人教A版2019高中数学必修4讲义:第一章 1.1 1.1.1 任 意 角_含答案

合集下载

新课标-人教A版-高中数学必修4教案精选

新课标-人教A版-高中数学必修4教案精选
o

那么有( D A.
) . B. C. ( ) D.
例 2 用集合表示: (1)各象限的角组成的集合.
o
(2)终边落在
o o
轴右侧的角的集合.
解:(1) 第一象限角: {α|k360 π<α<k360 +90 ,k∈ Z} o o o o 第二象限角: {α|k360 +90 <α<k360 +180 ,k∈ Z} o o o o 第三象限角: {α|k360 +180 <α<k360 +270 ,k∈ Z} o o o 第四象限角:{α|k360 +270o<α<k360 +360 ,k∈Z} (2)在 ~ 中, 轴右侧的角可记为 ,同样把该范围“旋转” 后,得
1
1.定义中说:角的始边与 x 轴的非负半轴重合,如果改为与 x 轴的正半轴重合行不行,为什么? 2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字? 3.是不是任意角都可以归结为是象限角,为什么? 处理:学生思考片刻后回答,教师适时予以纠正。 答:1.不行,始边包括端点(原点) ; 2.端点在原点上; 3.不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。 师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的 预习才是有效果的。 0 0 0 0 0 师生讨论:好,按照象限角定义,图中的 30 ,390 ,-330 角,都是第一象限角;300 ,-60 角,都是第四象限 0 角;585 角是第三象限角。 师:很好,不过老师还有几事不明,要请教大家: (1)锐角是第一象限角吗?第一象限角是锐角吗?为什么? 生:锐角是第一象限角,第一象限角不一定是锐角; 0 师: (2)锐角就是小于 90 的角吗? 0 生:小于 90 的角可能是零角或负角,故它不一定是锐角; 0 0 师: (3)锐角就是 0 ~90 的角吗? 0 0 0 0 0 0 生:锐角:{θ|0 <θ<90 };0 ~90 的角:{θ|0 ≤θ<90 }. 学生练习(口答) 已知角的顶点与坐标系原点重合,始边落在 x 轴的非负半轴上,作出下列各角,并指出 它们是哪个象限的角? 0 0 0 0 (1)420 ; (2)-75 ; (3)855 ; (4)-510 . 答: (1)第一象限角; (2)第四象限角; (3)第二象限角; (4)第三象限角. 5.终边相同的角的表示法 师:观察下列角你有什么发现? 390 330 30 1470 1770 生:终边重合. 0 师:请同学们思考为什么?能否再举三个与 30 角同终边的角? 0 0 0 0 0 0 0 0 0 0 0 生:图中发现 390 ,-330 与 30 相差 360 的整数倍,例如,390 =360 +30 ,-330 =-360 +30 ;与 30 角同终边的 0 0 角还有 750 ,-690 等。 0 0 0 0 师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差 360 的整数倍。例如:750 =2×360 +30 ; 0 0 0 0 -690 =-2×360 +30 。那么除了这些角之外,与 30 角终边相同的角还有: 0 0 0 0 3×360 +30 -3×360 +30 0 0 0 0 4×360 +30 -4×360 +30 ……, ……, 0 0 0 由此,我们可以用 S={β|β=k×360 +30 ,k∈Z}来表示所有与 30 角终边相同的角的集合。 师:那好,对于任意一个角α,与它终边相同的角的集合应如何表示? 0 生:S={β|β=α+k×360 ,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。 6.例题讲评 例 1 设 E {小于90 的角} F {锐角},G={第一象限的角} ,

人教a版必修4学案:1.1.1任意角(含答案)

人教a版必修4学案:1.1.1任意角(含答案)

第一章三角函数§1.1任意角和弧度制1.1.1任意角自主学习知识梳理1.角的概念(1)角的概念:角可以看成平面内________________绕着________从一个位置________到另一个位置所成的图形.(2)角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按______________________形成的角负角按________________形成的角零角一条射线________________,称它形成了一个零角2.象限角角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是______________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=____________},即任一与角α终边相同的角,都可以表示成角α与____________的和.4.终边落在坐标轴上角的集合终边所在的位置角的集合x轴正半轴x轴负半轴x轴y轴正半轴y轴负半轴y轴自主探究终边落在各个象限的角的集合.α终边所在的象限角α的集合第一象限第二象限第三象限第四象限对点讲练知识点一终边相同的角与象限角例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.回顾归纳 解答本题可先利用终边相同的角的关系:β=α+k ·360°,k ∈Z ,把所给的角化归到0°~360°范围内,然后利用0°~360°范围内的角分析该角是第几象限角. 变式训练1 判断下列角的终边落在第几象限内: (1)1 400°; (2)-2 010°.知识点二 终边相同的角的应用例2 已知,如图所示,(1)写出终边落在射线OA ,OB 上的角的集合; (2)写出终边落在阴影部分(包括边界)的角的集合.回顾归纳 解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简.变式训练2 如图所示,写出终边落在阴影部分的角的集合.知识点三 角的象限的判断例3 已知α是第二象限角,试确定2α,α2的终边所在的位置.回顾归纳 若已知角α是第几象限角,判断α2,α3等是第几象限角,主要方法是解不等式并对k 进行分类讨论.考查角的终边的位置.变式训练3 已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.关于终边相同角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:(1)α为任意角.(2)k ·360°与α之间是“+”号,k ·360°-α可理解为k ·360°+(-α).(3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.(4)k ∈Z 这一条件不能少.课时作业一、选择题 1.与405°角终边相同的角是( ) A .k ·360°-45°,k ∈Z B .k ·180°-45°,k ∈Z C .k ·360°+45°,k ∈Z D .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限 3.若角α与β的终边相同,则α-β的终边落在( ) A .x 轴的正半轴 B .x 轴的负半轴 C .y 轴的正半轴 D .y 轴的负半轴 4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 5. 如图,终边落在阴影部分(含边界)的角的集合是( )A .{α|-45°≤α≤120°}B .{α|120°≤α≤315°}C .{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z }D .{α|k ·360°+120°≤α≤k ·360°+315°,k ∈Z }二、填空题6.经过10分钟,分针转了________度.7.下列命题:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角大于第一象限角;⑤第二象限角是钝角;⑥小于180°的角是钝角、直角或锐角.其中判断错误的是______.(把有关命题的序号写上即可)8.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题9.在与角-2 010°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.10.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.第一章三角函数§1.1任意角和弧度制1.1.1任意角知识梳理1.(1)一条射线端点旋转(2)类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角3.α+k·360°,k∈Z整数个周角4.终边所在的位置角的集合x轴正半轴{α|α=k·360°,k∈Z}x轴负半轴{α|α=k·360°+180°,k∈Z}x轴{α|α=k·180°,k∈Z}y轴正半轴{α|α=k·360°+90°,k∈Z}y轴负半轴{α|α=k·360°+270°,k∈Z}y轴{α|α=k·180°+90°,k∈Z}自主探究α终边所在的象角α的集合限第一{α|k·360°<α<k·360°+90°,k∈Z}象限第二{α|k·360°+90°<α<k·360°+180°,k∈Z}象限第三{α|k·360°+180°<α<k·360°+270°,k∈Z}象限第四{α|k·360°-90°<α<k·360°,k∈Z}象限对点讲练例1解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.变式训练1解(1)1 400°=3×360°+320°,∵320°是第四象限角,∴1 400°也是第四象限角.(2)-2 010°=-6×360°+150°,∴-2 010°与150°终边相同.∴-2 010°是第二象限角.例2解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.变式训练2解设终边落在阴影部分的角为α,角α的集合由两部分组成.(1){α|k·360°+30°≤α<k·360°+105°,k∈Z}.(2){α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合(1)与(2)的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|k ·180°+30°≤α<k ·180°+105°,k ∈Z }. 例3 解 因为α是第二象限角, 所以k ·360°+90°<α<k ·360°+180°,k ∈Z . 所以2k ·360°+180°<2α<2k ·360°+360°,k ∈Z ,所以2α的终边在第三或第四象限或终边在y 轴的非正半轴上. 因为k ·360°+90°<α<k ·360°+180°,k ∈Z ,所以k ·180°+45°<α2<k ·180°+90°,k ∈Z ,所以当k =2n ,n ∈Z 时,n ·360°+45°<α2<n ·360°+90°,即α2的终边在第一象限; 当k =2n +1,n ∈Z 时,n ·360°+225°<α2<n ·360°+270°,即α2的终边在第三象限.所以α2的终边在第一或第三象限.变式训练3 D [由于k ·360°+180°<α<k ·360°+270°,k ∈Z , 得k 2·360°+90°<α2<k 2·360°+135°. 当k 为偶数时,α2为第二象限角;当k 为奇数时,α2为第四象限角.]课时作业 1.C 2.A3.A [∵α=β+k ·360°,k ∈Z , ∴α-β=k ·360°,k ∈Z .]4.C [可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.]5.C [与边界终边相同的角为k ·360°+120°或k ·360°-45°.故阴影部分的角为k ·360°-45°≤α≤k ·360°+120°,k ∈Z .] 6.-607.①③④⑤⑥解析 ①390°角是第一象限角,可它不是锐角,所以①不正确.②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以②正确. ③-330°角是第一象限角,但它是负角,所以③不正确.④120°角是第二象限角,390°是第一象限角,显然390°>120°,所以④不正确. ⑤480°角是第二象限角,但它不是钝角,所以⑤不正确.⑥0°角小于180°,但它既不是钝角,也不是直角或锐角,故⑥不正确. 8.-110°或250°解析 ∵α=1 690°=4×360°+250°,∴θ=k ·360°+250°,k ∈Z .∵-360°<θ<360°, ∴k =-1或0. ∴θ=-110°或250°.9.解(1)∵-2 010°=-6×360°+150°,∴与角-2 010°终边相同的最小正角是150°.(2)∵-2 010°=-5×360°+(-210°),∴与角-2 010°终边相同的最大负角是-210°.(3)∵-2 010°=-6×360°+150°,∴与-2 010°终边相同也就是与150°终边相同.由-720°≤k·360°+150°<720°,k∈Z,解得:k=-2,-1,0,1.代入k·360°+150°依次得:-570°,-210°,150°,510°.10.解(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.。

1.1.1《任意角》课件(人教A版必修4)

1.1.1《任意角》课件(人教A版必修4)

5.与1 991°终边相同的最小正角是_____. 【解析】∵与1 991°终边相同的角β=1 991°+ k²360°,(k∈Z),∴0°<1 991°+k²360°≤360°
191 <k≤ 191 又k∈Z, 即 -5 -4 , 360 360 ∴k=-5,∴与1 991°终边相同的最小正角是

)
(B)钝角是第二象限角
(C)终边相同的角一定相等 (D)不相等的角,它们的终边必不相同 【解析】选B.因为钝角α满足90°<α<180°,所以角α的 终边一定在第二象限.
3.若α 是第四象限角,则180°+α 一定是( (A)第一象限角 (B)第二象限角

(C)第三象限角
(D)第四象限角
【解析】选B.方法一:∵α是第四象限角 ∴-90°+k²360°<α<k²360° ∴90°+k²360°<180°+α<180°+k²360°(k∈Z) 方法二:由角的运算知,角α与角180°+α关于原点对称,即
∴θ=120°或240°.
7.在0°~360°范围内,找出与下列各角终边相同的角,并 判断它们是第几象限角: (1)918°;(2)-624°18′. 【解析】(1)∵918°=2〓360°+198°,
而198°∈(180°,270°),
∴918°与198°的终边相同,是第三象限角. (2)∵-624°18′=-2〓360°+95°42′, 又95°42′∈(90°,180°), ∴-624°18′与95°42′的终边相同,是第二象限角.
n²360°,
∴ 是第三象限角. 3 答案:一、三、四
4.(15分)若集合A={α |k²180°+30°<α <k²180°+90°, k∈Z},集合B={β |k²360°-45°<β <k²360°+45°, k∈Z},求A∩B.

高一数学人教A版必修4第一章(三角函数)本章小结课件

高一数学人教A版必修4第一章(三角函数)本章小结课件

1-(-
5 5
)2
=
-
2
5 5
.
6. 用 cosa 表示 sin4a-sin2a+cos2a.
解: sin4a-sin2a+cos2a = sin2a(sin2a-1)+cos2a = sin2a(-cos2a)+cos2a = cos2a(1-sin2a) = cos4a.
7. 求证:
(1) 2(1-sina)(1+cosa) = (1-sina+cosa)2; (2) sin2a+sin2b-sin2a·sin2b+cos2a·cos2b =1.
6. 终边位置确定三角函数值的正负
y
y
y
++ -o - x
-+
ox
-+
-+
ox
+-
sina
cosa
tana
正弦上正下负, 余弦右正左负, 正切一三正二四负.
7. 同角三角函数的关系
sin2a+cos2a=1,
sina cosa
=
tana
.
常用的变形:
sin2a=1-cos2a. cos2a=1-sin2a.
解: 由已知得 sin2x=4cos2x, 1-cos2x=4cos2x,
解得 cos x =
5 5
.
又由已知得 tanx =2,
则 x 是第一、第三象限角.
当 x 是第一象限角时,
cos x =
5 5
,
sin x =
1-(
5 5
)2=
2
5 5
;
当 x 是第三象限角时,

1.1 任意角和弧度制 课件(34张PPT) 高中数学必修4(人教版A版)

1.1  任意角和弧度制  课件(34张PPT) 高中数学必修4(人教版A版)

圆心角为30°时
圆心角为60° 时
结论:圆心角不变则比值不变
比值的大小只与角度大小有关, 我们可以利用这个比值来度量 角,这就是度量角的另外一种 单位制——弧度制。
弧度制的定义
定义:长度等于半径 长的圆弧所对的圆心 角叫做弧度的角,用 符号1 rad表示,读 作1弧度。这种以弧 度为单位来度量角的 制度叫做弧度制。
3、终边相同的角
一般地,所有与角α 终边相同的角,连同角 α 在内,可构成一个集合
S { | k 360 , k Z}
0
即任一与角α终边相同的角,都可以表示成角α与 整数个周角的和. 注意:1 、α是任意的角(可以是正的,可以 是负的,也可以是0o) 2、k取整数
例l、在0°~360°范围内,找出与下列各角终 边相同的角,并判定它们是第几象限角: ①480° ② -150° ③ 665° ④-950° 解:① 480°=120°+1×360° 与120°的角终边相同,是第二象限角 ② -150°=210°+(-1)×360° 与210°的角终边相同,是第三象限角 ③ 665°=305°+360° 与305°的角终边相同,是第四象限角 ④ -950° =130°+(-3)×360° 与130°的角终边相同,是第二象限角
B' R B O A r L A'
l
即时问答:下列四个图中的圆心角的弧度数 分别是多少?
问题:
(1)若弧是一个半圆,圆心角所对的 弧度数是多少?若是一个圆呢?
(2)正角的弧度数是什么数?负角呢? 零角呢?角的正负由什么决定?
角度制与弧度制不同之处
1.定义方式不同:弧度制是以“弧度”为单 位的度量角的单位制,角度制是以“度”为 单位来度量角的单位制;1°≠1 弧度; 2. 进位制不同:弧度制是十进制,而角度 制是六十进制.

高中数学人教A版必修4目录

高中数学人教A版必修4目录

必修4目录第一章:三角函数1.1任意角和弧度制1.1.1任意角(1课时)1.1.2弧度制(1课时)1.2任意角的三角函数1.2.1任意角的三角函数(2课时)1.2.2同角三角函数的基本关系(1课时)1.3三角函数的诱导公式1.3三角函数的诱导公式(2课时)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象(1课时)1.4.2正弦函数、余弦函数的性质(2课时)1.4.3正切函数的性质与图象(1课时)1.5函数y=Asin(ωx+φ) 的图象1.5函数y=Asin(ωx+ϕ)的图象(2课时)1.6三角函数模型的简单应用1.6三角函数模型的简单应用(2课时)第二章:平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念 2.1.2向量的几何表示(1课时)2.1.3相等向量与共线向量(1课时)2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义(1课时) 2.2.3向量数乘运算及其几何意义(1课时)2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理 2.3.2平面向量的正交分解及坐标表示(1课时) 2.3.3平面向量的坐标表示 2.3.4平面向量共线是坐标表示(1课时)2.4平面向量的数量积2.4.1平面向量数量积的物理背景及含义(1课时)2.4.2平面向量数量积的坐标表示、模、夹角(1课时)2.5平面向量应用举例2.5.1平面几何中的向量方法(1课时)2.5.2向量在物理中的应用举例(1课时)第三章:三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式(1课时)3.1.2两角和与差的正弦、余弦、正切公式(1课时)3.1.3二倍角的正弦、余弦、正切公式(1课时)3.2简单的三角恒等变换3.2简单的三角恒等变换(3课时)。

高中数学必修四:1.1.1《任意角》 PPT课件 图文

高中数学必修四:1.1.1《任意角》 PPT课件 图文

精讲领学
例题1 写出与下列各角终边相同的角的集合S,并把S中在 360~720范围的角写出来.
( 1 ) 6 0 ;( 2 ) 2 1 ;( 3 ) 3 6 3 1 4
解: ( 1 ) S {| k 3 6 0 6 0 , k Z }300,60,420
( 2 ) S {| k 3 6 0 2 1 , k Z }21,339,699
2、下列角中终边与330°相同的角是( ) A.30° B.-30° C.630° D.-630°
3、把-1485°转化为α+k·360° (0°≤α<360°, k∈Z)的形式是( ) A.45°-4×360° B.-45°-4×360° C.-45°-5×360° D.315°-5×360°
反馈固学
1.1.1 任意角
第一课时
(1)推广角的概念;理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念; (3)掌握所有与角终边相同的角(包括角)的表示方法; (4)树立运动变化观点,深刻理解推广后的角的概念;
思考:那么工人在拧紧或拧松螺丝时,转动的角度 如何表示才比较合适?
逆时 针
4、下列结论中正确的是( ) A.小于90°的角是锐角 B.第二象限的角是钝角 C.相等的角终边一定相同 D.终边相同的角一定相等
5:任意两个角的数量大小可以相加、相减.
例如50°+80°=130°, 50°-80°=-30°, 你能解释一下这两个式子的几何意义吗?
130°是以50°角的终边为始边,逆时针旋转80°所成的角. -30°是以50°角的终边为始边,顺时针旋转80°所成的角.
注3:(1) 为任意角 (2) k Z这一条件必不可少;
(3) 终边相同的角不一定相等, 终边相等的角有无数多个,它们相差3600的整数倍.

【必做练习】高中数学第一章三角函数1.1.1任意角教案新人教A版必修4

【必做练习】高中数学第一章三角函数1.1.1任意角教案新人教A版必修4
最新人教版试题
课题:任意角
[课时安排]
1 课时
[教学目标]
1.理解任意大小的角正角、 负角和零角, 掌握终边相同的角、
象限角、区间角、终边在坐标轴上的角 .
2.从数形结合的角度认识角
3.培养学生用运动变化的观点分析问题,提高学生用换元、
转化、数形结合等数学思想方法解决问题的能力
[教学重点]
理解概念,掌握终边相同角的表示法 .
A. 30° B . 30°
C
. 630° D . 630°
3. 把 1485°转化为 α + k· 360°( 0°≤ α < 360° , k∈ Z)的形式是( )
A . 45o 4×360°
B
C. 45o 5× 360°
D
o
. 45 4× 360°
o
.315 5× 360°
4. 下列结论中正确的是 ( )
方向旋转形成的角;
零角:射线没有任何旋转形成的角;
负角:按
方向旋转形成的角。
(3)象限角与坐标轴上的角:
B 终边
始边
O 顶点
A
使角 的顶点与原点重合,始边与 x 轴正半轴重合,终边落第几象限,则
称为
;终边落在坐标轴上的角称为

2. 与角 终边相同的角为
k 360
k z) ,连同角 可构成一个集
合 S ,即
部编本试题,欢迎下载!
最新人教版试题
(4) 第四象限 . 探究 2. 写出与角
45 的终边相同的角的集合 S,并写出 S 中适合不等式
360
720 的元素 β .
【当堂训练】 1. 与 405°角终边相同的角是( )
A. k ·360°- 45° ( k Z )

高一数学必修4课件:1-1-1任意角

高一数学必修4课件:1-1-1任意角

第一章
1.1 1.1.1
成才之路 ·数学 ·人教A版 · 必修4
2.锐角、0° ~90° 的角、小于90° 的角、第一象限角的区 别 [剖析] (1)锐角、0° ~90° 的角,小于90° 的角、第一象限
角的范围,如下表所示. 角 锐角 0° ~90° 小于90° 的角 第一象限角 集合表示 {α|0° <α<90° } {α|0° ≤α<90° } {α|α<90° } {α|k· <α<k· +90° 360° 360° ,k∈Z}
成才之路 ·数学 ·人教A版 · 必修4
课前自主预习 随堂应用练习 思路方法技巧 课后强化作业 名师辨误做答
第一章
1.1 1.1.1
成才之路 ·数学 ·人教A版 · 必修4
课前自主预习
第一章
1.1 1.1.1
成才之路 ·数学 ·人教A版 · 必修4
温故知新 1.初中我们已经学习过角,那么初中对角的定义是什么 呢?所谓角就是________________.
[答案]
{β|β=210° 360° +k· ,k∈Z}
第一章
1.1 1.1.1
成才之路 ·数学 ·人教A版 · 必修4
[拓展]1.象限角与轴线角(终边在坐标轴上的角)的集合表 示 (1)象限角: 象限角 第一象限角 第二象限角 第三象限角 第四象限角 集合表示 {α|k· <α<k· +90° 360° 360° ,k∈Z} {α|k· +90° 360° <α<k· +180° 360° ,k∈Z} {α|k· +180° 360° <α<k· +270° 360° ,k∈Z} {α|k· +270° 360° <α<k· +360° 360° ,k∈Z}

人教A版高中数学必修4第一章 1.1 1.1.1 任意角

人教A版高中数学必修4第一章 1.1 1.1.1 任意角

第一章三角函数1.1任意角和弧度制1.1.1任意角课时过关·能力提升基础巩固1.-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:因为-215°=-360°+145°,而145°是第二象限角,所以-215°也是第二象限角.答案:B2.在下列各个角中,与2 019°角终边相同的是()A.-219°B.-140°C.219°D.140°解析:∵2 019°=360°×5+219°,∴与2 019°角终边相同的是219°,故选C.答案:C3.与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}答案:C4.已知α是第二象限角,则2α的终边在()A.第一、二象限B.第二象限C.第三、四象限D.以上都不对解析:∵α是第二象限角,∴k·360°+90°<α<k·360°+180°,k∈Z,∴2k·360°+180°<2α<2k·360°+360°,k∈Z,∴2α的终边在第三或第四象限或在y轴的非正半轴上.答案:D5.若钟表的时针走过1小时50分钟,则分针转过的角度是 ()A.-660°B.-600°C.600°D.660°解析:∵50÷60=,∴360°×=300°.∵时针和分针都是顺时针旋转,∴时针走过1小时50分钟,分针转过的角度为-660°.答案:A6.在-360°~720°之间,与-367°角终边相同的角是.解析:与-367°角终边相同的角可表示为α=k·360°-367°,k∈Z.当k=1,2,3时,α=-7°,353°,713°,这三个角都是符合条件的角.答案:-7°,353°,713°7.终边落在图中阴影部分(不包括边界)的角的集合为.解析:在0°~360°内,终边落在阴影部分的角的范围是120°<α<225°,所以终边落在阴影部分的角的集合为{β|k·360°+120°<β<k·360°+225°,k∈Z}.答案:{β|k·360°+120°<β<k·360°+225°,k∈Z}8.在平面直角坐标系中画出下列各角:(1)-180°;(2)1 070°.解:在平面直角坐标系中画出各角如图.9.在-720°~720°范围内,用列举法写出与60°角终边相同的角的集合S.解:与60°角终边相同的角的集合为{α|α=60°+k·360°,k∈Z},令-720°≤60°+k·360°<720°(k∈Z),得k=-2,-1,0,1,相应的角为-660°,-300°,60°,420°,从而S={-660°,-300°,60°,420°}.10.已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求角θ,使θ与α的终边相同,且-720°≤θ<0°.解:(1)∵-1 910°=-6×360°+250°,∴β=250°,即α=250°-6×360°.又250°是第三象限角,∴α是第三象限角.(2)θ=250°+k·360°(k∈Z).∵-720°≤θ<0°,∴-720°≤250°+k·360°<0°,解得-≤k<-.又k∈Z,∴k=-1或k=-2.∴θ=250°-360°=-110°或θ=250°-2×360°=-470°.能力提升1.下列说法正确的是()A.钝角必是第二象限角,第二象限角必是钝角B.第三象限的角必大于第二象限的角C.小于90°的角是锐角D.-95°20',984°40',264°40'是终边相同的角答案:D2.若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系正确的是()A.A=B=CB.A=B∩CC.A∪B=CD.A⊆B⊆C答案:D3.若α是第三象限的角,则180°-是()A.第一或第二象限的角B.第一或第三象限的角C.第二或第三象限的角D.第二或第四象限的角解析:∵α是第三象限的角,∴k·360°+180°<α<k·360°+270°,k∈Z,∴k·180°+90°<<k·180°+135°,k∈Z,∴-k·180°-135°<-<-k·180°-90°,k∈Z,∴-k·180°+45°<180°-<-k·180°+90°,k∈Z,故当k为偶数时,180°-是第一象限角;当k为奇数时,180°-是第三象限角.答案:B4.已知α为第三象限角,则是第象限角.解析:∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k∈Z,∴k·120°+60°<<k·120°+90°,k∈Z.∵k·120°+60°角的终边在第一象限、x轴非正半轴、第四象限,k·120°+90°角的终边在y轴非负半轴、第三象限、第四象限,∴是第一、第三或第四象限角.答案:一、第三或第四5.已知角α的终边在图中阴影所表示的范围内(不包括边界),则角α组成的集合为.解析:由题图知,将x轴绕原点分别旋转30°与150°得边界,故终边在阴影内的角的集合为{α|k·180°+30°<α<k·180°+150°,k∈Z}.答案:{α|k·180°+30°<α<k·180°+150°,k∈Z}6.★若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=.解析:∵5α与α的始边和终边分别相同,∴这两角的差应是360°的整数倍,即5α-α=4α=k·360°(k ∈Z).∴α=k·90°(k∈Z).又180°<α<360°,令180°<k·90°<360°(k∈Z),则2<k<4,∴k=3,α=270°.答案:270°7.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.解:由题意可知,α+β=-280°+k·360°,k∈Z.∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①由题意可知,α-β=670°+k·360°,k∈Z.∵α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.8.★已知集合M={α|k·180°+30°<α<k·180°+120°,k∈Z},N={β|k·360°+90°<β<k·360°+270°,k∈Z},求M∩N.解:∵M={α|k·180°+30°<α<k·180°+120°,k∈Z},∴当k=2n(n∈Z)时,M={α|n·360°+30°<α<n·360°+120°,n∈Z}.又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°,k∈Z}.当k=2n+1(n∈Z)时,M={α|n·360°+210°<α<n·360°+300°,n∈Z},又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+210°<x<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°或k·360°+210°<x<k·360°+270°,k∈Z}.。

高中数学必修4《第一章三角函数》精品课件:1.1.1任意角

高中数学必修4《第一章三角函数》精品课件:1.1.1任意角

S={α|α=45°+k·180°,k∈Z}.
S={ -315°,-135°,45°,225°, 405°,585°}
课堂小结
Office组件之word2007
1.角的概念推广 正角、负角、零角、象限角
2.终边相同的角
3.终边在x轴、y轴上的角的表示
4.终边在各个象限上的角的表示
Office组件之word2007
思考2:终边在x轴上的角的集合表示
终边在x轴上:S={α|α=k·180°,k∈Z};
新课教学
Office组件之word2007
思考3:终边在y轴非正半轴、非负半轴
上的角分别如何表示?
y轴非负半轴:α= 90°+k·360°,k∈Z ; y轴非正半轴:α= 270°+k·360°,k∈Z .
思考4:终边在y轴上的角的集合表示
y
x o
知识探究(三):终边相同的角 Office组件之word2007
思考1:-32°,328°,-392°是第几 象限的角?这些角有什么内在联系?
y
328° o
-392° x
-32°
新课教学
Office组件之word2007
思考2:与-32°角终边相同的角有多 少个?这些角与-32°角在数量上相 差多少?
Office组件之word2007
1.1.1 任意角
知识探究(一):角的概念的推广
Office组件之word2007
复习:角的定义 角是由平面内一条射线绕其端点从
一个位置旋转到另一个位置所组成的 图形(如图).
B
始边
终边
A O
顶点
新课教学
Office组件之word2007
思考1:你认为将一条射线绕其端点按逆时针方向旋

人教版新课标高中数学必修4-全册教案

人教版新课标高中数学必修4-全册教案

1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角.正角:按逆时针方向旋转形零角:射线没有任何旋转形⑵B 1 y⑴O x45° B 2O x B 3y30°60o负角:按顺时针方向旋转形成的角 始边 终边顶点AO B3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720°与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 此时,2α属于第四象限角 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角因此2α属于第二或第四象限角.1.1.2弧度制(一)教学目标(四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180()nn p=?. 5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度角度 0° 30° 45° 60° 9°120° 135° 150° 180° 270° 36° 弧度0 6π 4π 3π 2π 32π 43π 65π π23ππ2 7.弧长公式l l r ra a =??弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-.解: (1),672319πππ+= 而67π是第三象限的角,193p \是第三象限角.(2) 315316,666p p pp -=-+\-是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为Rlrad, ∴扇形面积lR R R l S 21212=⋅=.证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然O R l要简洁得多.22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别. 8.课后作业:①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中数学人教A版必修四1.1.1【教学课件】《任意角》

高中数学人教A版必修四1.1.1【教学课件】《任意角》
【例 1】在下列说法中: ①0°~90°的角是第一象限角; ②第二象限角大于第一象限角; ③钝角都是第二象限角; ④小于 90°的角都是锐角。 ①②④ 。 其中错误说法的序号为________Leabharlann 畅言教育人民教育出版社
|必修四
【解析】①0°~90°的角是指[0°,90°),0°角不属于任何象 限,所以①不正确。 ②120° 是 第 二 象 限 角 , 390° 是 第 一 象 限 角 , 显 然 390°>120°,所以②不正确。 ③钝角的范围是(90°,180°),显然是第二象限角,所以③ 正确。 ④锐角的范围是(0°,90°),小于 90°的角也可以是零角或 负角,所以④不正确。
畅言教育
人民教育出版社
|必修四
2.对终边相同的角的概念的理解 (1)角α 是任意角。 (2)k·360°与α 之间用“+”号,k·360°-α 可理解为k·360°+(-α ),k∈Z
(3)终边相同的角不一定相等,但相等的角终边一定相同。
(4)终边相同的角有无数多个,它们相差360°的整数倍。 (5)终边相同的角的应用: ①利用与角α 终边相同的角的集合,可把任意与角α 终边相同的角β 转化成 β =α +k·360°,k∈Z , 0°≤α <360°的形式;
畅言教育
人民教育出版社
|必修四
2.与 30°角终边相同的角的集合是( A ) A.{α |α =30°+k·360°,k∈Z} B.{α |α =-30°+k·360°,k∈Z} C.{α |α =30°+k·180°,k∈Z} D.{α |α =-30°+k·180°,k∈Z}
解析: 由终边相同的角的定义可知与 30°角终边相同的角的集合 是{α |α =30°+k·360°,k∈Z} 答案:A

新人教A版必修四第一章1.1.1任意角知识梳理及重难点题型(含解析版)

新人教A版必修四第一章1.1.1任意角知识梳理及重难点题型(含解析版)

.1.1.1 任意角重难点题型【举一反三系列】知识链接【知识点 1 任意角的概念】1.任意角定义构成要素表示2.角的分类分类正角负角零角角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形 始边、顶点、终边常用大写字母 A ,B ,C 等表示腊字母 α,β,γ 等表示;特别的,当角作为变量时,常用字母 x 表示.定义按逆时针方向旋转形成的角叫做正角按顺时针方向旋转形成的角叫做负角一条射线没有作任何旋转形成的角叫做零角【知识点 2 象限角与非象限角】1.象限角当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合,则角的终边(除端点外)在第几象限,就称这个角为第几象限角.2.象限角的集合表示象限角集合表示第一象限角{x | k ⋅ 360o < α < k ⋅ 360o + 90o , k ∈ Z }第二象限角{x | k ⋅ 360o + 90o < α < k ⋅ 360o + 180o , k ∈ Z }第三象限角{x | k ⋅ 360o + 180o < α < k ⋅ 360o + 270o , k ∈ Z }第四象限角{x | k ⋅ 360o + 270o < α < k ⋅ 360o + 360o , k ∈ Z }3.非象限角βββββ β{ }当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合,如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限.4.非象限角的集合表示 角的终边位置x 轴的非负半轴集合表示{ | β = k ⨯ 360 , k ∈ Z }x 轴的非正半轴{ | β = k ⨯ 360+ 180, k ∈ Z }x 轴上{ | β = k ⨯180 , k ∈ Z }y 轴非负半轴y 轴非正半轴{ | β = k ⨯ 360{ | β = k ⨯ 360+ 90 , k ∈ Z }- 90 , k ∈ Z}y 轴上{ | β = k ⨯180+ 90, k ∈ Z }【知识点 3 终边相同的角】一般地,所有与角 α 终边相同的角,连同角 α 在内,可构成一个集合 S = β | β = α + k ⋅ 360 , k ∈ Z ,即任一与角 α 终边相同的角,都可以表示成角α 与整个周角的和.举一反三【考点 1 象限角与集合间的基本关系】【例 1】(2019 春•杜集区校级月考)设 A ={小于 90°的角},B ={第一象限角},则 A ∩B 等于()A .{锐角}B .{小于 90°的角}C .{第一象限角}D .{α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}【考点 3 已知 α 终边所在象限求 2α, α, 】【变式 1-1】(2019 秋•钦南区校级月考)已知 A ={第一象限角},B ={锐角},C ={小于 90°的角},那么A 、B 、C 关系是() A .A ∩C =CB .B ⊆CC .B ∪A =CD .A =B =C【变式 1-2】(2019 秋•黄陵县校级月考)设 A ={θ|θ 为锐角},B ={θ|θ 为小于 90°的角},C ={θ|θ 为第一象限的角},D ={θ|θ 为小于 90°的正角},则下列等式中成立的是()A .A =B B .B =C C .A =CD .A =D【变式 1-3】(2019 秋•宜昌月考)设 M ={α|α=k •90°,k ∈Z }∪{α|α=k •180°+45°,k ∈Z },N ={α|α=k•45°,k ∈Z },则() A .M ⊆NB .M ⊇NC .M =ND .M ∩N =∅【考点 2 求终边相同的角】【例 2】(2019 春•娄底期末)下列各角中与 225°角终边相同的是()A .585°B .315°C .135°D .45°【变式 2-1】(2018 春•武功县期中)下列各组角中,终边相同的角是()A .﹣398°,1042°C .﹣398°,38° B .﹣398°,142°D .142°,1042°【变式 2-2】(2018 春•武邑县校级期末)与﹣457°角终边相同角的集合是()A .{α|α=k •360°+457°,k ∈Z }C .{α|α=k •360°+263°,k ∈Z } B .{α|α=k •360°+97°,k ∈Z }D .{α|α=k •360°﹣263°,k ∈Z }【变式 2-3】(2018 春•林州市校级月考)在 0°~360°范围内,与﹣853°18'终边相同的角为()A .136°18'B .136°42'C .226°18'D .226°42'α2 3【例 3】(2018 秋•宜昌期末)已知 α 为锐角,则 2α 为()2是(A.第一象限角C.第一或第二象限角B.第二象限角D.小于180°的角【变式3-1】(2018•徐汇区校级模拟)若α是第二象限的角,则α的终边所在位置不可能是()3A.第一象限B.第二象限C.第三象限D.笫象限【变式3-2】(2019春•北碚区校级期中)已知α为第二象限角,则α所在的象限是()2A.第一或第二象限C.第一或第三象限B.第二或第三象限D.第二或第四象限【变式3-3】(2019秋•宜城市校级月考)如果α是第三象限角,则-α)A.第一象限角C.第一或第三象限角B.第一或第二象限角D.第二或第四象限角【考点4终边对称的角的表示法】【例4】(2019春•南京期中)若角α=m•360°+60°,β=k•360°+120°,(m,k∈Z),则角α与β的终边的位置关系是()A.重合C.关于x轴对称B.关于原点对称D.关于y轴对称【变式4-1】若角α的终边与45°角的终边关于原点对称,则α=.【变式4-2】若角α和β的终边关于直线x+y=0对称,且α=﹣60°,则角β的集合是.【变式4-3】已知α=﹣30°,若α与β的终边关于直线x﹣y=0对称,则β=;若α与β的终边关于y轴对称,则β=;若α与β的终边关于x轴对称,则β=.(2)集合 M = ⎨ x | x = ⨯180︒ + 45︒, k ∈ Z ⎬ ,N = ⎨ x | x = ⨯180︒ + 45︒, k ∈ Z ⎬ 那么两集合的关系是什么?k k 2 4【考点 5 已知终边求角】【例 5】(2019 春•凉州区校级月考)已知 α=﹣1910°.(1)把角 α 写成 β+k •360°(k ∈Z ,0°≤β<360°)的形式,指出它是第几象限的角;(2)求出 θ 的值,使 θ 与 α 的终边相同,且﹣720°≤θ<0°.【变式 5-1】若角 α 的终边落在直线 x +y =0 上,求在[﹣360°,360°]内的所有满足条件的角 α.【变式 5-2】已知 α、β 都是锐角,且 α+β 的终边与﹣280°角的终边相同,α﹣β 的终边与 670°角的终边相同,求∠α、∠β 的大小.【变式 5-3】(2018 春•武功县期中)已知角 α=45°;(1)在区间[﹣720°,0°]内找出所有与角 α 有相同终边的角 β;⎧ ⎫ ⎧ ⎫ ⎩ ⎭ ⎩ ⎭【考点 6 已知角终边的区域确定角】【例 6】写出角的终边在阴影中的角的集合.【变式 6-1】如图所示;(1)分别写出终边落在 0A ,0B 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.【变式6-2】用集合表示顶点在原点,始边重合于x轴非负半轴,终边落在阴影部分内的角(不含边界).【变式6-3】已知角x的终边落在图示阴影部分区域,写出角x组成的集合.1.1.1任意角重难点题型【举一反三系列】知识链接【知识点1任意角的概念】1.任意角.β定义构成要素表示2.角的分类分类正角负角零角角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形 始边、顶点、终边常用大写字母 A ,B ,C 等表示腊字母 α,β,γ 等表示;特别的,当角作为变量时,常用字母 x 表示.定义按逆时针方向旋转形成的角叫做正角按顺时针方向旋转形成的角叫做负角一条射线没有作任何旋转形成的角叫做零角【知识点 2 象限角与非象限角】1.象限角当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合,则角的终边(除端点外)在第几象限,就称这个角为第几象限角.2.象限角的集合表示象限角集合表示第一象限角{x | k ⋅ 360o < α < k ⋅ 360o + 90o , k ∈ Z }第二象限角{x | k ⋅ 360o + 90o < α < k ⋅ 360o + 180o , k ∈ Z }第三象限角{x | k ⋅ 360o + 180o < α < k ⋅ 360o + 270o , k ∈ Z }第四象限角{x | k ⋅ 360o + 270o < α < k ⋅ 360o + 360o , k ∈ Z }3.非象限角当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合,如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限.4.非象限角的集合表示 角的终边位置x 轴的非负半轴集合表示{ | β = k ⨯ 360 , k ∈ Z }ββββ β{ }x 轴的非正半轴{ | β = k ⨯ 360+ 180, k ∈ Z }x 轴上{ | β = k ⨯180 , k ∈ Z }y 轴非负半轴y 轴非正半轴{ | β = k ⨯ 360{ | β = k ⨯ 360+ 90 , k ∈ Z }- 90 , k ∈ Z}y 轴上{ | β = k ⨯180+ 90, k ∈ Z }【知识点 3 终边相同的角】一般地,所有与角 α 终边相同的角,连同角 α 在内,可构成一个集合 S = β | β = α + k ⋅ 360 , k ∈ Z ,即任一与角 α 终边相同的角,都可以表示成角α 与整个周角的和.举一反三【考点 1 象限角与集合间的基本关系】【例 1】(2019 春•杜集区校级月考)设 A ={小于 90°的角},B ={第一象限角},则 A ∩B 等于()A .{锐角}B .{小于 90°的角}C .{第一象限角}D .{α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}【分析】先求出 A ={锐角和负角},B ={α|k •360°<α<k •360°+90°,k ∈Z },由此利用交集的定义给求出 A ∩B .【答案】解:∵A ={小于 90°的角}={锐角和负角},B ={第一象限角}={α|k •360°<α<k •360°+90°,k ∈Z },∴A ∩B ={α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}.D故选:D .【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意任意角的概念的合理运用.【变式 1-1】(2019 秋•钦南区校级月考)已知 A ={第一象限角},B ={锐角},C ={小于 90°的角},那么A 、B 、C 关系是() A .A ∩C =CB .B ⊆CC .B ∪A =CD .A =B =C【分析】分别判断,A ,B ,C 的范围即可求出【答案】解解:∵A ={第一象限角}=(k •360°,90°+k •360°),k ∈Z ;B ={锐角}=(0,90°),C ={小于 90°的角}=(﹣∞,90°)∴B ⊆C ,故选:B .【点睛】本题考查了任意角的概念和角的范围,属于基础题.【变式 1-2】(2019 秋•黄陵县校级月考)设 A ={θ|θ 为锐角},B ={θ|θ 为小于 90°的角},C ={θ|θ 为第一象限的角},D ={θ|θ 为小于 90°的正角},则下列等式中成立的是()A .A =B B .B =C C .A =CD .A =D【分析】根据 A ={θ|θ 为锐角}={θ|0°<θ<90°},D ={θ|θ 为小于 90°的正角}={θ|0°<θ<90°},可得结论.【答案】解:根据 A ={θ|θ 为锐角}={θ|0°<θ<90°}, ={θ|θ 为小于 90°的正角}={θ|0°<θ<90°},可得 A =D .故选:D .【点睛】本题考查象限角和任意角,考查学生对概念的理解,比较基础.【变式 1-3】(2019 秋•宜昌月考)设 M ={α|α=k •90°,k ∈Z }∪{α|α=k •180°+45°,k ∈Z },N ={α|α=k•45°,k ∈Z },则( )A.M⊆N B.M⊇N C.M=N D.M∩N=∅【分析】讨论k为偶数和k为奇数时,结合N的表示,从而确定N与M的关系.【答案】解:∵N={α|α=k•45°,k∈Z},∴当k为偶数,即k=2n时,n∈Z,α=k•45°=2n•45°=n•90°,∴当k为奇数,即k=2n+1时,n∈Z,α=k•45°=(2n+1)•45°=n•90°+45°,又M={α|α=k•90°,k∈Z}∪{α|α=k•180°+45°,k∈Z},∴M⊆N.故选:A.【点睛】本题主要考查了集合之间的关系与应用问题,是基础题.【考点2求终边相同的角】【例2】(2019春•娄底期末)下列各角中与225°角终边相同的是()A.585°B.315°C.135°D.45°【分析】写出与225°终边相同的角,取k值得答案.【答案】解:与225°终边相同的角为α=225°+k•360°,k∈Z,取k=1,得α=585°,∴585°与225°终边相同.故选:A.【点睛】本题考查终边相同角的表示法,是基础题.【变式2-1】(2018春•武功县期中)下列各组角中,终边相同的角是()A.﹣398°,1042°C.﹣398°,38°B.﹣398°,142°D.142°,1042°【分析】根据终边相同的角的定义,化﹣398°和1042°为α+k•360°,k∈Z的形式,再判断即可.【答案】解:由题意,﹣398°=322°﹣2×360°,1042°=322°+2×360°,142°,38°;这四个角中,终边相同的角是﹣398°和1042°.故选:A.【点睛】本题考查了终边相同角的概念与应用问题,是基础题.)【变式2-2】(2018春•武邑县校级期末)与﹣457°角终边相同角的集合是(A.{α|α=k•360°+457°,k∈Z}B.{α|α=k•360°+97°,k∈Z}C.{α|α=k•360°+263°,k∈Z}D.{α|α=k•360°﹣263°,k∈Z}【分析】终边相同的角相差了360°的整数倍,又263°与﹣457°终边相同.【答案】解:终边相同的角相差了360°的整数倍,设与﹣457°角的终边相同的角是α,则α=﹣457°+k•360°,k∈Z,又263°与﹣457°终边相同,∴{α|α=263°+k•360°,k∈Z},故选:C.【点睛】本题考查终边相同的角的概念及终边相同的角的表示形式.)【变式2-3】(2018春•林州市校级月考)在0°~360°范围内,与﹣853°18'终边相同的角为(A.136°18'B.136°42'C.226°18'D.226°42'【分析】直接由﹣853°18'=﹣3×360°+226°42′得答案.【答案】解:由﹣853°18'=﹣3×360°+226°42′,可得,在0°~360°范围内,与﹣853°18'终边相同的角为226°42′,2,3】3的终边所在位置不可能是(故选:D.【点睛】本题考查终边相同的角的表示法,是基础题.【考点3已知α终边所在象限求2α,αα【例3】(2018秋•宜昌期末)已知α为锐角,则2α为()A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的角【分析】写出α的范围,直接求出2α的范围,即可得到选项.【答案】解:α为锐角,所以α∈(0°,90°),则2α∈(0°,180°),故选:D.【点睛】本题考查象限角与轴线角,基本知识的考查,送分题.【变式3-1】(2018•徐汇区校级模拟)若α是第二象限的角,则αA.第一象限B.第二象限C.第三象限D.笫象限【分析】写出第二象限的角的集合,得到的范围,分别取k值得答案.【答案】解:∵α是第二象限角,∴90°+k•360°<α<180°+k•360°,k∈Z.则30°+k•120°<<60°+k•120°,k∈Z.当k=0时,30°<<60°,α为第一象限角;当k=1时,150°<<180°,α为第二象限角;当k=2时,270°<<300°,α为第四象限角.)2是(由上可知,的终边所在位置不可能是第三象限角.故选:C.【点睛】本题考查象限角及轴线角,考查终边相同角的集合,是基础题.【变式3-2】(2019春•北碚区校级期中)已知α为第二象限角,则α所在的象限是()2A.第一或第二象限C.第一或第三象限B.第二或第三象限D.第二或第四象限【分析】用不等式表示第二象限角α,再利用不等式的性质求出满足的不等式,从而确定角的终边在的象限.【答案】解:∵α是第二象限角,∴k•360°+90°<α<k•360°+180°,k∈Z,则k•180°+45°<<k•180°+90°,k∈Z,令k=2n,n∈Z有n•360°+45°<<n•360°+90°,n∈Z;在一象限;k=2n+1,n∈z,有n•360°+225°<<n•360°+270°,n∈Z;在三象限;故选:C.【点睛】本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限【变式3-3】(2019秋•宜城市校级月考)如果α是第三象限角,则-αA.第一象限角B.第一或第二象限角)C.第一或第三象限角D.第二或第四象限角【分析】由α是第三象限角,得到180°+k•360°<α<270°+k•360°,k∈Z,从而能求出﹣的取值范围,由此能求出﹣所在象限.【答案】解:∵α是第三象限角,∴180°+k•360°<α<270°+k•360°,k∈Z,∴﹣135°﹣k•180°<﹣<﹣90°﹣k•180°,∴﹣是第一或第三象限角.故选:C.【点睛】本题考查角所在象限的判断,是基础题,解题时要认真审题,注意第三象限角的取值范围的合理运用.【考点4终边对称的角的表示法】【例4】(2019春•南京期中)若角α=m•360°+60°,β=k•360°+120°,(m,k∈Z),则角α与β的终边的位置关系是()A.重合C.关于x轴对称B.关于原点对称D.关于y轴对称【分析】结合角的终边相同的定义进行判断即可.【答案】解:α的终边和60°的终边相同,β的终边与120°终边相同,∵180°﹣120°=60°,∴角α与β的终边的位置关系是关于y轴对称,故选:D.【点睛】本题主要考查角的终边位置关系的判断,结合角的关系是解决本题的关键.【变式4-1】若角α的终边与45°角的终边关于原点对称,则α=.【分析】角α的终边与45°角的终边关于原点对称,可得α=k•360°+225°,(k∈Z).【答案】解:∵角α的终边与45°角的终边关于原点对称,∴α=k•360°+225°,(k∈Z).故答案为:α=k•360°+225°,(k∈Z).【点睛】本题考查了终边相同的角,属于基础题.【变式4-2】若角α和β的终边关于直线x+y=0对称,且α=﹣60°,则角β的集合是.【分析】求出β∈[0°,360°)时角β的终边与角α的终边关于直线y=﹣x对称的值,再根据终边相同的角写出角β的取值集合.【答案】解:若β∈[0°,360°),则由角α=﹣60°,且角β的终边与角α的终边关于直线y=﹣x对称,可得β=330°,所以当β∈R时,角β的取值集合是{β|β=330°+k•360°,k∈Z}.故答案为:{β|β=330°+k•360°,k∈Z}.【点睛】本题主要考查了终边相同的角的定义和表示方法,是基础题.【变式4-3】已知α=﹣30°,若α与β的终边关于直线x﹣y=0对称,则β=;若α与β的终边关于y轴对称,则β=;若α与β的终边关于x轴对称,则β=.【分析】由题意画出图形,然后利用终边相同角的表示法得答案.【答案】解:如图,设α=﹣30°所在终边为OA,则关于直线x﹣y=0对称的角β的终边为OB,终边在OB上的最小正角为120°,故β=120°+k•360°,k∈Z;关于y轴对称的角β的终边为OC,终边在OC上的最小正角为210°,故β=210°+k•360°,k∈Z;关于x轴对称的角β的终边为OD,终边在OD上的最小正角为30°,故β=30°+k•360°,k∈Z.故答案为:120°+k•360°,k∈Z;210°+k•360°,k∈Z;30°+k•360°,k∈Z.【点睛】本题考查终边相同角的表示法,数形结合使问题更加直观,是基础题.【考点5已知终边求角】【例5】(2019春•凉州区校级月考)已知α=﹣1910°.(1)把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;(2)求出θ的值,使θ与α的终边相同,且﹣720°≤θ<0°.【分析】(1)利用终边相同的假的表示方法,把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,然后指出它是第几象限的角;(2)利用终边相同的角的表示方法,通过k的取值,求出θ,且﹣720°≤θ<0°.【答案】解:(1)∵﹣1910°=﹣6×360°+250°,180°<250°<270°,∴把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式为:﹣1910°=﹣6×360°+250°,它是第三象限的角.(2)∵θ与α的终边相同,∴令θ=k•360°+250°,k∈Z,k=﹣1,k=﹣2满足题意,得到θ=﹣110°,﹣470°.【点睛】本题考查终边相同角的表示方法,基本知识的考查.【变式5-1】若角α的终边落在直线x+y=0上,求在[﹣360°,360°]内的所有满足条件的角α.【分析】求出角α的终边相同的角,然后求解在[﹣360°,360°]内的所有满足条件的角α.【答案】解:角α的终边落在直线x+y=0上,则直线的倾斜角为:45°,角α的终边的集合为:{α|α=k•180°+45°,k∈Z}.当k=﹣2时,α=﹣315°,k=﹣1时,α=﹣135°,k=0时,α=45°,k=1时,α=225°,在[﹣360°,360°]内的所有满足条件的角α:﹣315°,135°,45°,225°.【点睛】本题考查终边相同角的表示,考查计算能力.【变式5-2】已知α、β都是锐角,且α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,求∠α、∠β的大小.【分析】按照终边相同角的表示方法将α+β、α﹣β表示出来,然后解出α、β,由α、β都是锐角得到所求.【答案】解:因为α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,所以α+β=﹣280°+360°k;α﹣β=670°+360°k;k∈Z;(2)集合 M = ⎨ x | x = ⨯180︒ + 45︒, k ∈ Z ⎬ ,N = ⎨ x | x = ⨯180︒ + 45︒, k ∈ Z ⎬ 那么两集合的关系是什么?k k 2 4 两式相加,2α=390°+720°k =360°+30°+720°k =30°+720°k ;α=15°+360°k ;因为 α,β 是锐角,所以 α=15°;β=65°.【点睛】本题考查了终边相同角的表示,利用方程组的思想求两角,属于基础题.【变式 5-3】(2018 春•武功县期中)已知角 α=45°;(1)在区间[﹣720°,0°]内找出所有与角 α 有相同终边的角 β;⎧ ⎫ ⎧ ⎫ ⎩ ⎭ ⎩ ⎭【分析】(1)所有与角 α 有相同终边的角可表示为 45°+k ×360°(k ∈Z ),列出不等式解出整数 k ,即得所求的角.(2)先化简两个集合,分整数 k 是奇数和偶数两种情况进行讨论,从而确定两个集合的关系.【答案】解析:(1)由题意知:β=45°+k ×360°(k ∈Z ),则令﹣720°≤45°+k ×360°≤0°,得﹣765°≤k ×360°≤﹣45°,解得 ,从而 k =﹣2 或 k =﹣1,代回 β=﹣675°或 β=﹣315°.(2)因为 M ={x|x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合;而集合 N ={x|x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:M ⊊N .k 【点睛】(1)从终边相同的角的表示入手分析问题,先表示出所有与角 α 有相同终边的角,然后列出一个关于 k 的不等式,找出相应的整数 k ,代回求出所求解;(2)可对整数 k 的奇、偶数情况展开讨论.【考点 6 已知角终边的区域确定角】【例 6】写出角的终边在阴影中的角的集合.【分析】利用象限角的表示方法、终边相同的角的集合性质即可得出.【答案】解:图 1:角的集合为{α|30°+k ×360°≤α≤120°+k •360°,k ∈Z };图 2:角的集合为{α|﹣210°+k •360°≤α≤30°+k •360°,k ∈Z };图 3:角的集合为{α|﹣45°+k •360°≤α≤30°+k •360°,k ∈Z };图 4:角的集合为{α|60°+k •360°≤α≤120°+k •360°, ∈Z }∪{α|240°+k •360°≤α≤300°+k •360°, k ∈Z }.【点睛】本题考查了象限角的表示方法、终边相同的角的集合性质,考查了推理能力与计算能力,属于中档题.【变式 6-1】如图所示;(1)分别写出终边落在 0A ,0B 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.k【分析】(1)直接由终边相同角的表示法写出终边落在 0A ,0B 位置上的角的集合;(2)结合(1)中写出的终边落在 0A ,0B 位置上的角的集合,利用不等式表示出终边落在阴影部分(包括边界)的角的集合.【答案】解:(1)如图,终边落在 OA 上的角的集合为{α|α=150°+k •360°,k ∈Z }.终边落在 OB 上的角的集合为{α|α=﹣45°+k •360°,k ∈Z };(2)如图,终边落在阴影部分(包括边界)的角的集合为{β|﹣45°+k •360°≤β≤150°+k •360°, ∈Z }.【点睛】本题考查象限角和轴线角,考查了终边相同角的概念,是基础题.【变式 6-2】用集合表示顶点在原点,始边重合于 x 轴非负半轴,终边落在阴影部分内的角(不含边界).【分析】直接利用所给角,表示角的范围即可.【答案】解:图 1 所表示的角的集合:{α|k •360°﹣30°<α<k •360°+75°,k ∈Z }.图 2 终边落在阴影部分的角的集合.{α|k •360°﹣135°<α<k •360°+135°,k ∈Z }【点睛】本题考查角的表示方法,是基础题.【变式6-3】已知角x的终边落在图示阴影部分区域,写出角x组成的集合.【分析】直接利用所给角,表示角的范围即可.【答案】解:图(1)所表示的角的集合:{α|k•360°﹣135°≤α≤k•360°+135°,k∈Z}.图2终边落在阴影部分的角的集合{α|k•180°+30°≤α≤k•180°+60°,k∈Z【点睛】本题考查角的表示方法,是基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1任意角预习课本P2~5,思考并完成以下问题(1)角是如何定义的?角的概念推广后,分类的标准是什么?(2)象限角的含义是什么?判断角所在的象限时,要注意哪些问题?(3)终边相同的角一定相等吗?如何表示终边相同的角?1.任意角(1)角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示:如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类:[点睛]对角的概念的理解的关键是抓住“旋转”二字:①要明确旋转的方向;②要明确旋转量的大小;③要明确射线未作任何旋转时的位置.2.象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.[点睛]象限角的条件是:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[点睛]对终边相同的角的理解(1)终边相同的角不一定相等,但相等的角终边一定相同;(2)k∈Z,即k为整数这一条件不可少;(3)终边相同的角的表示不唯一.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)-30°是第四象限角.()(2)钝角是第二象限的角.()(3)终边相同的角一定相等.()答案:(1)√(2)√(3)×2.与45°角终边相同的角是()A.-45°B.225°C.395°D.-315°答案:D3.下列说法正确的是()A.锐角是第一象限角B.第二象限角是钝角C.第一象限角是锐角D.第四象限角是负角答案:A4.将35°角的终边按顺时针方向旋转60°所得的角度数为________,将35°角的终边按逆时针方向旋转一周后的角度数________.答案:-25°395°[典例]下列命题正确的是()A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角[解析]终边与始边重合的角还可能是360°,720°,…,故A错;终边和始边都相同的两个角可能相差360°的整数倍,如30°与-330°,故B错;由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,C 正确;小于90°的角可以是0°,也可以是负角,故D 错误.[答案] C[活学活用]如图,射线OA 绕端点O 旋转90°到射线OB 的位置,接着再旋转-30°到OC 的位置,则∠AOC 的度数为________.解析:∠AOC =∠AOB +∠BOC =90°+(-30°)=60°. 答案:60°[典例] 写出与75°角终边相同的角β的集合,并求在360°≤β<1 080°范围内与75°角终边相同的角.[解] 与75°角终边相同的角的集合为S ={β|β=k ·360°+75°,k ∈Z}. 当360°≤β<1 080°时,即360°≤k ·360°+75°<1 080°,解得1924≤k <21924.又k ∈Z ,所以k =1或k =2. 当k =1时,β=435°;当k =2时,β=795°.综上所述,与75°角终边相同且在360°≤β<1 080°范围内的角为435°角和795°角.分别写出终边在下列各图所示的直线上的角的集合.解:(1)在0°~360°范围内,终边在直线y=0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S1={β|β=0°+k·360°,k∈Z},而所有与180°角终边相同的角构成集合S2={β|β=180°+k·360°,k∈Z},于是,终边在直线y=0上的角的集合为S=S1∪S2={β|β=k·180°,k∈Z}.(2)由图形易知,在0°~360°范围内,终边在直线y=-x上的角有两个,即135°和315°,因此,终边在直线y=-x上的角的集合为S={β|β=135°+k·360°,k∈Z}∪{β|β=315°+k·360,k∈Z}={β|β=135°+k·180°,k∈Z}.[典例]并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[解]作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.[活学活用]若α是第四象限角,则180°-α一定在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C ∵α与-α的终边关于x 轴对称,且α是第四象限角,∴-α是第一象限角.而180°-α可看成-α按逆时针旋转180°得到,∴180°-α是第三象限角. [典例] 已知α是第二象限角,求角α2所在的象限. [解] 法一:∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z).∴k 2·360°+45°<α2<k 2·360°+90°(k ∈Z). 当k 为偶数时,令k =2n (n ∈Z),得n ·360°+45°<α2<n ·360°+90°, 这表明α2是第一象限角; 当k 为奇数时,令k =2n +1(n ∈Z),得n ·360°+225°<α2<n ·360°+270°, 这表明α2是第三象限角. ∴α2为第一或第三象限角.法二:如图,先将各象限分成2等份,再从x 轴正向的上方起,依次将各区域标上一、二、三、四,则标有二的区域即为α2的终边所在的区域,故α2为第一或第三象限角. [一题多变]1.[变设问]在本例条件下,求角2α的终边的位置.解:∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z).∴k ·720°+180°<2α<k ·720°+360°(k ∈Z).∴角2α的终边在第三或第四象限或在y 轴的非正半轴上.2.[变条件]若角α变为第三象限角,则角α2是第几象限角?解:如图所示,先将各象限分成2等份,再从x 轴正半轴的上方起,按逆时针方向,依次将各区域标上一、二、三、四,则标有三的区域即为角α2的终边所在的区域,故角α2为第二或第四象限角.层级一 学业水平达标1.-215°是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B 由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.2.下面各组角中,终边相同的是( )A .390°,690°B .-330°,750°C .480°,-420°D .3 000°,-840°解析:选B ∵-330°=-360°+30°,750°=720°+30°,∴-330°与750°终边相同.3.若α=k ·180°+45°,k ∈Z ,则α所在的象限是( )A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限解析:选A 由题意知α=k ·180°+45°,k ∈Z ,当k =2n +1,n ∈Z ,α=2n ·180°+180°+45°=n ·360°+225°,在第三象限,当k =2n ,n ∈Z ,α=2n ·180°+45°=n·360°+45°,在第一象限.∴α是第一或第三象限的角.4.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}解析:选D终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.5.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.-165°+(-2)×360°B.195°+(-3)×360°C.195°+(-2)×360°D.165°+(-3)×360°解析:选B-885°=195°+(-3)×360°,0°≤195°<360°,故选B.6.在下列说法中:①时钟经过两个小时,时针转过的角是60°;②钝角一定大于锐角;③射线OA绕端点O按逆时针旋转一周所成的角是0°;④-2 000°是第二象限角.其中错误说法的序号为______(错误说法的序号都写上).解析:①时钟经过两个小时,时针按顺时针方向旋转60°,因而转过的角为-60°,所以①不正确.②钝角α的取值范围为90°<α<180°,锐角θ的取值范围为0°<θ<90°,因此钝角一定大于锐角,所以②正确.③射线OA按逆时针旋转一周所成的角是360°,所以③不正确.④-2 000°=-6×360°+160°与160°终边相同,是第二象限角,所以④正确.答案:①③7.α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,那么α=________.解析:5α=α+k·360°,k∈Z,∴α=k·90°,k∈Z.又∵180°<α<360°,∴α=270°.答案:270°8.若角α=2 016°,则与角α具有相同终边的最小正角为________,最大负角为________.解析:∵2 016°=5×360°+216°,∴与角α终边相同的角的集合为{α|α=216°+k·360°,k∈Z},∴最小正角是216°,最大负角是-144°.答案:216°-144°9.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.10.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M中大于-360°且小于360°的角是哪几个?(2)写出集合M中的第二象限角β的一般表达式.解:(1)令-360°<30°+k·90°<360°,则-133<k<113,又∵k∈Z,∴k=-4,-3,-2,-1,0,1,2,3,∴集合M中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°.(2)集合M中的第二象限角与120°角的终边相同,∴β=120°+k·360°,k∈Z.层级二应试能力达标1.给出下列四个结论:①-15°是第四象限角;②185°是第三象限角;③475°是第二象限角;④-350°是第一象限角.其中正确的个数为()A.1B.2C.3 D.4解析:选D①-15°是第四象限角;②180°<185°<270°是第三象限角;③475°=360°+115°,而90°<115°<180°,所以475°是第二象限角;④-350°=-360°+10°是第一象限角,所以四个结论都是正确的.2.若角2α与240°角的终边相同,则α=()A.120°+k·360°,k∈ZB.120°+k·180°,k∈ZC.240°+k·360°,k∈ZD.240°+k·180°,k∈Z解析:选B角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.选B.3.若α与β终边相同,则α-β的终边落在()A.x轴的非负半轴上B.x轴的非正半轴上C.y轴的非负半轴上D.y轴的非正半轴上解析:选A∵α=β+k·360°,k∈Z,∴α-β=k·360°,k∈Z,∴其终边在x轴的非负半轴上.4.设集合M={α|α=45°+k·90°,k∈Z},N={α|α=90°+k·45°,k∈Z},则集合M与N的关系是()A.M∩N=∅B.M NC.N M D.M=N解析:选C对于集合M,α=45°+k·90°=45°+2k·45°=(2k+1)·45°,即M={α|α=(2k+1)·45°,k∈Z};对于集合N,α=90°+k·45°=2×45°+k·45°=(k+2)·45°,即N={α|α=(k+2)·45°,k∈Z}={α|α=n·45°,n∈Z}.∵2k+1表示所有的奇数,而n 表示所有的整数,∴N M,故选C.5.从13:00到14:00,时针转过的角为________,分针转过的角为________.解析:经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.答案:-30°-360°6.已知角2α的终边在x轴的上方,那么α是第______象限角.解析:由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k ∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α是第一或第三象限角.答案:一或三7.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.解:终边在直线y=-3x上的角的集合S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中适合不等式-180°≤α<180°的元素α为-60°,120°.8.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).解:(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.。

相关文档
最新文档