半导体物理第二章1
半导体物理学-半导体中杂质和缺陷能级模板
2.1 硅、锗晶体中的杂质能级
n 2.1.3 受主杂质 受主能级
Si
+
Si
Si
Si
B-
Si
Si
Si
Si
受 主 掺 杂(掺硼)
硼原子接受一个电子后, 成为带负电的硼离子, 称为负电中心(B- ) 。 带负电的硼离子和带正 电的空穴间有静电引力 作用,这个空穴受到硼 离子的束缚,在硼离子 附近运动。
2.1 硅、锗晶体中的杂质能级
深能级杂质产生多次电离:
3)III族元素硼、铝、镓、铟、铊在锗和硅中各产生1个 浅受主能级,而铝在硅中,还能产生1个施主能级。
4)IV族元素碳在硅中产生1个施主能级,而锡和铅在硅 中产生1个施主能级和1个受主能级。
5)V族元素磷、砷、锑在硅和锗中各产生一个浅施主 能级。
2.1 硅、锗晶体中的杂质能级
n 2.1.2 施主杂质、施主能级 多余的电子束缚在正电中心,但这种束缚很弱
很小的能量就可使电子摆脱束缚,成为在晶格中导 电的自由电子,而Ⅴ族原子形成一个不能移动的 正电中心。
硅、锗中的Ⅴ族杂质,能够释放电子而产生导电 电子并形成正电中心,称为施主杂质或N型杂质, 掺有N型杂质的半导体叫N型半导体。施主杂质未 电离时是中性的,电离后成为正电中心。
mn* 0.12m0
2.1 硅、锗晶体中的杂质能级
n 晶体内杂质原子束缚的电子与类氢模型相比:
m0mn*, mp*; 0 r0
施主杂质的电离能: E D8m r2n *q 0 24 h2m m 0 n *E r2 01.6 3m m 0n *r2
Si: mn* 0.26m0 r 12 ED0.02e5V
半导体物理学刘恩科课后习题解答
半导体物理学第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。
(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。
2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。
As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。
这个过程叫做施主杂质的电离过程。
能够施放电子而在导带中产生电子并形成正电中心,称为施主杂质或N型杂质,掺有施主杂质的半导体叫N型半导体。
3. 以Ga掺入Ge中为例,说明什么是受主杂质、受主杂质电离过程和p型半导体。
Ga有3个价电子,它与周围的四个Ge原子形成共价键,还缺少一个电子,于是在Ge 晶体的共价键中产生了一个空穴,而Ga原子接受一个电子后所在处形成一个负离子中心,所以,一个Ga原子取代一个Ge原子,其效果是形成一个负电中心和一个空穴,空穴束缚在Ga原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga原子形成一个不能移动的负电中心。
这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫P型半导体。
4. 以Si在GaAs中的行为为例,说明IV族杂质在III-V族化合物中可能出现的双性行为。
Si取代GaAs中的Ga原子则起施主作用; Si取代GaAs中的As原子则起受主作用。
半导体物理与器件(尼曼第四版)答案
半导体物理与器件(尼曼第四版)答案第一章:半导体材料与晶体1.1 半导体材料的基本特性半导体材料是一种介于导体和绝缘体之间的材料。
它的基本特性包括:1.带隙:半导体材料的价带与导带之间存在一个禁带或带隙,是电子在能量上所能占据的禁止区域。
2.拉伸系统:半导体材料的结构是由原子或分子构成的晶格结构,其中的原子或分子以确定的方式排列。
3.载流子:在半导体中,存在两种载流子,即自由电子和空穴。
自由电子是在导带上的,在外加电场存在的情况下能够自由移动的电子。
空穴是在价带上的,当一个价带上的电子从该位置离开时,会留下一个类似电子的空位,空穴可以看作电子离开后的痕迹。
4.掺杂:为了改变半导体材料的导电性能,通常会对其进行掺杂。
掺杂是将少量元素添加到半导体材料中,以改变载流子浓度和导电性质。
1.2 半导体材料的结构与晶体缺陷半导体材料的结构包括晶体结构和非晶态结构。
晶体结构是指材料具有有序的周期性排列的结构,而非晶态结构是指无序排列的结构。
晶体结构的特点包括:1.晶体结构的基本单位是晶胞,晶胞在三维空间中重复排列。
2.晶格常数是晶胞边长的倍数,用于描述晶格的大小。
3.晶体结构可分为离子晶体、共价晶体和金属晶体等不同类型。
晶体结构中可能存在各种晶体缺陷,包括:1.点缺陷:晶体中原子位置的缺陷,主要包括实际缺陷和自间隙缺陷两种类型。
2.线缺陷:晶体中存在的晶面上或晶内的线状缺陷,主要包括位错和脆性断裂两种类型。
3.面缺陷:晶体中存在的晶面上的缺陷,主要包括晶面位错和穿孔两种类型。
1.3 半导体制备与加工半导体制备与加工是指将半导体材料制备成具有特定电性能的器件的过程。
它包括晶体生长、掺杂、薄膜制备和微电子加工等步骤。
晶体生长是将半导体材料从溶液或气相中生长出来的过程。
常用的晶体生长方法包括液相外延法、分子束外延法和气相外延法等。
掺杂是为了改变半导体材料的导电性能,通常会对其进行掺杂。
常用的掺杂方法包括扩散法、离子注入和分子束外延法等。
半导体物理第二章ppt课件
引进有效质量,半导体中的电子所受的外力与
加速的关系和牛顿第二定律类似。
3、引进有效质量的意义:
由
a= f
m
* n
可以看出有效质量概括了半导体内
部势场的作用,使得在解决半导体中电子在
外力作用下的运动规律时,可以不涉及半导
体内部势场的作用。
课堂练习:习题3(P58)
2.6.3 状态密度、态密度有效质量、电导有效质量
近出现了一些空的量子状态,在外电场的作用下, 停留在价带中的电子也能够起导电的作用,把价带 中这种导电作用等效于把这些空的量子状态看做带 正电荷的准粒子的导电作用,常称这些空的量子状 态为空穴
2.3.2 金属、半导体、绝缘体的能带
2.4 半导体的带隙结构
间接能隙结构—即价带的最高 点与导带的最低点处于K空间 的不同点
3、 测不准关系
当微观粒子处于某一状态时,它的力学量(坐 标、动量、能量等)一般不具有确定的数值。
如: p g xh 同 一 粒 子 不 可 能 同 时 确 定 其 坐 标 和 动 量
测不准原理告诉我们,对微观粒子运动状态分 析,需用统计的方法。
4、 波函数
波函数 r ,t 描述量子力学的状态
= hk m
h2k 2 E
2m
对于波矢为k的运动状态,自由电子的能量E和动
量P,速度v均有确定的数值,因此,波矢量 k可
用以描述自由电子的运动状态,不同的k值标致
自由电子的不同状态。
6、 单原子电子
电子的运动服从量子力学,处于一系列特定的 运动状态---量子态,要完全描述原子中的一个电 子的运动状态,需要四个量子数。
氧的电子组态表示的意思:第一主轨道上有两个电子 ,这两个电子的亚轨道为s,(第一亚层);第二主轨 道有6个电子,其中有2个电子分布在s 亚(第一亚层) 轨道上,有4个电子分布在p亚轨道上(第二亚层)
半导体物理第二章
1第二章半导体中的杂质和缺陷能级要求:●掌握半导体中杂质的作用与杂质能级;●掌握半导体中的缺陷及其影响重点:浅能级和深能级杂质及其作用,杂质的补偿作用2原子并非固定不动,格点原子在平衡位置附近振动;半导体并非纯净,含有若干杂质(基质以外的任何元素);半导体晶格并非完美(完整),存在各种缺陷:点缺陷线缺陷面缺陷⎩⎨⎧实际半导体材料:⎪⎩⎪⎨⎧杂质来源:⎪⎩⎪⎨⎧§2.1 Si 、Ge 晶体中的杂质能级1、替(代)位式杂质间隙式杂质①原材料纯度不够;②工艺过程中引入玷污;③人为掺入杂质—为改善半导体材料性能;(1)Si 、Ge 都具有金刚石结构,一个晶胞内含有8个原子。
3(2)若视晶体中的原子为球体,且最近原子相切:a r ⋅=⋅3412%34)381(34834883333=×=×=a a a r ππ晶胞体积个原子体积则66%是空的相邻两球的半径之和(直径)为立方体体对角线的1/4。
4(3)杂质原子进入半导体中的存在方式:①位于格点原子间的间隙位置——间隙式杂质(一般杂质原子较小)②取代格点原子而位于格点上——替代式杂质(一般杂质原子大小与被取代的晶格原子大小近似,且价电子壳层结构也较相似){Si 、Ge 是Ⅳ族元素,Ⅲ、Ⅴ族元素在Si 、Ge 中是替位式杂质。
杂质浓度:单位体积中的杂质原子数,表示半导体晶体中杂质含量的多少,杂质浓度的单位为cm -3或/cm 3。
替位式杂质和间隙式杂质52、施主杂质施主能级Si中掺P效果上形成正电中心P + +一个价电子被正电中心P +束缚,位于P +周围,此束缚远小于共价键束缚,很小的能量△E 就可以使其挣脱束缚,形成“自由”电子,在晶格中运动(在导带)。
杂质电离:电子脱离杂质原子的束缚成为导电电子的过程。
杂质电离能:电子脱离杂质原子的束缚,成为导电电子所需的能量。
记作△E D 。
△E D 的值Si 中约0.04~0.05eV Ge 中约0.01eV {}<< E g以Si中掺入Ⅴ族替位式杂质P 为例6施主杂质或N 型杂质:Ⅴ族元素施放电子的过程——施主电离;Ⅴ族元素未电离时呈中性——束缚态或中性态;Ⅴ族元素电离后形成正电中心——施主离化态;⎩⎨⎧E cE vE D+++E g△E D一般情况下,杂质浓度较低杂质原子间的相互作用可以忽略所以施主能级是一些相同能量的孤立能级,即不形成能带。
半导体物理学第二章-PPT
9
施主:掺入在半导体中的杂质原子,能够向半导体中提供导电的电子, 并成为带正电的离子。如Si中的P 和As
N型半导体
半导体的掺杂
施主能级
大家好
10
2.1.3 受主杂质 受主能级
在硅中掺入3价的硼B,硼原子有3个价电子,与周围四个硅原子形成共价鍵,缺少一个电子,必须从周围获得一个电子,成为负电中心B-。硼的能级距价带能级顶部很近,容易得到电子。负电中心B-不能移动;而价带顶的空穴易于被周围电子填充,形成空穴的移动,即“导电空穴”。这种能够接受电子的杂质称之为“受主杂质”,或P型杂质。受主杂质获得电子的过程称之为“受主电离”;受主束缚电子的能量状态称之为“受主能级EA”;受主能级比价带顶EV高“电离能EA” 。
大家好
11
受主:掺入在半导体中的杂质原子,能够向半导体中提供导电的空穴, 并成为带负电的离子。如Si中的B
P型半导体
半导体的掺杂
受主能级
大家好
12
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受主和施主杂质,它们在禁带中引入了能级;受主能级比价带顶高 ,施主能级比导带底低 ,均为浅能级,这两种杂质称为浅能级杂质。杂质处于两种状态:中性态和离化态。当处于离化态时,施主杂质向导带提供电子成为正电中心;受主杂质向价带提供空穴成为负电中心。
大家好
30
杂质在GaAs中的位置
替代Ⅲ族时,周围是四个Ⅴ族原子替代Ⅴ族时,周围是四个Ⅲ族原子
大家好
31
IV族元素碳、硅、锗等掺入III-V族化合物中,若取代III族元素起施主作用;若取代V族元素起受主作用。总效果是施主还是受主与掺杂条件有关。
例如,硅在砷化镓中引入一个浅的施主能级,即硅起施主作用,向导带提供电子。当硅杂质浓度达到一定程度后,导带电子浓度趋向饱和,杂质的有效浓度反而降低。
半导体物理 第二章 杂质能级剖析
EA
m
E0 m0 r 2
* p
可得同一个数量级 ED 0.025eV (Si)
§2.1.5 杂质的补偿作用
杂质补偿:半导体中存在施主杂质和受主杂质时, 它们底共同作用会使载流子减少,这种作用称为 杂质补偿。在制造半导体器件底过程中,通过采 用杂质补偿底方法来改变半导体某个区域底导电 类型或电阻率。
施主杂质的电离过程,可以 用能带图表示 如图2-4所示.当电子得到能ED 量后,就从施主的束缚态跃 迁到导带成为导电电子,所 以电子被施主杂质束缚时的 能量比导带底 E 低 。 E 将被施主杂质束缚的电子的 E 能量状态称为施主能级,记 为 ED ,所以施主能级位于 离导带底很近的禁带中
§2.1.3 受主杂质 受主能级
使空穴挣脱束缚成为导电空穴所需要的能量称为 受主杂质电离能 受主杂质电离后成为不可移动的带负电的受主离 子,同时向价带提供空穴,使半导体成为空穴导 电的p型半导体。
§2.1.3 受主杂质 受主能级
受主杂质的电离过程,可 以用能带图表示 如图2-6所示.当空穴得到 EA 后,就从受主的束 能量 缚态跃迁到价带成为导电 空穴,所以电子被受主杂 EV 质束缚时的能量比价带顶 高 E 。将被受主杂质 束缚的空穴的能量状态称 为受主能级,记为 ,所 E 以受主能级位于离价带顶 很近的禁带中
§2.1.2 施主杂质 施主能级
上述电子脱离杂质原子的束缚成为导电电子的 过程称为杂质电离 使个多余的价电子挣脱束缚成为导电电子所需 要的能量称为杂质电离能 施主杂质电离后成为不可移动的带正电的施主 离子,同时向导带提供电子,使半导体成为电 子导电的n型半导体。
§2.1.2 施主杂质 施主能级
§2.1.4 浅能级杂质电离能的简单计算
半导体物理第二章(1)
速度饱和效应的物理解释 在强电场作用下,载流子直接从电场获取能量,并传给晶格。 此过程稳定后,载流子平均动能高于晶格的平均动能,也高 于另电场作用下的动能。即成为 热载流子。
根据运动电子速度与温度的关系
(2.1.23) 及其速度与迁移率的关系 (2.1.24)
可将电子迁移率表示为电子温度的函数,即
j q ( pn 0 DP /τ
p
n p 0 Dn /τ n )(e qu / kt 1)
式中,pn0和np0分别代表pn结n区和p区的热平衡少数载流 子密度,Dp、Dn和Ʈp、Ʈn分别代表它们的扩散系数和寿 命。上式表明,双极器件的电流控制能力受制于少数载流 子的扩散系数,而载流子的扩散系数与迁移率之间通过爱 因斯坦关系D=µkt/q相联系。在确定温度下,扩散系数的 大小由迁移率唯一决定。
式中,Wb为n基区的宽度。
由于晶体管的截止频率正比于渡越时间,渡越时间与 迁移率正比。 则:晶体管的截止频率与其基区材料的载流子的迁移 率成正比。
载流子迁移率大小的影响因素 众所周知,在非零温度和零电场条件下,半导体中 的自由载流子作着无规热运动,尽管其热速度可能 很高,但其宏观位移为零;当外加一非零电场于半 导体之上时,其中的载流子将从电场获得沿电场方 向或反电场方向的加速度,但其漂移速度并不会随 着时间的推移而无限累积,而是保持在一个与电场 大小有关的定值。 这里,散射对载流子的运动方 式起着重要作用。在电场不是很强的情况下,裁流 子的平均漂移速度与电场大小成正比。其比例常数 即迁移率。显然,迁移率的大少与散射机构有关。
在实际应用中,萨支唐等曾提出过一个比较简单的模型来描述 仅考虑电离杂质散射时硅中载流子的迁移牢同温度和电离杂质 浓度的关系,其形如:
在实际应用中,可以使用如下具有普遍适用性的经验公式来 计算不同温度T和不同掺杂浓度(ND十NA)条件下的半导体材 料中载流于迁移率:
半导体物理 第二章 PN结 图文
国家级精品课程——半导体器件物理与实验
第二章 PN结
引言
4-4 外延工艺:
外延是一种薄膜生长工艺,外延生长是在单晶衬底上沿晶体 原来晶向向外延伸生长一层薄膜单晶层。
外延工艺可以在一种单晶材料上生长另一种单晶材料薄膜。
外延工艺可以方便地形成不同导电类型,不同杂质浓度,杂 质分布陡峭的外延层。
外延技术:汽相外延(PVD,CVD)、液相外延(LPE)、分 子束外延(MBE)、热壁外延(HWE)、原子层外延技术。
硅平面工艺的主体
国家级精品课程——半导体器件物理与实验
第二章 PN结
引言
4-1 氧化工艺:
1957年,人们发现硅表面的二氧化硅层具有阻止杂质向硅内 扩散的作用。这一发现直接导致了氧化工艺的出现。 二氧化硅薄膜的作用: (1)对杂质扩散的掩蔽作用; (2)作为MOS器件的绝缘栅材料; (3)器件表面钝化作用; (4)集成电路中的隔离介质和绝缘介质; (5)集成电路中电容器元件的绝缘介质。 硅表面二氧化硅薄膜的生长方法: 热氧化和化学气相沉积方法。
N(x) (a)
Na
Nd xj
(b) -a(x - xj)
引言
扩 SiO2 散 结 N-Si
杂质扩散
P
N-Si
N-Si
由扩散法形成的P-N结,杂质浓度从P区到N区是
逐渐变化的,通常称之为缓变结,如图所示。设 P-N结位置在x=xj处,则结中的杂质分布可表示为: x
Na Nd (x xj), Na Nd (x xj)
Al
液体
Al
P
N-Si
N-Si
N-Si
把一小粒铝放在一块N型单晶硅片上, 加热到一定温度,形成铝硅的熔融体, 然后降低温度,熔融体开始凝固,在N 型硅片上形成含有高浓度铝的P型硅薄 层,它和N型硅衬底的交界面即为P-N 结(称之为铝硅合金结)。
半导体物理学第二章
2.1 硅、锗中的杂质能级
当杂质进入半导体以后, Q: 当杂质进入半导体以后,分布在什 么位置? 么位置?
以硅为例,在一个晶胞中包含8个硅原子,若 以硅为例,在一个晶胞中包含8个硅原子, 近似把原子看成半径是r的圆球,那么这8 近似把原子看成半径是r的圆球,那么这8个原子 占据晶胞的百分数为: 占据晶胞的百分数为:
金在锗中的能级
2.2 三-五族化合物中的杂质能级
和硅、锗一样,当杂质进入三- 和硅、锗一样,当杂质进入三-五族 化合物中, 化合物中,仍然是间隙式杂质和替位 式杂质,不过具体情况更为复杂些。 式杂质,不过具体情况更为复杂些。
杂质既可以取代三族元素, 杂质既可以取代三族元素,也可以取 代五族元素。
间隙原子和空位一方面不断地产生同时两 者又不断地复合,最后确立一平衡浓度值。 者又不断地复合,最后确立一平衡浓度值。 以上两种由温度决定的点缺陷又称为热 缺陷,总是同时存在的。 缺陷,总是同时存在的。 由于原子须具有较大的能量才能挤入间隙 位置,以及它迁移时激活能很小, 位置,以及它迁移时激活能很小,所以晶体 中空位比间隙原于多得多, 中空位比间隙原于多得多,因而空位是常见 的点缺陷。 的点缺陷。
半导体物理学
理学院物理科学与技术系
第二章 半导体中杂质和缺陷能级
2.1 2.2 2.3 硅、锗中的杂质能级 三-五族化合物中的杂质能级 缺陷、位错能级 缺陷、
在实际应用的半导体材料中, 在实际应用的半导体材料中,总是存在 偏离理想的情况。 偏离理想的情况。
1)原子并不是静止的; 原子并不是静止的; 原子并不是静止的 2)半导体材料并不是纯净的 半导体材料并不是纯净的; 半导体材料并不是纯净的 3)晶格结构存在缺陷。 晶格结构存在缺陷。 晶格结构存在缺陷
半导体物理第二章
反键态
3p
导带
sp3
3s 成键态 价带
半导体物理第二章
晶体中的电子与孤立原子中的电子不同,也和自由运动 的电子不同。孤立原子中的电子是在该原子的核和其他 电子的势场中运动,自由电子是在一恒定为零的势场中 运动,而晶体中的电子是在严格周期性重复排列的原子 间运动。
研究发现,电子在周期性势场中运动的基本特点和自由 电子的运动十分相似。下面先简单介绍一个自由电子的 运动。
➢ 组成晶体的原子的外层电子共有化运动较强,其行为与自由电子 相似,常称为准自由电子。而内层电子的共有化运动较弱,其行 为与孤立原子中的电子相似。
半导体物理第二章
E-k关系
对于无限晶体,波失 k 可以连续取值;对于某一确定的 k值,
薛定谔方程存在一系列分立的能量本征值Enk和相应的本征函数
nk (r) ,能量本征值En随ቤተ መጻሕፍቲ ባይዱ矢 k 是连续变化的。可以用 k
• 随着原子与原子愈来愈近,电子轨道交叠愈多,电子不 再完全局限于一定的原子,而可以在整个晶体中运动 (电子共有化)。电子兼有原子运动和共有化运动。只 有在最外层电子的共有化特征才是显著的。
半导体物理第二章
原子能级与能带的对应
❖ 对于原子的内层电子,其电子
E
轨道很小,因而形成的能带较
窄。这时,原子能级与能带之
半导体物理第二章
多电子问题 单电子问题
为了计算具体晶体中的本征态和相应的能量本征值,必须得 到包括和原子核以及和其它电子的相互作用在内的周期势场 U(x), 并对单个电子求解薛定谔方程。
2 [
2U(x) ](x)E(x)
2m
这是一个自洽问题,因为势场U(x)依赖于晶体中电子所处的 具体状态,称为自洽势。
半导体物理器件第二章
平衡PN 结 能带图:
突变结PN 结的扩散电势2ln i
A D D n N N q kT V = 缓变结PN 结的扩散电势)2ln(2i
m D n ax q kT V = m x 势垒区宽度,j
x x dx dN
a ==为PN 结前沿杂质浓度的梯度,
q kT =0.026V
正向偏置的PN 结能带图:
反向偏置的PN 结能带图:
理想PN 结满足的条件:①小注入;②耗尽层近似;③不考虑耗尽层的产生与复合;④ 玻尔兹曼边界条件;⑤忽略半导体表面对电流的影响; 理想PN 结的正向电流:))((1-+=kT qU p p no n n
po e L D p L D n Aq J
PN 结的击穿:
1:突变PN 结空间电荷区的电场:
在PN 结交界面处(x=0)的电场强度:0εεs n
D M x qN
E =;
在N 型一侧:)0)(1()(n n
M x x x x E x E <<-= 在P 型一侧:)0)(1()(<<-+=x x x x E x E p p
M 耗尽层宽度:0
0)(2qN V V x D s m -=εε(0N 表示低掺杂一边的杂质浓度) 2:缓变结最大场强:20)2(2m s M x qa
E εε=
耗尽层宽度:3/10])(12[qa
V V x D s m -=εε
3:突变结势垒电容m S T x A C 0εε=。
《半导体物理》习题答案第二章
13.6 0.012eV 17
r0
0 h2 52.9 1012 m m0 q 2
可将浅施主杂质弱束缚电子的基态轨道半径表示为
rn
0 r h2 m 17 r o r 52.9 1012 =6 10-8m=60nm * 2 * 0 mn q mn 0.015
补充 1、在硅晶体的深能级图中添加铒 (Er)、钐 (Sm)、钕(Nd)及缺陷深中心(双空位、E 中心、A
第2章
中心)的能级。 (略) 补充 2、参照上列 GaN 中常见杂质及缺陷的电离能参数表(或参考书表 2-4)回答下列问题: 1)表中哪些杂质属于双性杂质? 2)表中还有哪些杂质可能跟这些杂质一样起双重作用,未发现其双重作用的可能原因是什 么? 3)Mg 在 GaN 中起施主作用的电离能为什么比 Si、C 施主的电离能大,且有两个不同值? 4)Ga 取 N 位属何种缺陷,有可能产生几条何种能级,其他能级观察不到的可能原因是什 么? 5)还能不能对此表提出其他问题?试提出并解答之。 答:1)按表中所列,Si、C、Mg 皆既为施主亦为受主,因而是双性杂质。 2)既然 II 族元素 Mg 在 N 位时能以不同电离能 0.26eV 和 0.6eV 先后释放其两个价电子,那么 表中与 Mg 同属 II 族元素的 Be、Zn、Cd、Hg 似也有可能具有类似能力,I 族元素 Li 更有可能在 N 位上释放其唯一的外层电子而起施主作用。现未发现这些杂质的施主能级,原因可能是这些元素释 放一个电子的电离能过大,相应的能级已进入价带之中。 3)Mg 在 GaN 中起施主作用时占据的是 N 位,因其外层电子数 2 比被其置换的 N 原子少很多, 因此它有可能释放其价电子,但这些电子已为其与最近邻 Ga 原子所共有,所受之约束比 Si、C 原子 取代 Ga 原子后多余的一个电子所受之约束大得多,因此其电离能较大。当其释放了第一个电子之后 就成为带正电的 Mg 离子,其第二个价电子不仅受共价环境的约束,还受 Mg 离子的约束,其电离能 更大,因此 Mg 代 N 位产生两条深施主能级。 4)Ga 取 N 位属反位缺陷,因比其替代的 N 原子少两个电子,所以有可能产生两条受主能级, 目前只观察到一条范围在价带顶以上 0.59eV1.09eV 的受主能级, 另一能级观察不到的原因可能是其 二重电离(接受第二个共价电子)的电离能太大,相应的能级已进入导带之中。 (不过,表中所列数 据变化范围太大,不合情理,怀疑符号有误,待查。 ) 5)其他问题例如: 为什么 C 比 Si 的电离能高?答:因为 C 比 Si 的电负性强。 Li 代 Ga 位应该有几条受主能级?答:Li 比 Ga 少两个价电子,应该有两条受主能级。 ……….
半导体物理学简答题及答案(精)
第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子那么参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比拟宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1〔k〕随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。
半导体物理(朱俊)第二章 半导体中的杂质和能级缺陷
例2:Au(Ⅰ族)在Si中
EC EA ED EV
两个深杂质 能级,真正 对少子寿命 起控制作用 的是最靠近 禁带中部的 受主能级 0.54eV。
其它两个可能的受主能级目前还没有测量到。
6.Si、Ge 元素半导体中的缺陷
(空位、自间隙原子)
(1)空位 (1) 空位
●受主杂质- Ⅱ族元素
Ⅱ族元素(Zn、Be、Mg、Cd、Hg) 在GaAs中通常都取代Ⅲ族元素Ga原子 的晶格位置,由于Ⅱ族原子比Ⅲ族原子 少一个价电子,因此Ⅱ族元素杂质在 GaAs中通常起受主作用,均为 浅受主 。
常用掺Zn或Cd以获得Ⅲ-Ⅴ族化合物p型半导体
● 两性杂质- Ⅳ族元素
Ⅳ 族 元 素 杂 质 ( Si、Ge、Sn、Pb) 在 GaAs中的作用比较复杂,可以取代Ⅲ族的 Ga,也可以取代Ⅴ族的As,甚至可以同时 取代两者,因此Ⅳ族杂质不仅可以起施主作 用和受主作用,还可以起中性杂质作用。 例如,在掺Si浓度小于1×1018cm-3时,Si全 部取代Ga位而起施主作用,这时掺Si浓度和 电子浓度一致;而在掺Si浓度大于1018cm-3 时,部分Si原子开始取代As 位,出现补偿 作用,使电子浓度逐渐偏低。
硅、锗在T=0K 时的Eg为1.170eV和0.7437eV
浅施主杂质电离能的计算(类氢原子模型):
(1):氢原子中的电子的运动轨道半 径为: 2
εrεo h 2 rH = n 2 moπ q
+
n=1 为基态电子的运动轨迹
Si 中受正电中心 P 束缚的电子的运动轨道半 径,考虑正负电荷处在介电常数不同的介质 中以及晶格周期性势场的影响:
原因:杂质原子的电子壳层结构、杂质原子的大 小以及杂质在半导体晶格中的位置等原因,而导 致杂质的多能级结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 半导体中杂质和缺陷能级“水至清则无鱼,人至察则无徒”(班固《汉书·东方朔传》),半导体至纯则难用。
半导体的实用价值,在于其物理性质对杂质和缺陷的灵敏依赖性,因而要通过杂质和缺陷的可控调节来实现。
由于痕量杂质和缺陷的存在也会改变结晶半导体中的周期势场,在禁带中引入电子的允许状态(能级),从而改变材料的电子特性,因而用高科技手段实现对半导体材料杂质和缺陷的精确控制,是半导体材料实用化的基础。
精确控制的含义,首先是高纯度、低缺陷密度材料的制备,然后是可控掺杂和必要时的微缺陷再生。
为此,需要了解杂质和缺陷在半导体的禁带中引入电子能级的微观机理。
§2.1 半导体中杂质和缺陷的施、受主作用一、真实晶体及其禁带中的允许能级1、杂质存在的可能性(1)占空比 已知金刚石和闪锌矿结构的一个晶胞中都包含有八个原子,若近似地把原子看成是等半径r 的圆球,则可以计算出这八个原子占据晶胞空间的百分数如下:按最密排列,两最近邻原子之中心距应等于两球的半径之和2r ,由是知晶胞之体对角线长8r ,晶格常数3/8r a =,八个圆球与一个晶胞之体积比,即金刚石和闪锌矿晶格的原子占空比为34.0163338348333≈=⨯ππr r 这一结果说明,在金刚石型的晶体还有近2/3的空隙。
(2)金刚石结构中的两种间隙 如图2—l 所示,金刚石结构中有两种最大的间隙。
一种是以4条体对角线的无点阵原子端1/4处以及晶胞中心为中心的间隙,称为四面体间隙,用T (tetrahedral )表示,其间可最大容纳半径相同的一个原子。
一个晶胞有5个这样的间隙。
另一种是由三个体对角线原子和三个面心原子围成的六角八面锥形体中的间隙,称为六角锥间隙,用H(Hexangular)表示。
(a) 四面体空隙 (b)六角锥空隙图2—1 金刚石型晶体结构中的两类间隙位置(3) 晶格中的空位(Vacancy ) 在一定温度下,点阵原子有一定几率获得足够能量脱离近邻原子的共价束缚,从格点位置进入间隙位置,产生空位。
空位在任何晶体中都有一定的热平衡浓度。
间隙与空位为杂质原子的进入和存在提供了间隙和替位两种位置,并为杂质在半导体中的扩散提供了有效的机制。
半径较小的杂质原子一般占据间隙位置。
譬如,离子锂(Li)的半径为0.068nm ,在硅、锗、砷化镓等半导体中皆是间隙式杂质。
大小和外层电子结构都与基质原子比较相近的杂质一般容易采取替位式。
譬如,硅、锗是Ⅳ族元素,与Ⅲ、Ⅴ族元素的情况比较相近,所以Ⅲ、Ⅴ族元素在硅、锗晶体中都是替位杂质。
2、杂质类型1)共价环境与外来原子 半导体中原子的主要结合方式是共价键,外来原子(杂质)要溶入这个共价环境,必须适应主体晶格对共价电子数的要求。
若主体晶格提供给外来原子的是一个过配位共价环境,它就必须接受其欠缺的电子或释放其多余的电子。
2)施主杂质 比晶格主体原子多一个价电子的替位式杂质,它们在适当的温度下能够释放多余的价电子而在半导体中产生非本征自由电子并使自身电离。
称这种杂质为施主。
以硅中的磷(P)为例: 已知磷原子有五个价电子。
当一个磷原子替代了格点上的一个硅原子,其5个价电子中的4个与周围的4个硅原子形成共价键,剩余一个价电子。
这时,磷原子核在所有内层电子和共价键电子的屏蔽下,剩余一个正电荷,形成一个正电中心P +,将剩余的价电子束缚着。
不过,这种束缚作用比共价键的束缚作用弱得多,只要很低的能量就可使之电离成为导电电子,在晶格中自由运动。
这时磷原子就成为少了一个价电子的磷离子(P +),它是一个不能移动的正电中心。
电子脱离施主杂质的束缚成为导电电子的过程称为施主杂质的电离,相应的能量称为施主杂质的电离能,用△E D 表示。
实验测量表明,V 族元素的原子在硅和锗中的电离能很小,在硅中约为0.04~0.05eV ,在锗中约为0.01 eV 。
所有V 族元素对Ge 、Si 等IV 族元素半导体和族内化合物或合金半导体而言都是施主杂质。
3)受主杂质 比晶格主体原子少一个价电子的替位式杂质,它们在适当的温度下能够接受主体材料价带中的电子,从而产生非本征自由空穴并使自身电离。
称这种杂质为受主。
以硅中的硼(B )为例:已知硼原子只有3个价电子。
当一个硼原子替代了格点上的硅原子,它只能与近邻的4个硅原子形成3个共价键,在另一个共价键中出现一个电子空位,这相当于在价带中产生一个空穴。
这个空状态可以被邻近基质硅原子的共价键电子填充,这相当于空穴在晶体中做共有化运动。
同时,硼原子对硅原子的替代,也在硅晶格周期势场中引入一个负电中心。
空穴在其能量较低时被硼离子束缚于其附近,不能作共有化运动。
不过,硼离子对这个空穴的束缚很弱,只需要很少的能量就可以使之挣脱束缚,成为在晶体中自由运动的导电空穴。
空穴脱离受主原子的束缚成为导电空穴的过程也称为杂质电离,相应的能量称为受主电离能,用△E A 表示。
实验测量表明,III 族元素的原子在硅和锗中的电离能很小,在硅中约为0.045~0. 065eV [铟(In)在硅中的电离能为0.16 eV ,是一例外],在锗中约为0.01 eV 。
所有III 族元素对Ge 、Si 等IV 族元素半导体和族内化合物或合金半导体而言都是受主杂质。
3、杂质能级1)类氢模型-杂质电离能的简单计算电子在半导体晶体中围绕施主正电中心的运动与其在真空中围绕氢原子核的运动十分相似,只要用半导体的介电常数替换真空介电常数,用电子有效质量替换惯性质量,就可以利用氢原子电离能的方法来估算杂质的电离能,称此方法为类氢模型。
已知氢原子中电子的能量E n 是式中n =1,2,3,…,为主量子数。
当n =1时,得到基态能量E 1= -m 0q 4/8ε02h 2;当n =∞时,是氢原子的电离态,E ∞=0。
所以,氢原子基态电子的电离能为6.1382204010==-=∞hq m E E E εeV于是类推得到计算施、受主杂质电离能的类氢模型为200*,22024*,,8r p n r p n A D E m m h qm E εεε==∆ 锗、硅晶体的相对介电常数εr 分别为16和12,因此,杂质在锗、硅晶体中的电离能可分别表示为0.05 m */m 0和0.1 m */m 0。
由于m */m 0一般小于l ,所以锗、硅中的杂质电离能一般小于0.05eV 和0.1eV 。
无论施主和受主,此结论与实验测得浅能级杂质电离能很低的结果是吻合的。
2)施主能级和受主能级被施主杂质弱束缚着的电子获得电离能△E D 后,就能从束缚态跃迁到导带成为导电电子,所以电子被施主杂质束缚时的能量比导带底E C 低△E D 。
将电子被施主杂质束缚着的能量状态称为施主能级,记为E D 。
E C -E D =△E D ,如图2-2所示。
一般情况下,杂质密度不高,杂质原子间的相互作用不强,施主能级犹如分立原子的能级一样。
被受主杂质弱束缚着的空穴获得电离能△E A 后,就能从束缚态跃迁到价带成为导电空穴,所以空穴被受主杂质束缚时的能量比价带顶E V 高△E A 。
将被受主杂质束缚的空穴的能量状态称为受主能级,记为E A 。
E A -E V =△E A ,如图2-3所示。
一般情况下,受主杂质密度不高,杂质原子间的相互作用不强,受主能级犹如分立原子的能级一样。
当然,受主产生的过程实际上是电子的跃迁过程,是价带中的电子得到能量△E A 后,跃迁到受主能级上,和束缚在受主能级上的空穴复合,并在价带中产生了一个可以自由运动的导电空穴,同时也就形成一个不可移动的受主离子。
图2—2 施主能级和施主电离 图2—3 受主能级和受主电离 3)n 型半导体和p 型半导体把因含有一定浓度施主杂质而主要依靠导带电子导电的半导体称为n 型半导体。
把因含有一定浓度受主杂质而主要依靠价带空穴导电的半导体称为p 型半导体。
二、多重电离杂质的作用及其能级以上讨论单指只能电离一次的杂质,例如IV 族元素半导体中的III 族元素和V 族元素杂质,其特点是电离能甚小,称为浅施主或浅受主。
下面以IV 族元素半导体中的非III 非V 族元素杂质为例,讨论具有多重电离特性的杂质在半导体中的行为及其相应的能级。
假定这些杂质也都以替位式存在于基质晶体中。
1、 金刚石结构中的I 族元素杂质只有一个价电子的杂质原子取代了4配位的基质原子之后,有两种不同的可能性使自己稳定存在于基质原子的共价环境之中。
一种是释放其唯一的价电子而成为正离子,与周围的4个近邻原子的一个等效价电子形成类离子键的结合;另一种可能性就是依次接受1个、2个、3个电子,成为一重、二重、三重电离的负离子。
按第一种途径,该杂质起施主作用。
但是,这个价电子不同于V 族元素杂质那个成键后剩余的价电子,它随着杂质原子进入替位状态之后即被共价键所束缚,电离能很大,有可能接近甚至超过禁带宽度(基质原子价电子的电离能)。
因此,这个施主能级一般不是离导带底近,而是离价带顶近,称为深施主能级,这种情况下的杂质被称为深施主。
按第二种途径,该杂质起受主作用,但三种受主状态的能级各不相同,分别用E A1,E A2,E A3表示。
该杂质接受第一个电子后即带一个负电荷,相应的受主能级为E A1,其电离能为(E A1—E V);接受第二个电子后,带两个负电荷,相应的受主能级为E A2,其电离能为(E A2—E V);接受第三个电子后,带3个负电荷,相应的受主能级为E A3,其电离能为(E A3—E V)。
由于同种电荷之间的库仑排斥作用,该杂质原子从价带接受第二个电子所需要的电离能比接受第一个电子时的大,接受第三个电子时的电离能又比接受第二个电子时的大,所以,E A2比E A1离价带远,E A3比E A2离价带更远。
E A1离价带顶相对近一些,但是比III族元素杂质引入的受主能级还是深得多。
因此,这种杂质的三条受主能级都是深能级。
2、金刚石结构中的II、VI族元素杂质II族元素杂质在金刚石结构中的行为与I族元素杂质类似,一般会产生两条深受主能级和一条深施主能级。
II族元素的原子既然有两个价电子,何以只有一条施主能级呢?这是因为,这些原子在4配位的共价键环境中释放一个价电子已属不易,第二个价电子不但要受到共价键的束缚,还要受到一重电离后的正离子的束缚,束缚能比第一个释放的价电子要高得更多。
VI族元素杂质在金刚石结构中替代基质原子用4个价电子与近邻原子形成共价键之后,可以顺次释放剩余的两个价电子,产生两条深度不同的施主能级。
原子核对两个剩余价电子的束缚,有点类似于氦原子,释放第一个价电子所需要克服的束缚能要比类氢原子大得多,因为同壳层的另一个电子对原子核的屏蔽实际是不完全的,因此平均来说每个电子受到大于一个正电荷的束缚作用,第一施主能级是条深能级。