中南大学学生破解世界性数学难题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学学生破解世界性数学难题

2011年困扰了数学界20多年的国际数学难题“西塔潘猜想”,被中南大学2008级本科生刘嘉忆攻克了!在数理逻辑学术会议上,刘嘉忆作为亚洲高校唯一一位代表在会上作了40分钟报告,“西塔潘猜想”是处于数理逻辑领域中的核心位置。解决了这一难题,就能促进反推数学和计算性理论方面的研究。

2010年8月,酷爱数理逻辑的刘嘉忆在自学反推数学的时候,第一次接触到这个问题,并在阅读大量文献时发现,海内外不少学者都在进行反推数学中的拉姆齐二染色定理的证明论强度的研究。这是由英国数理逻辑学家西塔潘于上个世纪90年代提出的一个猜想,10多年来许多著名研究者一直努力都没有解决。

同年10月的一天,刘嘉忆突然想到利用之前用到的一个方法稍作修改便可以证明这一结论,连夜将这一证明写出来,投给了数理逻辑国际权威杂志《符号逻辑杂志》。

今年5月,由北京大学、南京大学和浙江师范大学联合举办的逻辑学术会议在浙江师范大学举行,还是大三学生的刘嘉忆应邀参加了这次会议,报告了他对目前反推数学中的拉姆齐二染色定理的证明论强度的研究。刘嘉忆的报告给这一悬而未决的公开问题一个否定式的回答,彻底解决了西塔潘的猜想。

9月16日,美国芝加哥大学数理逻辑学术会议上,云集了来自欧美的许多数理逻辑专家、学者。大会邀请了12位专家、学者作学术报告,刘嘉忆作为亚洲高校唯一一位代表在会上作了40分钟报告。他在数理逻辑方面的研究成果,让与会专家、学者对这位来自中国的“80后”投上赞许的目光。

得知这个振奋人心的消息后,我很好奇什么是西塔潘猜想,于是查找了关于西塔潘猜想的相关资料。西塔潘猜想是由英国数理逻辑学家西塔潘于20世纪90年代提出的一个一个反推数学领域关于拉姆齐二染色定理证明强度的猜想。拉姆齐二染色定理以弗兰克·普伦普顿·拉姆齐正式命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。

拉姆齐二染色定理(Ramsey Theorem for Pair)用非形式的语言可以叙述为任何一个对边进行2-染色的含(可数)无穷个顶点的完全图都有一个单一染色的含有无穷个顶点的子完全图,而弱柯尼希定理(Weak König Lemma)则是说任何一个(可数)无穷二叉树都有一条无穷长的路径。这两条都是二阶算术中的陈述,说的是一个类中满足某种性质的子集存在,可以粗暴地认为它们在某种程度上都是在表现或者替代二阶算术中的选择公理(Axiom of Choice)(一般的“Axiom of Choice”可对超出可数无穷多的对象进行选择)。在反推数学中,研究的其实是二阶算术的各个子系统以及它们的强度关系,而最重要的是被称为 Big Five的五个子系统 RCA 0 , WKL 0 , ACA 0 (后面两个与本猜想无关,故不列出)。其中 WKL 0 是基本系统 RCA 0 添加弱柯尼希定理的系统,而 RCA 0 添加拉姆齐二染色定理的系统被称为 RT2 2 (不在Big Five,类似还有 RT3 2 ,在此不表)。经过若干数学家的研究,他们发现了一些子系统间存在强弱的比较关系:和 RT2 2 形式接近的 RT3 2 比 ACA 0 要强(其实一样),而 RT2 2 则不比 ACA 0强,( ACA 0 比 WKL 0 强是基本的)等等[1],从这些结果,他们隐约认为 RT22 和 WKL 0 的强度是可以比较的,1995年英国数理逻辑学家西塔潘在一篇论文[2]中发现WKL_0并不强于 RT2 2 ,于是他猜测可能 RT2 2 要强于 WKL 0。这一猜想引发了大量研究,困扰了许多数学家十多年之久,直到刘嘉忆的出现,他证明了 RT2 2并不包含 WKL 0 ,从而给该猜想一个否定的回答。

我还查阅了一些关于反推数学的资料。反推数学是数理逻辑的一个小分支。在上世纪80、90年代,反推数学还比较活跃。上一个十年中,有些衰落。目前,又有了一点生气。现在,全球研究人员估计超过二十人。国内南京大学对反推数学有研究。反推数学大致是这样的:通常的数学大致是从公理到定理的研究,而反推数学则是从定理(陈述)到公理的研

究,二者正好方向相反。举一个可能有些不恰当的例子,如果知道 X = 3 这一条件,那么我们可以推出 X^2 = 9 ,这就是通常的数学。但是如果我们知道 X^2 = 9 而要问什么条件可以保证这个结论成立的话,那么选择可就多了,X = 3 可以,X = -3 可以,X + 1 = 4,X - 1 = 2等等也都可以,不过我们或许会特别注意 | X | = 3 ,因为感觉这样“不多也不少”,而其余的则感觉有所遗漏。容易发现 X = 3 和 X^2= 9 这两个陈述的蕴意是有所差别的,当然这也是有语境的,我们自然认定是在全体整数或者实数的范围中考虑的,如果我们是在正数的范围中考虑,那么那两个陈述的蕴意则恰好相当,没有差别。这个例子很简单,因为其中的陈述看起来很简单,它们的蕴意比较起来很容易。如果我们的陈述是实数的确界定理和闭区间套定理,那么要判断这两个陈述的蕴意就要麻烦一些,对于可能更复杂的两个陈述,判断起来则更不容易。可以说,反推数学就是要探讨(在一个基本体系中)一个陈述的精确蕴意(专业的词汇是证明论强度),既不能多一点也不能少一点。为求精确,最好还是用一些符号:存在一个基本体系 S 以及一个陈述 T (它不能被 S 所证),目标是要在 S 上添加适当的公理(也有可能是一些规则),使得新的体系S’恰好能证出T,“恰好”体现为一则 S’要能证出 T ,二则同时 S 和 T 本身就蕴含 S’。

刘嘉忆受到国际数学界的高度认可后,三位中国科学院院士、著名数学家李邦河、丁夏畦、林群毫不犹豫地接受了中南大学的请求,向教育部写了“破格录取”推荐信。刘同学是一个只比我们大一届的学长,他的例子激励我们,如果肯下功夫,敢于尝试,我们就有可能收获意想不到的风景。

相关文档
最新文档