)76663333()()()a ab a a b a a b a b -=-=+-22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+三.十字相乘法十字相乘法:对于二次三项式或可看作二次三项式的多项式分解因式.【例5】(2022·上海闵行·七年级期中)在因式分解的学习中我们知道对二次三项式2+++B 可用十字相乘法方法得出2+++B =++,用上述方法将下列各式因式分解:(1)2+5B −62=__________.(2)2−4+2+32+6=__________.(3)2−5−−6−2=__________.(4)20182−2017×2019−1=__________.【答案】(1)(x -y )(x +6y )(2)(x -3a )(x -a -2)(3)(x +a -3b )(x -a -2b )(4)(20182x 2+1)(x -1)【分析】(1)将-6y 2改写成-y ·6,然后根据例题分解即可;(2)将3a 2+6a 改写成−3−+2,然后根据例题分解即可;(3)先化简,将B +62−2改写−3+−2−,然后根据例题分解即可;(4)将2017×2019改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式=2+(−+6p +−⋅6=(x -y )(x +6y );(2)解:原式=2+−3−+2+−3−+2=(x -3a )(x -a -2);(3)解:原式=2−5B +B +62−2=2−5B +3−2+=2+−3++−2−+−3+−2−=(x +a -3b )(x -a -2b );(4)解:原式=20182−2018-12018+1−1=201822−20182-1−1=201822+1−20182−1=(20182x +1)(x -1).【例6】.(2023·山东济宁·八年级期末)【知识背景】八年级上册第121页“阅读与思考”中,我们利于因式分解是与整式乘法方向相反的变形这种关系得到:()()()2x p q x pq x p x q +++=++.【方法探究】对于多项式()2x p q x pq +++我们也可这样分析:它的二次项系数1分解成1与1的积;它的常数项pq 分解成p 与q 的积,按图1所示方式排列,然后交叉相乘的和正好等于一次项系数()p q ++.所以()()()2x p q x pq x p x q +++=++例如,分解因式:256x x ++它的二次项系数1分解成1与1的积;它的常数项6分解成2与3的积,按图2所示方式排列,然后交叉相乘的和正好等于一次项系数5.所以()2562(3x x x x ++=++).类比探究:当二次项系数不是1时,我们也可仿照上述方式进行因式分解.例如,分解因式:226x x --.分析:二次项系数2分解成2与1的积;常数项-6分解成-1与6(或-6与1,-2与3,-3与2)的积,但只有当-2与时按如图3所示方式排列,然后交叉相乘的和正好等于一次项系数-1.所以()22623(2)x x x x --=+-.【方法归纳】一般地,在分解形如关于x 的二次三项式2ax bx c ++时,二次项系数a 分解成1a 与2a 的积,分别写在十字交叉线的左上角和左下角;常数项c 分解成1c 与2c 的积,分别写在十字交叉线的右上角和右下角,把1a ,2a ,1c ,2c 按如图4所示方式排列,当且仅当1221a c a c b +=(一次项系数)时,2ax bx c ++可分解因式.即21122()()ax bx c a x c a x c ++=++.我们把这种分解因式的方法叫做十字相乘法.【方法应用】利用上面的方法将下列各式分解因式:(1)256x x -+;(2)21021x x +-;(3)()()22247412x x x x -+-+【答案】(1)(x -2)(x -3)(2)(2x +3)(5x -7)(3)2(2)x -(x -1)(x -3)【解析】(1)256x x -+=(x -2)(x -3).(2)21021x x +-=(2x +3)(5x -7).(3)()()22247412x x x x -+-+=22(44)(43)x x x x -+-+=2(2)x -(x -1)(x -3).【变式1】将下列各式分解因式(1)2615x x --;(2)231310x x -+.【解析】(1)原式=)53)(32(-+x x ;(2)原式=)5)(23(---x x .【变式2】(1)42222459x y x y y --;(2)223129x xy y ++.【答案】(1)原式=)94)(1(222-+x x y ;(2)原式=)33)(3(y x y x ++.【变式3】把下列各式因式分解:(1)226x xy y+-(2)222()8()12x x x x +-++【解析】:(1)222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2)22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-【例7】(提高型):分解因式613622-++-+y x y xy x .【解析】设613622-++-+y x y xy x =)2)(3(n y x m y x +-++,∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x--+++-+)23()(622,∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622,对比左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231mn m n n m ,解得⎩⎨⎧=-=32n m .∴原式=)32)(23(+--+y x y x .【变式】(1)2910322-++--y x y xy x ;(2)6752322+++++y x y xy x .解:原式=)12)(25(-++-y x y x 原式=)2)(32(++++y x y x 四.分组分解法根据多项式各项的特点,适当分组,分别变形,再对各组之间进行整体分解(先部分后整体的分解方法)【例8】.(2022·甘肃省兰州市教育局八年级期中)【阅读学习】课堂上,老师带领同学们学习了“提公因式法、公式法”两种因式分解的方法.分解因式的方法还有许多,如分组分解法.它的定义是:将一个多项式分组后,可提公因式或运用公式继续分解的方法叫分组分解法.使用这种方法的关键在于分组适当,而在分组时,必须有预见性.能预见到下一步能继续分解.例如:(1)()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++;(2)()2222222121(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.【学以致用】请仿照上面的做法,将下列各式分解因式:(1)1ab a b --+;(2)22444x xy y -+-.【拓展应用】已知:7x y +=,5x y -=.求:2222x y y x --+的值.【答案】(1)(1)(1)a b --;(2)(22)(22)x y x y -++-;【拓展应用】45.【详解】(1)1ab a b --+()()()()111ab a b a b =---=--(2)()()()()22222444444422222x xy y x xy y x y x y x y -+-=--+=--=-++-【拓展应用】()()()()222222222x y y x x y x y x y x y --+=-+-=-++∵7x y +=,5x y -=,代入得:原式=()(2)5(72)45x y x y -++=⨯+=.将下列各式分解因式(1)3232()()x x y y +-+;(2)32x x +-.【答案】(1)原式=))((22y x y xy x y x ++++-(2)原式=)2)(1(2++-x x x 【解析】(1)原式=))(())(()()(222233y x y x y xy x y x y x y x -++++-=-+-))((22y x y xy x y x ++++-=;(2)原式=)2)(1()1()1)(1(11223++-=-+++-=-+-x x x x x x x x x .【例9】分解因式:(1)32933x x x +++;(2)222456x xy y x y +--+-.解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.【变式】(1)323x x +-;(2)222(1)41m n mn n -+-+.【答案】(1)原式=)3)(1(2++-x x x (2)原式=)1)(1(+-+++-n m mn n m mn .【解析】(1)原式=)3)(1(22123++-=-+-x x x x x (2)原式=2222222221214n mn m mn n m n mn m n m -+-++=+-+-)1)(1()()1(22+-+++-=--+=n m mn n m mn n m mn .五.换元法换元法分解因式:是将多项式中的某一部分用新的变量替换,从而使较复杂的数学问题得到简化【例10】.(2022·福建漳州·八年级期中)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,这种方法就是换元法.对于()()22525312x x x x ++++-.解法一:设25x x y +=,则原式()()2231256y y y y =++-=+-()()()()()()()2226156512351y y x x x x x x x x =+-=+++-=+++-;解法二:设22x m +=,5x n =,则原式()()()()211212m n m n m n m n =+++-=+++-()()()()()()()2224356512351m n m n x x x x x x x x =+++-=+++-=+++-.请按照上面介绍的方法解决下列问题:(1)因式分解:()()2241479x x x x -+-++;(2)因式分解:()()()2221x y xy x y xy +-+-+-;(3)求证:多项式()()()()21236x x x x x +++++的值一定是非负数.【答案】(1)(1)()42x -(2)()()2211x y --(3)见解析【解析】(1)解:解法一:设2x x y -=,则原式()()179y y =+++2816y y =++()24y =+()2244x x =-+()42x =-;方法二:设214x m x n +=-=,,则原式()()=69m n m n ++++()()269m n m n =++++()23m n =++()22143x x =+-+()2244x x =-+()42x =-;(2)解:设x y m xy n +==,,则原式()()()2221m n m n =--+-2222421m mn m n n n =--++-+()22221m mn m n =--+-()()22211m m n n =-+++()21m n =--()21x y xy =+--()()2211x y =--;(3)解:()()()()21236x x x x x +++++()()2227656x x x x x =+++++,设26x m x n +==,,则原式()()2=75m n m n n +++221236m mn n =++()26m n =+()2266x x =++,∵()22660x x ++≥,∴()()()()212360x x x x x ++++≥+,∴多项式()()()()21236x x x x x +++++的值一定是非负数.【变式1】将下列各式分解因式(1)221639a b ab ++;【答案】原式=)13)(3(++ab ab (2)22(1)(2)12x x x x ++++-【解析】原式=)5)(2(12)1()1(22222++-+=-+++++x x x x x x x x .)5)(1)(2(2++-+=x x x x .【变式2】(1)x 6-7x 3-8(2)(x +1)(x +2)(x +3)(x +4)+1【解析】(1)原式=)1)(42)(1)(2()1)(8(2233+-+++-=+-x x x x x x x x ;(2)原式=1)65)(45(1)3)(2)(4)(1(22+++++=+++++x x x x x x x x 2222)55(11)55(++=+-++=x x x x .六.配方法【例题11】.(2022·上海·七年级期末)阅读理解:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:2223x ax a +-=222223x ax a a a ++--=22()4x a a +-=22()(2)x a a +-=(3)()x a x a +-,像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.请利用“配方法”进行因式分解:(1)2815x x -+;(2)4224a a b b ++.【答案】(1)(3)(5)x x --(2)2222()()a b ab a b ab +++-【解析】(1)原式=28161615x x a -+-+=2(4)1x --=(41)(41)x x -+--=(3)(5)x x --;(2)42244224222a a b b a a b b a b ++=++-=22222()a b a b +-=2222()()a b ab a b ab +++-.七.因式分解的应用【例题12】.(2022·江苏扬州·七年级期中)阅读下列材料:若一个正整数x 能表示成22a b -(a ,b 是正整数,a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解,例如22532=-,所以5是“明礼崇德数”3与2是5的平方差分解;再如:()22222222M x xy x xy y y x y y =+=++-=+-(,x y 为正整数),所以M 也是“明礼崇德数”,(x y +)与y 是M 的一个平方差分解.(1)判断9“明礼崇德数”(填“是”或“不是”);(2)已知()2x y +与2x 是P 的一个平方差分解,求代数式P ;(3)已知2223818N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的k 值,并说明理由.【答案】(1)是(2)222x y y +(3)k =-19【解析】(1)解∶∵22954=-,∴9是“明礼崇德数”;故答案为:是(2)解:()()2222P x y x =+-42242x x y y x =++-222x y y =+;(3)解:2223818N x y x y k =-+-+()()2224436919x x y y k=++-++++()()22223319x y k=+-+++2219k=+-+++∵N 是“明礼崇德数”,∴19+k =0,∴k =-19.【例题13】.已知a b =22a b ab -的值.【答案】【解析】【分析】先利用提公因式法把22a b ab -进行因式分解,再代入计算即可.【详解】解:∵()22a b ab ab a b -=-,又a =b∴a b =-=1ab +=-=,∴()221a b ab ab a b -=-=⨯=【变式1】.(1)因式分解:()()211x x x +-+.(2)先化简,再求值:22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭,其中3x =.【答案】(1)1x +;(2)23x x -+,16【解析】【分析】(1)直接提公因式即可;(2)先算括号内的部分,将除法变乘法,最后约分化简后代入求值即可.【详解】(1)原式=()()11x x x ++-=x +1;(2)原式=212(3)22(2)(2)x x x x x x ++⎛⎫+÷ +++-⎝⎭23(2)(2)2(3)x x x x x ++-=⋅++23x x -=+,当3x =时,原式=3233-+16=.【变式2】.(2022·湖北十堰·八年级期末)阅读理解题:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值.解:设另一个因式为x +n ,依题意得x 2﹣4x +m =(x +3)(x +n ).即x 2﹣4x +m =x 2+(n +3)x +3n ,比较系数得:343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩.∴另一个因式为x﹣7,m的值为﹣21仿照上述方法解答下列问题:(1)已知二次三项式2x2+3x﹣k有一个因式是2x﹣1,求另一个因式及k的值;(2)已知2x2﹣13x+p有一个因式x﹣4,则p=.【答案】(1)另一个因式为x+2,k的值为2(2)20(1)解:(1)设另一个因式为x+m,则2x2+3x—k=(2x—1)(x+m),即2x2+3x—k=2x2+(2m—1)x—m,比较系数得:213 mk m-=⎧⎨-=-⎩,解得22 mk=⎧⎨=⎩,∴另一个因式为x+2,k的值为2;(2)解:设另一个因式为(2x+m),由题意,得:2x2﹣13x+p=(x﹣4)(2x+m),则2x2﹣13x+p=2x2+(m﹣8)x﹣4m,∴8134mp m-=-⎧⎨=-⎩,解得520 mp=-⎧⎨=⎩,故答案为:20.。

2013高中数学精讲精练(新人教A版)第10章_算法初步与框图

2013高中数学精讲精练(新人教A版)第10章_算法初步与框图
2
本题是求一元二次方程的解的问题,方法很多,下面利用配方法,求根公式法写出这个问题的两个
① ② ③
Hale Waihona Puke b b2 4ac (2)将 a=1,b=-2,c= -3,代入求根公式,得 x1,2 , 得x1 3, x2 1. 2a
点评 比较两种算法,算法二更简单,步骤最少,由此可知,我们只要有公式可以利用,利用公式解决问 题是最理想,合理的算法.因此在寻求算法的过程中,首先是利用公式.下面我们设计一个求一般的一元二 次方程的 ax +bx+c=0 根的算法如下: (1)计算 b 4ac (2)若 0; (3)方程无实根;(4)若 0; (5)方程根 x1,2
2
2
b b 2 4ac 2a
例 3:一个人带三只狼和三只羚羊过河.只有一条船,同船可以容一个人和两只动物.没有人在的时候,如果 狼的数量不少于羚羊的数量,狼就会吃掉羚羊. (1)设计安全渡河的算法; (2)思考每一步算法所遵循的相同原则是什么. 解析: (1)S1 人带两只狼过河. S2 人自己返回. S3 人带两只羚羊过河. S4 人带一只狼返回. S5 人带一只羚羊过河. S6 人自己返回. S7 人带两只狼过河. (2)在人运送动物过河的过程中,人离开岸边时必须保证每个岸边的羚羊数目要大于狼的数目. 点评 这是一个实际问题,生活中解决任何问题都需要算法,我们要在处理实际问题的过程中理解算法的 含义,体会算法设计的思想方法.
第 1 页 【精讲精练】共 12 页
第 1 课 算法的含义
【考点导读】 正确理解算法的含义.掌握用自然语言分步骤表达算法的方法. 高考要求对算法的含义有最基本的认 识,并能解决相关的简单问题. 【基础练习】 1.下列语句中是算法的个数为 3个

集合的基本运算(补集与集合的综合应该运算)(教师版)--初升高数学专项训练

集合的基本运算(补集与集合的综合应该运算)(教师版)--初升高数学专项训练

集合的基本运算(补集与集合的综合应该运算)-初升高数学专项训练学习目标1.在具体情境中,了解全集的含义2.理解在给定集合中一个子集的补集的含义,能求给定子集的补集.3.体会图形对理解抽象概念的作用知识精讲高中必备知识点1:全集文字语言一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集高中必备知识点2:补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言[知识点拨](1)简单地说,∁U A是从全集U中取出集合A的全部元素之后,所有剩余的元素组成的集合.(2)性质:A∪(∁U A)=U,A∩(∁U A)=∅,∁U(∁U A)=A,∁U U=∅,∁U∅=U,∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).(3)如图所示的阴影部分是常用到的含有两个集合运算结果的Venn图表示.典例剖析高中必会题型1:补集的运算1.设全集{}22,3,23U a a =+-,{}1,2A a =+,{}5U A =ð,求a 的值【答案】2a =或4a =-.因为{}5U A =ð,所以5U ∈,2235a a +-=,解得2a =或4a =-,当2a =时,{}2,3,5U =,{}3,2A =,满足{}5U A =ð,符合题意;当4a =-时,{}2,3,5U =,{}3,2A =,满足{}5U A =ð,符合题意;所以2a =或4a =-.2.已知全集{}321,3,2S x x x =--,{}1,21A x =-如果{}0S A =ð,则这样的实数x 是否存在?若存在,求出x ,若不存在,说明理由.【答案】存在,是1x =-或2x =.∵{}0S A =ð,∴0S ∈且0A ∉,即3220x x x --=,解得1230,1,2x x x ==-=,当0x =时,211x -=,1是A 中的元素,不符合题意;当1x =-时,213x S -=∈;当2x =时,213x S -=∈.∴这样的实数x 存在,是1x =-或2x =.3.已知全集{1,2,3,4,5,6,7,8}U =,A U ⊆,B U ⊆,且{3,5}A B = ,{4,8}U A B ⋂=ð,{1}U U A B ⋂=痧,求集合A ,B .【答案】{3,4,5,8}A =,{2,3,5,6,7}B =因为{3,5}A B = ,所以3,5A ∈且3,5B ∈,因为{4,8}U A B ⋂=ð,所以4,8A ∈且4,8B ∉,因为{1}U U A B ⋂=痧,所以{}2,3,4,5,6,7,8A B = ,因此有{3,4,5,8}A =,{2,3,5,6,7}B =.4.设集合{}22,3,23A a a =+-,{}21,2B a =-.(1)若{}5A C B =,求实数a 的值;(2)若B A ⊆,求实数a 的取值集合.【答案】(1)2a =;(2){2--.(1)由5A C B =得:2235213a a a ⎧+-=⎪⎨-=⎪⎩,解得:2a =;(2)①若213a -=,解得:2a =或1a =-,当2a =时,2235a a +-=,满足题意,当1a =-时,2234a a +-=-,满足题意,②若22123a a a -=+-,解得:a =或2a =--当a =时,{}1A =-,{}1,2B =-,满足题意,当2a =--{2,3,5A =+,{}5B =+,满足题意,综上所述,实数a 的取值集合为:{2--.5.已知集合{}13A x x =-≤≤,集合{22B x m x m =-≤≤+,}x R ∈.(1)若{}03A B x x ⋂=≤≤,求实数m 的值;(2)若()R A B A ⋂=ð,求实数m 的取值范围.【答案】(1)2;(2){5m m >,或}3m <-.(1)因为{}03A B x x ⋂=≤≤,所以2023m m -=⎧⎨+≥⎩,所以21m m =⎧⎨≥⎩,所以2m =;(2){2R B x x m =<-ð,或}2x m >+,由已知可得R A B ⊆ð,所以23m ->或21m +<-,所以5m >或3m <-,故实数m 的取值范围为{5m m >,或}3m <-.高中必会题型2:集合的交并、补集的综合运算1.已知U ={x ∈R |1<x ≤7},A ={x ∈R |2≤x <5},B ={x ∈R |3≤x ≤7}.求:(1)A ∪B ;(2)(ðU A )∪(ðU B ).【答案】(1)A ∪B ={x |2≤x ≤7};(2)(ðU A )∪(ðU B )={x |1<x <3或5≤x ≤7}.(1)因为A ={x |2≤x <5},B ={x |3≤x ≤7},所以A ∪B ={x |2≤x ≤7}.(2)因为U ={x |1<x ≤7},A ={x ∈R |2≤x <5},B ={x ∈R |3≤x ≤7}.所以ðU A ={x |1<x <2或5≤x ≤7},ðU B ={x |1<x <3},所以(ðU A )∪(ðU B )={x |1<x <3或5≤x ≤7}.2.已知集合3|52⎧⎫=-<≤⎨⎬⎩⎭A x x ,{|1B x x =<或2}x >,U =R .(Ⅰ)求A B ;(Ⅱ)求()U A B ⋃ð.【答案】(1)(5,1)-(2)(5,2]-(1)因为3|52⎧⎫=-<≤⎨⎬⎩⎭A x x ,{|1B x x =<或2}x >,所以=(5,1)A B - (2)由{|1B x x =<或2}x >,U =R 知[1,2]U B =ð,所以()(5,2]U A B =- ð.3.已知全集}{1,2,3,4,5,6,7U =.集合}{1,2,4,6A =,}{2,4,5,7B =.(1)求U A ð;(2)求U ()A B ð.【答案】(1){}3,5,7;(2){}1,2,3,4,6解:(1)因为全集}{1,2,3,4,5,6,7U =.集合}{1,2,4,6A =,.所以{}U 3,5,7A =ð(2)因为}{2,4,5,7B =,所以}{U 1,3,6B =ð,所以(){}U 1,2,3,4,6A B = ð4.已知全集{1,2,3,4,5,6,7}U =,集合{2,3,6}A =,集合{1,2,3,5}B =,(1)求A B ,U B ð;(2)求()U A B ð,()U A B ð.【答案】(1){1,2,3,5,6},{4,6,7}U A B B ⋃==ð;(2)(){1,5}U A B ⋂=ð,(){1,4,5,6,7}U A B ⋂=ð.(1)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =,所以{1,2,3,5,6}A B ⋃=,{4,6,7}U B =ð;(2)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =,所以{}1,4,5,7U A =ð,{}2,3A B ⋂=,所以(){1,5},(){1,4,5,6,7}U U A B A B ⋂=⋂=痧.5.已知全集U =R ,集合{|4},{|66}A x x B x x =>=-<<.(Ⅰ)求A B 和A B ;(Ⅱ)求U B ð.【答案】(Ⅰ){}|46A B x x =<< ,{}|6A B x x ⋃=>-;(Ⅱ){|6U B x x =≤-ð或}6x ≥(Ⅰ){}|4A x x => ,{}|66B x x =-<<,{}|46A B x x ∴=<<I ,{}|6A B x x ⋃=>-(Ⅱ)U =R ,{}|66B x x =-<<,{|6U B x x ∴=≤-ð或}6x ≥高中必会题型3:与补集有关的求参数问题1.已知集合U ={﹣2,﹣1,0,1,2,3},A ={﹣1,0,1},B ={1,2},则∁U (A ∪B )=___________.【答案】{﹣2,3}解:∵U ={﹣2,﹣1,0,1,2,3},A ={﹣1,0,1},B ={1,2},∴A ∪B ={﹣1,0,1,2},∁U (A ∪B )={﹣2,3}.故答案为:{﹣2,3}.2.已知集合{}37|A x x =≤<,{}210|B x x =<<,则()A A B U ð=_____.【答案】∅∵{}37|A x x =≤<,{}210|B x x =<<,∴{}2|10A B x x =<<U ,∴()A A B =∅U ð.故答案为:∅.3.已知集合{}0,1,2,3,4,5U =,{}1,4M =,{}1,2,3N =,则()U M N ⋂=ð______.【答案】{}2,3由题意{}0,2,3,5U M =ð,而{}1,2,3N =,所以(){}2,3U M N = ð.故答案为:{}2,3.4.已知全集U Z =,{}1,0,1,2A =-,{}2|B x x x ==,则U A C B ⋂=_______【答案】{}1,2-.因为全集U Z =,{}{}2|0,1B x x x ===,所以{}|,0,1U C B x x Z x x =∈≠≠,又因为{}1,0,1,2A =-,所以{}1,2U A C B ⋂=-,故答案为:{}1,2-.5.已知全集U Z =,定义{}|,A B x x a b a A b B ==⋅∈∈ 且,若{}1,2,3A =,{}1,0,1B =-,则()U C A B = ___________.【答案】{}|||4,x x x Z ≥∈由题意可知,{}3,2,1,0,1,2,3A B =--- ,所以{}()|||4,U C A B x x x Z =≥∈ .故答案为:{}|||4,x x x Z ≥∈对点精练1.设集合A ={1,2,3,4},B ={3,4,5},全集U =A ∪B ,则集合ðU (A ∩B )=()A .{1,2,3,5}B .{1,2,3}C .{1,2,5}D .{1,2,3,4,5}【答案】C因为A ={1,2,3,4},B ={3,4,5},所以全集U =A ∪B ={1,2,3,4,5},A ∩B ={3,4},所以U (A ∩B )={1,2,5}.故选:C.2.已知集合M ={x ∈R|x 2﹣2x =0},U ={2,1,0},则U M =ð()A .{0}B .{1,2}C .{1}D .{1,0,2}【答案】C 解:集合M ={x ∈R|x 2﹣2x =0}={0,2},U ={2,1,0},则{}U 1M =ð.故选:C .3.设全集{}*,6U xx N x =∈<∣,集合{1,3}A =,{3,5}B =,则()U C A B 等于()A .{2,4}B .{1,5}C .{2,5)D .{1,4}【答案】A由题得{1,2,3,4,5}U =,{1,3,5}A B ⋃= ,(){2,4}U C A B ∴⋃=.故选:A4.已知全集为实数集R ,集合{}36A x x =-<<,{}29140B x x x =-+<,则()U A B ⋂=ð()A .()2,6B .()2,7C .(]3,2-D .()3,2-【答案】C {}{}2914027B x x x x x =-+<=<< ,{2U B x x ∴=≤ð或}7x ≥,{}(]()323,2U A B x x ∴⋂=-<≤=-ð.故选:C.5.已知全集{}1,0,1,2,3,4U =-,集合{}1,A x x x =≤∈N ,{}1,3B =,则()U A B = ð().A .{}4B .{}2,4C .{}1,2,4-D .{}1,0,2,4-【答案】C {}{}1,0,1A x x x =≤∈=N ,{}0,1,3A B ∴⋃=,(){}1,2,4U A B ∴=- ð.故选:C.6.设U =R ,N ={x |-2<x <2},M ={x |a -1<x <a +1},若ðU N 是ðU M 的真子集,则实数a 的取值范围是()A .-1<a <1B .-1≤a <1C .-1<a ≤1D .-1≤a ≤1【答案】D因为ðU N 是ðU M 的真子集,所以M 是N 的真子集,所以a -1≥-2且a +1≤2,等号不同时成立,解得-1≤a ≤1.故选:D7.已知{}{},14||A x x a B x x =<=<<,若R A B ⊆ð,则实数a 的取值范围为()A .{}|1a a <B .{}4|a a ≤C .{}|1a a ≤D .{}|1a a ≥【答案】C因为{}{},14||A x x a B x x =<=<<,所以|1{R B x x =≤ð或}4x ≥,因为R A B ⊆ð,所以1a ≤.故实数a 的取值范围为{}|1a a ≤故选:C 8.设全集U =R ,已知集合{|3A x x =<或9}x ,集合{|}B x x a =,若()U A B ⋂≠∅ð,则a 的取值范围为()A .3a >B .3a C .9a <D .9a 【答案】C因为全集U =R ,集合{|3A x x =<或9}x ,所以{|39}U A x x =<ð,又因为()U A B ⋂≠∅ð,{|}B x x a =9a ∴<.故选:C9.已知集合{(3)(1)0}A x x x =-+>,{}11B x x =->,则()R A B = ð()A .[1,0)(2,3]- B .(2,3]C .(,0)(2,)-∞+∞ D .(1,0)(2,3)- 【答案】A 集合{{(3)(1)0}3A x x x x x =-+>=或}1x <-,集合{}{112B x x x x =->=或}0x <,则 {}13R A x x =-≤≤,( {)10R A B x x ⋂=-≤<或}23x <≤故选:A.10.设U 是全集,,,M P S 是U 的三个子集,则阴影部分所示的集合为()A .()M P SB .()()U M PC S C .()M P SD .()()U M P C S 【答案】B 由图象可知:阴影部分对应的集合的元素x ∉S ,∴x ∈U C S ,且x ∈M ∩P ,因此x ∈(U C S )∩(M ∩P ).故选:B .11.已知全集U=R,集合M={x|-1≤x≤3},则∁U M=()A .{x|-1<x<3}B .{x|-1≤x≤3}C .{x|x<-1或x>3}D .{x|x≤-1或x≥3}【答案】C由题意,全集U =R ,集合{|13}M x x=-#,所以{|1U C M x x =<-或3}x >,故选C.12.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若(∁R M )⊇(∁R N ),则k 的取值范围是()A .k ≤2B .k ≥-1C .k >-1D .k ≥2【答案】D【解析】由()()M N ⊇R R 痧可知M N ⊆,则k 的取值范围为2k ≥.故选D.13.已知集合U =R ,A ={x |﹣1≤x ≤1},B ={x |x ﹣a <0},若满足U B A ⊆ð,则实数a 的取值范围为__.【答案】a ≤﹣1求出∁U A ,再利用集合的包含关系即可求解.因为A ={x |﹣1≤x ≤1},所以∁U A ={x |x >1或x <﹣1},B ={x |x ﹣a <0}={x |x <a }若B ⊆∁U A ,则a ≤﹣1.故答案为:a ≤﹣1.14.设全集U =M ∪N ={1,2,3,4,5},M∩∁U N ={2,4},则N =________.【答案】{135},,【解析】M ∪N 元素去掉M∩∁U N 元素得N ={1,3,5}15.设集合U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则∁U (A∩B)=________.【答案】{1,4,5}因为集合U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4}所以A∩B ={2,3},所以∁U (A∩B)={1,4,5}.故答案为{1,4,5}.16.已知全集为R ,集合M ={x ∈R|−2<x <2},P ={x |x ≥a },并且R M P Íð,则实数a 的取值范围是________.【答案】a ≥2【解析】由题意得M ={x |−2<x <2},R P ð={x |x <a }.∵M ⊆R P ð,∴由数轴知a ≥2.17.已知集合U ={x ∈Z |-2<x <10},A ={0,1,3,4,8},B ={-1,1,4,6,8}.求A ∩B ,ðU (A ∪B ),A ∩(ðU B ),B ∪(ðU A ).【答案】A ∩B ={1,4,8},ðU (A ∪B )={2,5,7,9},A ∩(ðU B )={0,3},B ∪(ðU A )={-1,1,2,4,5,6,7,8,9}.集合U ={x ∈Z |-2<x <10}={-1,0,1,2,3,4,5,6,7,8,9},A ={0,1,3,4,8},B ={-1,1,4,6,8},所以A ∩B ={1,4,8},A ∪B ={-1,0,1,3,4,6,8},所以ðU (A ∪B )={2,5,7,9},又ðU B ={0,2,3,5,7,9},ðU A ={-1,2,5,6,7,9},所以A ∩(ðU B )={0,3},B ∪(ðU A )={-1,1,2,4,5,6,7,8,9}.18.已知全集U =R ,集合{}32A x x =-<<,{}16B x x =≤≤,{}121C x a x a =-≤≤+.(1)求()U A B ð;(2)若()C A B ⊆⋂,求实数a 的取值范围.【答案】(1){2x x <或}6x >,(2)2a <-解:(1)因为全集U =R ,{}16B x x =≤≤,所以{U 1B x x =<ð或}6x >,因为{}32A x x =-<<所以(){U 2A B x x =< ð或}6x >,(2)因为{}32A x x =-<<,{}16B x x =≤≤,所以{}12A B x x =≤< ,当集合C =∅时,()C A B ⊆⋂成立,则121a a ->+,解得2a <-,当集合C ≠∅时,则12111212a a a a -≤+⎧⎪-≥⎨⎪+<⎩,解得a ∈∅,综上,a 的取值范围2a <-19.已知全集U =R ,集合A ={x |-1<x <2},B ={x |0<x ≤3}.求:(1)A ∩B ;(2)∁U (A ∪B );(3)A ∩(∁U B ).【答案】(1){}|02x x <<;(2){|1x x ≤-或3}x >;(3){|10}x x -<≤.(1)因为A ={x |-1<x <2},B ={x |0<x ≤3},所以A ∩B ={x |-1<x <2}∩{x |0<x ≤3}={x |0<x <2}.(2)A ∪B ={x |-1<x <2}∪{x |0<x ≤3}={x |-1<x ≤3},∁U (A ∪B )={x |x ≤-1或x >3}.(3)A ∩(∁U B )={x |-1<x <2}∩{x |x >3或x ≤0}={x |-1<x ≤0}.20.已知集合A={x|x 2-x-2=0},B={x|x 2+mx+m-1=0}.(1)当m=1时,求(∁R B )∩A ;(2)若(∁R A )∩B=⌀,求实数m 的取值.【答案】(1)(∁R B )∩A={2};(2)m 的取值为2或-1.解方程x 2-x-2=0,即(x+1)(x-2)=0,解得x=-1,或x=2.故A={-1,2}.(1)当m=1时,方程x 2+mx+m-1=0为x 2+x=0,解得x=-1,或x=0.故B={-1,0},∁R B={x|x ≠-1,且x ≠0}.所以(∁R B )∩A={2}.(2)由(∁R A )∩B=⌀可知,B ⊆A.方程x 2+mx+m-1=0的判别式Δ=m 2-4×1×(m-1)=(m-2)2≥0.①当Δ=0,即m=2时,方程x 2+mx+m-1=0为x 2+2x+1=0,解得x=-1,故B={-1}.此时满足B ⊆A.②当Δ>0,即m ≠2时,方程x 2+mx+m-1=0有两个不同的解,故集合B 中有两个元素.又因为B ⊆A ,且A={-1,2},所以A=B.故-1,2为方程x 2+mx+m-1=0的两个解,由根与系数之间的关系可得-(-1)2-1(-1)2m m =+⎧⎨=⨯⎩,,解得m=-1.综上,m 的取值为2或-1.21.全集U =R ,对集合A 、B 定义U A B A B -=⋂ð,定义()()A B A B B A ∆=-⋃-.若集合{}{}|15|37A x x B x x =<≤=≤≤,,求A B ∆.【答案】{13x x <<或}57x <≤解:因为{}{}|15|37A x x B x x =<≤=≤≤,,所以{1U A x x =≤ð或}5x >,{3U B x x =<ð或}7x >,所以{}13U A B A B x x -=⋂=<<ð,{}57U B A B A x x -=⋂=<≤ð,所以{()()13A B A B B A x x ∆=-⋃-=<<或}57x <≤22.已知集合{A x x a =<或}21x a >+,{}24B x x =≤≤.(1)若A B =∅ ,求实数a 的取值范围;(2)当a 取使不等式21x ax +≥恒成立的a 的最小值时,求()R C A B .【答案】(1){a a ≤}2a ≤≤;(2){}24x x ≤≤.(1){A x x a =<或}21x a >+,{}24B x x =≤≤,()22131024a a a ⎛⎫+-=-+> ⎪⎝⎭ ,21a a ∴<+,若A B =∅ ,则2214a a ≤⎧⎨+≥⎩,解得a ≤或2a ≤≤,所以a的取值范围为{a a ≤}2a ≤≤;(2)由21x ax +≥得210x ax -+≥恒成立,则240a ∆=-≤,解得22a -≤≤,所以a 的最小值为2-,当2a =-时,{|2A x x =<-或}5x >{}25R C A x x ∴=-≤≤,(){}24R C A B x x ∴⋂=≤≤。

近年高中数学初高中衔接读本专题4.1简单的二次方程组的解法精讲深剖学案(2021年整理)

近年高中数学初高中衔接读本专题4.1简单的二次方程组的解法精讲深剖学案(2021年整理)

2018高中数学初高中衔接读本专题4.1 简单的二次方程组的解法精讲深剖学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学初高中衔接读本专题4.1 简单的二次方程组的解法精讲深剖学案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学初高中衔接读本专题4.1 简单的二次方程组的解法精讲深剖学案的全部内容。

第1讲 简单的二次方程组的解法本专题在初中学习方程、不等和函数的基础上,根据高中学习的需要,共同学习简单的二次方程组及一元二次不等式的解法.在初中我们已经学习了一元一次方程、一元二次方程及二元一次方程组的解法,掌握了用消元法解二元一次方程组.高中学习圆锥曲线时,需要用到二元二次方程组的解法.因此,本讲讲介绍简单的二元二次方程组的解法.【知识梳理】1。

含有两个未知数、且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.2。

由一个二元一次方程和一个二元二次方程组成的方程组,或由两个二元二次方程组组成的方程组,叫做二元二次方程组.3。

解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和 “降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。

因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键。

探究1: 由一个二元一次方程和一个二元二次方程组成的方程组一个二元一次方程和一个二元二次方程组成的方程组一般都可以用代入法求解.其蕴含着转化思想:将二元一次方程化归为熟悉的一元二次方程求解.【典例解析】解方程组2220 (1)30 (2)x y x y -=⎧⎨-+=⎩ 【分析】由于方程(1)是二元一次方程,故可由方程(1),得2y x =,代入方程(2)消去y .【解析】 由(1)变形得:2y x = (3)将(3)代入(2)得:22(2)30x x -+=,解得:1211x x ==-或把1x =代入(3)得:22y =;把1x =-代入(3)得:22y =-.∴原方程组的解是:11111122x x y y ==-⎧⎧⎨⎨==-⎩⎩或. 【解题反思】 (1) 解由一个二元一次方程和一个二元二次方程组成的方程组的步骤: ①由二元一次方程变形为用x 表示y 的方程,或用y 表示x 的方程(3);②把方程(3)代入二元二次方程,得一个一元二次方程;③解消元后得到的一元二次方程;④把一元二次方程的根,代入变形后的二元一次方程(3),求相应的未知数的值; ⑤写出答案.(2) 消x ,还是消y ,应由二元一次方程的系数来决定.若系数均为整数,那么最好消去系数绝对值较小的,如方程210x y -+=,可以消去x ,变形得21x y =-,再代入消元.(3) 消元后,求出一元二次方程的根,应代入二元一次方程求另一未知数的值,不能代入二元二次方程求另一未知数的值,因为这样可能产生增根,这一点切记.【变式训练】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩【分析】本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程 211280z z -+=的两根,则更容易求解.【点评】(1) 对于这种对称性的方程组x y a xy b+=⎧⎨=⎩,利用一元二次方程的根与系数的关系构造方程时,未知数要换成异于x 、y 的字母,如z .(2) 对称形方程组的解也应是对称的,即有解47x y =⎧⎨=⎩,则必有解74x y =⎧⎨=⎩.探究2:由两个二元二次方程组成的方程组(1)可因式分解型的方程组方程组中的一个方程可以因式分解化为两个二元一次方程,则原方程组可转化为两个方程组,其中每个方程组都是由一个二元二次方程和一个二元一次方程组成.【典例解析】解方程组22225() (1)43 (2)x y x y x xy y ⎧-=+⎪⎨++=⎪⎩ 【分析】注意到方程225()x y x y -=+,可分解成()(5)0x y x y +--=,即得0x y +=或50x y --=,则可得到两个二元二次方程组,且每个方程组中均有一个方程为二元一次方程.【解题反思】由两个二元二次方程组成的方程组中,有一个方程可以通过因式分解,化为两个二元一次方程,则原方程组转化为解两个方程组,其中每一个方程组均有一个方程是二元一次方程.【变式训练】解方程组2212 (1)4 (2)x xy xy y ⎧+=⎪⎨+=⎪⎩ 【分析】本题的特点是方程组中的两个方程均缺一次项,我们可以消去常数项,可得到一个二次三项式的方程.对其因式分解,就可以转化为上例.【解析】(1) –(2)3⨯得:223()0x xy xy y +-+=即 22230(3)()0x xy y x y x y --=⇒-+=∴ 300x y x y -=+=或∴ 原方程组可化为两个二元一次方程组:22300,44x y x y xy y xy y -=+=⎧⎧⎨⎨+=+=⎩⎩. 用代入法解这两个方程组,得原方程组的解是:121233,11x x y y ==-⎧⎧⎨⎨==-⎩⎩. 【点评】若方程组的两个方程均缺一次项,则消去常数项,得到一个二元二次方程.此方程与原方程组中的任一个方程联立,得到一个可因式分解型的二元二次方程组.(2)可消二次项型的方程组【典例解析】解方程组 3 (1)38 (2)xy x xy y +=⎧⎨+=⎩【分析】注意到两个方程都有xy 项,所以可用加减法消之,得到一个二元一次方程,即转化为由一个二元一次方程和一个二元二次方程组成的方程组.【解题反思】若方程组的两个方程的二次项系数对应成比例,则可用加减法消去二次项,得到一个二元一次方程,把它与原方程组的任意一个方程联立,解此方程组,即得原方程组的解.二元二次方程组类型多样,消元与降次是两种基本方法,具体问题具体解决。

初高中衔接课程(7)

初高中衔接课程(7)

目录课程说明 (2)使用说明 (3)第一讲基本运算问题 (4)第二讲方程与方程组 (14)第三讲一次函数与反比例函数 (24)第四讲二次函数 (35)第五讲不等式 (46)第六讲函数的综合应用 (58)第七讲三角形与四边形 (70)第八讲锐角三角函数 (79)第九讲圆 (79)第十讲高中数学常见的思想方法 (79)课程说明课程名称初高中数学衔接课程课程定位关注初高中数学教材编排特点;关注初高中学生的思维发展水平;总体课程目标通过本课程的学习,能够起到以下效果:一、弥补基础知识的不足,夯实学习高中数学的良好基础。

二、训练运算能力、空间想象能力、逻辑推理能力和分析问题解决问题的能力。

三、初步掌握高中数学思想方法,形成良好的学习习惯。

课程适用区域(省或直辖市)适用使用新课标教学的地区课程研发理念和思路高中数学难,难就难在初高中数学无论是在知识的广度和难度上,还是在思维模式和学习方法上,都存在较大的差异,形成了一个“高台阶”。

特别在新一轮课程改革后,初中数学的教学要求有所降低,有些学习高中数学所必须具备的基础知识、常用方法和基本能力,在初中的教材中都进行了淡化处理,有的甚至不做要求。

《初高中数学衔接课程》旨在帮助即将进入高中的学生弥补知识储备的漏洞,掌握基本的数学思想方法,形成良好学习习惯,提振学习信心,闯过高中数学的第一道坎。

主要内容编号课题课程容量第一讲基本运算问题120分钟第二讲方程与方程组120分钟第三讲一次函数与反比例函120分钟第四讲二次函数120分钟第五讲不等式120分钟第六讲函数的综合应用120分钟第七讲三角形与四边形120分钟第八讲锐角三角函数120分钟第九讲圆120分钟第十讲高中数学常见的思想方法120分钟使用说明本课程适合在即将学习高中数学课程的初中毕业生中使用。

共分十讲,每讲安排有教学目标、重难点提示、基础知识梳理、主要方法归纳、典型例题精讲和课后巩固练习等栏目。

无论在小组课还是一对一授课过程中,老师都可以进行二次开发,更需要根据学生的具体情况进行个性化处理,让我们共同成为精品课程的开发者。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识概要
(1)二次不等式a x2 +bx +c > 0恒成立
a 0 2 b 4ac 0 (2)二次不等式a x2 +bx +c < 0恒成立 a 0 2 b 4ac 0
(2)x 13 x 36
2
解 : (1)x 2 7 x 6 [ x ( 1)][ x ( 6)] ( x 1)( x 6). (2)x 2 13 x 36 ( x 4)( x 9).
2014年8月25日星期一
三、十字相乘法
2.一般二次三项式 ax 2 bx c 型的因式分解
数学学科的基本要求
一、遵守课堂纪律; 二、课前简要预习; 三、课堂积极思考; 四、必要时记笔记; 五、及时总结巩固; 六、先复习再做题; 七、认真完成作业。
2014年8月25日星期一
2014年8月25日星期一
一、一元二次方程的根的判断式
2 ax bx c 0 (a 0) ,用配方法将 一元二次方程 其变形为: b 2 b 2 4ac (x ) 2a 4a 2
2014年8月25日星期一
当a<0时, 二次项系数先化为正.
例3.解不等式 -x2 +2x-3 > 0 略解: -x2 +2x-3 > 0
x2 -2x+3 < 0
无 解
可以记为 解集为:Φ 例4.若改为:解不等式 -x2 +2x-3 < 0 呢?
解:x2 -2x+3 >0
xR
2014年8月25日星期一
2
x 2 ( p q ) x pq x 2 px qx pq x 2 ( p q ) x pq x( x p) q( x p) ( x p)( x q ) ( x p )( x q )
【例2】因式分解: (1) x 2 7 x 6
判别式 △=b2- 4ac
△>0
△=0
△<0
y
y=ax2+bx+c (a>0)的图象
y
x2 x O x1
y
x1 O
x
O
x
ax2+bx+c=0 的根
有两相异实根 x1, x2 (x1<x2)
有两相等实根 x1=x2= b 2a
无实根
2014年8月25日星期一
一、一元二次方程的根的判断式
【例1】已知关于的一元二次方程 3 x 2 2 x k 0 ,根据 下列条件,分别求出的范围: (1) 方程有两个不相等的实数根; (2) 方程有两个相 等的实数根 (3) 方程有实数根; (4) 方程无实数根.
y
y>0
的图象
(a>0)
ax2+bx+c=0 (a>0)的根
x1 O
x2 x
y<0
O x1
x
O 没有实根
x
有两相异实根 x1, x2 (x1<x2)
ax2+bx+c>0 (y>0)的解集 {x|x<x1,或 x>x2}
有两相等实根 b x1=x2= 2a
b {x|x≠ } 2a
R Φ
2014年8月25日星期一
2014年8月25日星期一
二、一元二次方程的根与系数的关系
2 ax bx c 0 (a 0) 的两个根为: 一元二次方程
b b 2 4ac b b 2 4ac x1 , x2 2a 2a
b b 2 4ac b b 2 4ac b x1 x2 2a 2a a 2 2 b b 4ac b b 4ac ( b )2 ( b 2 4ac )2 4ac c x1 x2 2 2 2a 2a (2a ) 4a a
ax2+bx+c>0
ax2+bx+c=0
y=ax2+bx+c
一元二次不等式
一元二次方程
解集的端点
方程的根
一元二次函数 函数图像与x轴 交点横坐标
一元二次不等式的解集为一元二次函数图象 在x轴下方或上方图象所对应x的范围。
2014年8月25日星期一
例1.解不等式 2x2-3x-2 > 0 .
解:因为△ =(-3)2-4×2×(-2)>0, 先求方程的根
图象为:
-2
例2.若改为:不等式 2x2-3x-2 < 0 .
注:开口向上,
不等式小于0的
3
解集:“小于取中间”。
小结:利用一元二次函数图象解一元二次不等式 其方法步骤是:
2014年8月25日星期一
小结:
一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根.
四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集.
大家知道, (a1 x c1 )(a2 x c2 ) a1a2 x 2 (a1c2 a2 c1 ) x c1c2 . 反过来,就得到: a1a2 x2 (a1c2 a2 c1 ) x c1c2 (a1 x c1 )(a2 x c2 ) 我们发现,二次项系数 a 分解成 a1a2 ,常数项 c 分解成 c1c2 ,把 a1 , a2 , c1 , c2 写成 a1 a2
5、 x -(a+1) x+a 答案: (x-1)(x-a)
2014年8月25日星期一
2
2014年8月25日星期一
复习一元二次方程与一元二次函数有关知识:
(一)一元二次方程的解法 ax2 bx c 0(a 0)
(1)因式分解法:(十字相乘)
b b2 4ac x ; (2)公式法: 2a b c (3)根与系数: x1 x2 , x1 x2 a a (二)一元二次函数 y ax2 bx c(a 0)
练习一:解不等式 4x2-4x+1 > 0
解:因为△ =0,方程4x2-4x+1 =0的解是 1 x1 x 2 2, 所以,原不等式的解集是
1 x | x 2
若改为:4x2-4x+1 <0
无解
2014年8月25日星期一
练习二:
1.写出下列不等式的解集:
(1) (x – 1)(x – 3) < 0
2
x x x x
1
x x2
2 1
b x R x 2 a

x x x 或x x
1 x x2
R
b x x 2 a
R

2014年8月25日星期一
利用一元二次函数图象解一元二次不等式时,要 注意下面三者之间的联系:
十字相乘法
作业:将下列各式分解因式 2 答案: (7x-6)(x-1) 1、 7x -13x+6 2、 -y -4y+12
2 2 2 2
答案: (-y+2)(y+6)
3、 15x +7xy-4y 答案: (3x-y)(5x+4y) 4、 10(x +2) -29(x+2) +10
答案 :(2x-1)(5x+8)
(1) 当 b2 4ac 0 时,方程有两个不相等的实数根:
b b 2 4ac x 2a
2 b (2) 当 4ac 0 时,方程有两个相等的实数根:
x1,2
2
b 2a
根的判别式
b2 4ac
(3) 当 b 4ac 0 时,方程没有实数根.
2014年8月25日星期一
解 : (1)12 x 5 x 2 (3 x 2)( 4 x 1).
2
(2)5x 2 6 xy 8 y 2
3 4 1 5

2 1 2 4
2014年8月25日星期一
( 2)5 x 2 6 xy 8 y 2 ( x 2 y )(5 x 4 y ).
ax2+bx+c<0 (y<0)的解集 {x|x1< x <x2 }
Φ
一元二次不等式的解的情况
△=b2-4ac
△>0
△=0
△<0
y
y=f(x)的图象 O
x1 x2
y x
1
y
x b 2a
O
x
O
x
R
f(x)>0的解集
f(x)<0的解集 f(x)≥0的解集 f(x)≤0的解集
x x x 或x x
2 2 2
2
2014年8月25日星期一
立方和、立方差公式
a b (a b)(a ab b )
3 3 3 2 2
a b (a b)(a ab b )
3 2 2
2014年8月25日星期一
一、公式法(立方和、立方差公式)
a b (a b)(a ab b )
开口方向: a>0 开口向上;a<0 开口向下.
b 对称轴: x 2a b 4ac b2 , 顶点坐标: 4a 2a
2014年8月25日星期一
函数 、方程、不等式之间的关系
判别式 △=b2- 4ac y=ax2+bx+c △>0 y
y>0
△=0
y
y>0
△<0
方程的解2x2-3x-2 =0的解 是 1 x1 , x2 2. 2
所以,原不等式的解集是
然后想像图象形状
1 x | x , 或x 2. 2
注:开口向上, 不等式大于0的
相关文档
最新文档