2020高考数学充要条件的判定测试

合集下载

高考数学难点2充要条件的判定习题与答案

高考数学难点2充要条件的判定习题与答案

高考数学难点2充要条件的判定习题与答案●歼灭难点训练一、选择题1.(★★★★)函数f(x)=x|x+a|+b是奇函数的充要条件是( )A.ab=0B.a+b=0C.a=bD.a2+b2=02.(★★★★)“a=1”是函数y=cos2ax-sin2ax的最小正周期为“π”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也不是必要条件二、填空题3.(★★★★)a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的_________.4.(★★★★)命题A:两曲线F(x,y)=0和G(x,y)=0相交于点P(x0,y0),命题B:曲线F(x,y)+λG(x,y)=0(λ为常数)过点P(x0,y0),则A是B的__________条件.三、解答题5.(★★★★★)设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n}、{b n}满足:,求证:数列{a n}成等差数列的充要条件是数列{b n}也是等差数列.7.(★★★★★)已知抛物线C:y=-x2+mx-1和点A(3,0),B(0,3),求抛物线C与线段AB有两个不同交点的充要条件.8.(★★★★★)p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有2个小于1的正根,试分析p是q的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设f(x)=x2+ax+b,则f(x)的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f(±2)>0.即有(2)必要性:∴方程f(x)=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f(x)=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.歼灭难点训练一、1.解析:若a2+b2=0,即a=b=0,此时f(-x)=(-x)|x+0|+0=-x·|x|=-(x|x+0|+b)=-(x|x+a|+b)=-f(x).∴a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(-x)=(-x)|(-x)+a|+b=-f(x),则必有a=b=0,即a2+b2=0.∴a2+b2=0是f(x)为奇函数的必要条件.答案:D2.解析:若a=1,则y=cos2x-sin2x=cos2x,此时y的最小正周期为π.故a=1是充分条件,反过来,由y=cos2ax-sin2ax=cos2ax.故函数y的最小正周期为π,则a=±1,故a=1不是必要条件.答案:A二、3.解析:当a=3时,直线l1:3x+2y+9=0;直线l2:3x+2y+4=0.∵l1与l2的A1∶A2=B1∶B2=1∶1,答案:充要条件4.解析:若P(x0,y0)是F(x,y)=0和G(x,y)=0的交点,则F(x0,y0)+λG(x0,y0)=0,即F(x,y)+λG(x,y)=0,过P(x0,y0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a=α+β,b=αβ.判定的条件是、(注意p中a、b满足的前提是Δ=a2-4b≥0)。

新人教高考数学专题复习《充要条件》测试题

新人教高考数学专题复习《充要条件》测试题

第6课时 充要条件一.课题:充要条件二.教学目标:掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.三.教学重点:充要条件关系的判定.四.教学过程:(一)主要知识:1.充要条件的概念及关系的判定; 2.充要条件关系的证明.(二)主要方法:1.判断充要关系的关键是分清条件和结论;2.判断p q ⇒是否正确的本质是判断命题“若p ,则q ”的真假;3.判断充要条件关系的三种方法:①定义法;②利用原命题和逆否命题的等价性;③用数形结合法(或图解法).4.说明不充分或不必要时,常构造反例.(三)例题分析:例1.指出下列各组命题中,p 是q 的什么条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选一种作答)(1)在ABC ∆中,:p A B >,:sin sin q A B >(2)对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠(3)在ABC ∆中,:sin sin p A B >,:tan tan q A B >(4)已知,x y R ∈,22:(1)(2)0p x y -+-=,:(1)(2)0q x y --=解:(1)在ABC ∆中,有正弦定理知道:sin sin a b A B= ∴sin sin A B a b >⇔> 又由a b A B >⇔>所以,sin sin A B A B >⇔> 即p 是q 的的充要条件.(2)因为命题“若2x =且6y =,则8x y +=”是真命题,故p q ⇒,命题“若8x y +=,则2x =且6y =”是假命题,故q 不能推出p ,所以p 是q 的充分不必要条件.(3)取120,30A B ==,p 不能推导出q ;取30,120A B ==,q 不能推导出p所以,p 是q 的既不充分也不必要条件.(4)因为{(1,2)}P =,{(,)|1Q x y x ==或2}y =,P Q ≠⊂, 所以,p 是q 的充分非必要条件.例2.设,x y R ∈,则222x y +<是||||x y +≤ )、是||||2x y +<的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:由图形可以知道选择B ,D .(图略)例3.若命题甲是命题乙的充分非必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:因为甲是乙的充分非必要条件,故甲能推出乙,乙不能推出甲,因为丙是乙的必要非充分条件,故乙能推出丙,丙不能推出乙,因为丁是丙的充要条件,故丁能推出丙,丙也能推出丁,由此可知,甲能推出丁,丁不能推出甲即丁是甲的必要不充分条件,选B .例4.设,x y R ∈,求证:||||||x y x y +=+成立的充要条件是0xy ≥.证明:充分性:如果0xy =,那么,①0,0x y =≠②0,0x y ≠= ③0,0x y ==于是||||||x y x y +=+如果0xy >即0,0x y >>或0,0x y <<,当0,0x y >>时,||||||x y x y x y +=+=+,当0,0x y <<时,||()()||||x y x y x y x y +=--=-+-=+,总之,当0xy ≥时,||||||x y x y +=+.必要性:由||||||x y x y +=+及,x y R ∈得22()(||||)x y x y +=+即222222||x xy y x xy y ++=++得||xy xy =所以0xy ≥故必要性成立,综上,原命题成立.例5.已知数列{}n a 的通项1113423n a n n n =++++++,为了使不等式22(1)11log (1)log 20n t t a t t ->--对任意*n N ∈恒成立的充要条件.解:∵11111111()()02425324262526n n a a n n n n n n n +-=+-=-+->+++++++, 则1221n n n a a a a a -->>>>>,欲使得题设中的不等式对任意*n N ∈恒成立,只须{}n a 的最小项221(1)11log (1)log 20t t a t t ->--即可,又因为11194520a =+=, 即只须11t -≠且22911log (1)log (1)02020t t t t ----<,解得1log (1)(1)t t t t -<-<>,即101(2)t t t t<<-<≠,解得实数t 应满足的关系为12t +>且2t ≠. 例6.(1)是否存在实数m ,使得20x m +<是2230x x -->的充分条件?(2)是否存在实数m ,使得20x m +<是2230x x -->的必要条件?解:欲使得20x m +<是2230x x -->的充分条件,则只要{|}{|12m x x x x <-⊆<-或3}x >,则只要12m -≤-即2m ≥, 故存在实数2m ≥时,使20x m +<是2230x x -->的充分条件.(2)欲使20x m +<是2230x x -->的必要条件,则只要{|}{|12m x x x x <-⊇<-或3}x >,则这是不可能的,故不存在实数m 时,使20x m +<是2230x x -->的必要条件.(四)巩固练习:1.若非空集合M N ≠⊂,则“a M ∈或a N ∈”是“a M N ∈”的 条件. 2.05x <<是|2|3x -<的 条件.3.直线,a b 和平面,αβ,//a b 的一个充分条件是( )A.//,//a b ααB.//,//,//a b αβαβC. ,,//a b αβαβ⊥⊥D. ,,a b αβαβ⊥⊥⊥。

2023届高考数学专项(充分、必要、充要问题)题型归纳与练习(附答案)

2023届高考数学专项(充分、必要、充要问题)题型归纳与练习(附答案)

2023届高考数学专项(充分、必要、充要问题)题型归纳与练习【题型归纳】题型一 、充分、不要条件的判断充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p⇒q 与非q⇒非p ,q⇒p 与非p⇒非q ,p⇔q 与非q⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.例1、(1)【2021年理科数学甲卷】等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件(2)【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(3)【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件题型举一反三1、(2021∙天津高三二模)设x ∈R ,则“230x x -<”是“12x <<”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件题型举一反三2、(2021∙山东济宁市高三二模)“直线m 垂直平面α内的无数条直线”是“m α⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必安条件题型举一反三3、(2021∙河北张家口市高三三模)“0a >”是“点()0,1在圆222210x y ax y a +--++=外”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件题型举一反三4、(2021∙辽宁高三模拟)设1z ,2z 为复数,“120z z ->”是“12z z >”( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件题型举一反三5、(2021∙浙江高三二模)已知P 、A 、B 、C 、D 是空间内两两不重合的五个点,PAB △在平面α内,PCD 在平面β内,αβ⊥,则“AB β⊥”是“AB CD ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件题型举一反三6、(2021∙浙江温州市高三模拟)已知α∈R ,则“1sin 2cos 25αα+=”是“sin 2cos αα=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 题型举一反三7、(2020届浙江省宁波市鄞州中学高三下期初)已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“990S >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件题型二、根据充分、必要条件判断含参的问题解决此类问题要注意以下两点:(1)把充分、不要条件转化为集合之间的关系;(2)根据集合之间的关系列出关于参数的不等式。

高考数学复习点拨 判断充分、必要、充要条件的常用策略 试题

高考数学复习点拨 判断充分、必要、充要条件的常用策略 试题

判断充分、必要、充要条件的常用策略充分条件、必要条件与充要条件是高中的根底知识,在高考中往往以本节知识为工具考察其它方面的知识.本文主要谈一下判断充分条件、必要条件与充要条件的常用策略,供大家参考.策略1:定义法判断充分条件、必要条件与充要条件的最根本方法是根据定义,运用“⇒〞号:假如q p ⇒,那么p 是q 的充分条件,q 是p 的必要条件.例1 ⎪⎩⎪⎨⎧>>+44xy y x 是⎪⎩⎪⎨⎧>>22y x 的什么条件,请说明理由. 解:当2>x ,2>y 时,有4>+y x ,4>xy ,所以⎪⎩⎪⎨⎧>>⇒⎪⎩⎪⎨⎧>>+2244y x xy y x ;反之不一定成立,例如当21<=x ,5=y 时,有46>=+y x ,45>=xy ,即 ⎪⎩⎪⎨⎧>>22y x ⎪⎩⎪⎨⎧>>+44xy y x .所以⎪⎩⎪⎨⎧>>+44xy y x 是⎪⎩⎪⎨⎧>>22y x 的充分不必要条件.策略2:递推法命题在推导的过程当中具有传递性,即:假设q p ⇒,r q ⇒,那么r p ⇒.例2 假如A 是B 的必要不充分条件,B 是C 的充要条件,D 是C 的充分不必要条件,那么A 是D 的_________条件.解:依题意,有D C B A ⇐⇔⇐,由命题的传递性可知D A ⇐,但A D .于是A 是D 的充分不必要条件.例3 设甲、乙、丙、丁是四个命题,甲是乙的充分但不必要条件,丙是乙的充要条件,丙是丁的必要但不充分条件,那么丁是甲的__________条件.解,依题意,有丁丙乙甲⇐⇔⇒.由命题的传递性可知甲 乙且乙 甲,于是丁⇒⇒⇒⇒⇐ ⇒⇒⇒是甲的既不充分也不必要条件.策略3:等价转化法在判断命题p 与q 的关系的时候,假设命题q 的形式比拟复杂,那么可把命题q 等价转化为比拟简单的命题r ,进而通过判断命题p 与r 的关系得到命题p 与q 的关系.例4 设50:<<x p ,5|2:|<-x q ,那么p 是q 的________条件.解:73:5|2:|<<-⇔<-x r x q ,显然r p ⇒,但r p ,所以q p ⇒,但 qp ,所以p 是q 的充分但不必要条件. 例5 0)2(22=-+y x 是0)2(=-y x 的________条件.解:2且0:0)2(22==⇔=-+y x p y x ,2或0:0)2(==⇔=-y x q y x ,显然q p ⇒但q p ,所以0)2(22=-+y x 是0)2(=-y x 的充分但不必要条件.策略4:逆否命题法由于原命题⇔逆否命题,逆命题⇔p 能否推出q ,等价于判断q ┐能否推出p ┐. 例6 条件2:≠+y x p ,条件1不都是,:-y x q ,那么p 是q 的_____条件.解:因为2:≠+y x p ,1或1:-≠-≠y x q ,所以2:┐=+y x p ,1且1:┐-=-=y x q .因为q p ┐┐⇒但q ┐p ┐,所以p 是q 的充分不必要条件. ⇒⇒⇒⇒四季寄语情感寄语在纷繁的人群中/牵手走过岁月/就像走过夏季/拥挤的海滩在我居住的江南/已是春暖花开季节/采几片云彩/轻捧一掬清泉/飘送几片绿叶/用我的心/盛着寄给/北国的你不要想摆脱冬季/看/冰雪覆盖的世界/美好的这样完整/如我对你的祝福/完整地这样美好挡也挡不住的春意/像挡也挡不住的/想你的心情/它总在杨柳枝头/泄露我的秘密往事的怀念/爬上琴弦/化作绵绵秋雨/零零落落我诚挚的情怀/如夏日老树下的绿荫/斑斑驳驳虽只是一个小小的祝福/却化做了/夏季夜空/万点星辰中的一颗对你的思念/温暖了/我这些个漫长的/冬日从春到夏,从秋到冬......只要你的帘轻动,就是我的思念在你窗上走过.在那个无花果成熟的季节,我才真正领悟了你不能表达的缄默.我又错过了一个花期/只要你知道无花也是春天/我是你三月芳草地燕子声声里,相思又一年朋友,愿你心中,没有秋寒.一到冬天,就想起/那年我们一起去吃的糖葫芦/那味道又酸又甜/就像......爱情.谢谢你/在我孤独时刻/拜访我这冬日陋室只要有个窗子/就拥有了四季/拥有了世界愿你:俏丽如三春之桃,清素若九秋之菊没有你在身边,我的生活永远是冬天!让我们穿越秋天/一起去领略那收获的喜悦!在冬天里,心中要装着春天;而在春天,却不能忘记冬天的寒冷.落红不是无情物,化作春泥更护花.愿是只燕,衔着春光,翩翩向你窗.请紧紧把握现在/让我们把一种期翼/或者是一种愿望/种进大地/明春/它就会萌生绿色的叶片.此刻又是久违的秋季/又是你钟爱的季节/于是/秋风秋雨秋云秋月/都化作你的笑颜身影/在我的心底落落起起.此刻已是秋季/你可体验到/收获怀念的感觉/和秋雨一样真实动人.一条柳枝/愿是你生活的主题/常绿常新/在每一个春季雨声蝉鸣叶落风啸/又一个匆匆四季/在这冬末春初/向遥远的你/问安!又是夏季/时常有暴雨雷鸣/此刻/你可以把我当作大雨伞/直至雨过天晴/留给你一个/彩虹的夏季!。

2020年新高考数学复习充分条件与必要条件的合理判定专题解析

2020年新高考数学复习充分条件与必要条件的合理判定专题解析

2020年新高考数学复习充分条件与必要条件的合理判定专题解析考纲要求:1、理解必要条件、充分条件与充要条件的意义;2、掌握必要条件、充分条件与充要条件的判定. 基础知识回顾: 充分条件与必要条件已知命题p 是条件,命题q 是结论(1)充分条件:若p q ⇒,则p 是q 充分条件;所谓“充分”,意思是说,只要这个条件就够了,就很充分了,不要其它条件了。

如:3x <是4x <的充分条件。

(2)必要条件:若q p ⇒,则p 是q 必要条件;所谓“必要”,意思是说,这个条件是必须的,必要的,当然,还有可能需要其它条件。

如:某个函数具有奇偶性的必要条件是其定义域关于原点对称。

函数要具有奇偶性首先必须定义域关于原点对称,否则一定是非奇非偶。

但是定义域关于原点对称并不就一定是奇偶函数,还必须满足)()(x f x f =-才是偶函数,满足)()(x f x f -=-是奇函数。

(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.(4)两种常见说法:A 是B 的充分条件,是指A ⇒B ;A 的充分条件是B ,是指B ⇒AA 的充要条件是...B .,充分性是指B ⇒A ,必要性是A ⇒B ,此语句应抓“条件是B ”;A ·是.B 的充要条件..,此语句应抓“A 是条件”. 应用举例:类型一:充分条件与必要条件的判定——函数【例1】已知函数,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】C是()【例2】已知函数,则在上不单调的一个充分不必要条件.......A.B.C.D.【答案】C【解析】分析:求出函数的导数,问题转化为函数与x轴在有交点,通过分析整理,结合二次函数的性质判断即可.解析:,若在上不单调,令,则函数与x轴在有交点,设其解为,则,因此方程的两解不可能都大于1,其在中只有一解,其充要条件是,解得或,因此选项C是满足要求的一个充分必要条件.故选:C.点睛:本题考查了函数的单调性问题,考查导数的应用以及二次函数的性质. 类型二:充分条件与必要条件的判定——不等式【例3】设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【例4】“”是“”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】C类型三:充分条件与必要条件的判定——圆锥曲线【例5】【河北省衡水中学2018届高三数学(理科)三轮复习系列七】直线与圆有两个不同交点的一个必要不充分条件是()A.B.C.D.【答案】B【解析】分析:根据直线和圆的位置关系求出直线和圆有两个不同交点的充要条件,然后再结合给出的选项求解.详解:圆的方程即为.由直线与圆有两个不同交点得,解得.又,∴直线与圆有两个不同交点的一个必要不充分条件是.故选B.点睛:解答本题时注意两点:一是先求出直线与圆有两个交点的充要条件,即;二是要正确理解必要不充分条件的含义,即是所选择的范围的真子集.【例6】已知椭圆:,直线:与轴交于点,过椭圆右焦点的直线与椭圆相交于,两点,点在直线上,则“轴”是“直线过线段中点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】分析:若轴,不妨设与轴交于点,过作交直线于点,由平行线的性质结合椭圆第二定义可得,进而可得结果.详解:若轴,不妨设与轴交于点,过作交直线于点,则:,两次相除得:,又由第二定义可得,为的中点,反之,直线过线段中点,直线斜率为零,则与重合,所以“轴”是“直线过线段中点”的充分不必要条件,故选A.点睛:判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.类型四:充分条件与必要条件的判定——复数【例7】设,则“”是“复数在复平面内对应的点在第二象限”的()A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B是的真子集,故为必要非充分条件,故选B.点睛:该题考查的是有关充分必要条件的判断,在求解过程中,需要首先确定出各条件对应的参数的取值范围,利用集合间的关系,求得结果.类型五:充分条件与必要条件的判定——三角函数【例8】设,则是的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【例9】”是“关于的方程有解”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】分析:先求出得,而s有解可得即可.详解:由题得得,s有解可得,故可得“”是“关于的方程有解”的充分不必要条件,故选A.点睛:考查逻辑关系,能正确求解前后的结论,然后根据定义判断是解题关键,属于基础题.类型六:充分条件与必要条件的判定——平面向量 【例10】已知向量,,则“”是“”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 【答案】A类型七:充分条件与必要条件的判定——集合【例11】若集合{}{}20,,1,2A m B ==则“1m =”是“{}0,1,2A B ⋃=”的 A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 【答案】A【解析】由题得{0,1,2A B ⋃=}所以1m =±,所以“1m =”是“{}0,1,2A B ⋃=”的 充分不必要条件,选A.【例12】 已知集合{}|145A x x x =-+-<,集合(){}22||log 2B x y x x ==-,则“x A ∈”是“x B ∈”的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件【答案】B类型八:充分条件与必要条件的判定——立体几何【例13】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.【例14】若为两条不同的直线,为平面,且,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】分析:根据线面平行的性质以及线面垂直的性质可得充分性成立,由可能可得必要性不成立. 详解:由且能推出,充分性成立;若且,则或者,必要性不成立,因此“”是“”的充分不必要条件,故选A.点睛:判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.类型九:充分条件与必要条件的判定——数列【例15】设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【例16】在等比数列中,“是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D类型十:充分条件与必要条件的应用【例17】已知集合A是函数y=lg(20﹣8x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.(1)若A∩B=∅,求实数a的取值范围;(2)若¬p是q的充分不必要条件,求实数a的取值范围.【答案】(1)a≥11(2)0<a≤1【解析】试题分析:(1)分别求函数的定义域和不等式()的解集化简集合A,由得到区间端点值之间的关系,解不等式组得到的取值范围;(2)求出对应的的取值范围,由是的充分不必要条件得到对应集合之间的关系,由区间端点值的关系列不等式组求解的范围.试题解析:(1)由题意得,或,若,则必须满足,解得,∴的取值范围为.(2)易得或.∵是的充分不必要条件,∴或是或的真子集,则,其中两个等号不能同时成立,解得,∴a 的取值范围为.【例18】已知集合3|0 1x A x x -⎧⎫=>⎨⎬+⎩⎭,集合(){}22|2120 B x x m x m m =-+++-< :p x A ∈,:q x B ∈,若p 是q 的必要不充分条件,求m 的取值范围.【答案】[]01,【解析】试题分析:先化简A ,B ,再根据p 是q 的必要不充分条件,得出B A ≠⊂,列出方程组即可求出m的范围. 试题解析:由301xx ->+得: 13x -<<,∴|1 3 A x x =-<<.由()222120x m x m m -+++-<,得12m x m -<<+.∴|1 2 B x m x m =-<<+,∵p 是q 的必要不充分条件,∴B A ≠⊂ ∴11{23m m -≥-+≤,∴01m ≤≤,经检验符合题意,∴m 的取值范围为[]01,.方法、规律归纳:(1)充分条件、必要条件的判断方法【定义法】直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.【等价法】利用p ⇒q 与⌝q ⇒⌝p ,q ⇒p 与⌝p ⇒⌝q ,p ⇔q 与⌝q ⇔⌝p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.【集合法】若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. (2)判断指定条件与结论之间关系的基本步骤:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系. 实战演练: 1.设:,:,则是的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件【答案】A2.若,则“复数在复平面内对应的点在第三象限”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】分析:先化简复数z,再转化“复数在复平面内对应的点在第三象限”,最后利用充分必要条件判断得解.详解:由题得=-a-5i,由于复数在复平面内对应的点在第三象限,所以所以“复数在复平面内对应的点在第三象限”是“”的充要条件.故答案为:C点睛:(1)本题主要考查复数的计算、几何意义和充要条件,意在考查学生对这些基础知识的掌握能力. (2)判断充要条件,首先必须分清谁是条件,谁是结论,然后利用定义法、集合法和转化法来判断.3.设a,b均为单位向量,则“”是“a⊥b”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C4.己知命题p : “关于x 的方程240x x a -+=有实根”,若非p 为真命题的充分不必要条件为31a m >+,则实数m 的取值范围是( )A . ()1,+∞B . [)1,+∞C . (),1-∞D . (],1-∞ 【答案】A【解析】分析:通过方程有实数根的条件,确定4a ≤,然后确定非p 条件下4a >;根据充分不必要条件确定314m +>,进而求出m 的取值范围。

高中专题02 命题及其关系、充分条件与必要条件-2020年领军高考数学一轮复习(文理通用)(原卷版)

高中专题02 命题及其关系、充分条件与必要条件-2020年领军高考数学一轮复习(文理通用)(原卷版)

2020年领军高考数学一轮复习(文理通用)专题02命题及其关系、充分条件与必要条件最新考纲1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.基础知识融会贯通1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念【知识拓展】从集合的角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A⊆B,则p是q的充分不必要条件;(5)若A⊇B,则p是q的必要不充分条件;(6)若A⊊B且A⊊B,则p是q的既不充分也不必要条件.重点难点突破【题型一】命题及其关系【典型例题】原命题:“设a、b、c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A.0个B.1个C.2个D.4个【再练一题】下列命题:①∀x∈R,不等式x2+2x>4x﹣3成立;②若log2x+log x2≥2,则x>1;③命题“”的逆否命题;④若命题p:∀x∈R,x2+1≥1,命题q:∃x∈R,x2﹣2x﹣1≤0,则命题p∧¬q是真命题.其中真命题只有()A.①②③B.①②④C.①③④D.②③④思维升华(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【题型二】充分必要条件的判定【典型例题】“a=2”是“复数z(a∈R)为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【再练一题】已知命题p:“”,命题q:2019x>2019,则p是q的什么条件()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,进行判断,适用于条件和结论带有否定性词语的命题.【题型三】充分必要条件的应用【典型例题】已知集合A={x|x2﹣2x﹣3<0},B={x|(x﹣m+1)(x﹣m﹣1)≥0}.(1)当m=0时,求A∩B;(2)若p:x2﹣2x﹣3<0,q:(x﹣m+1)(x﹣m﹣1)≥0,且q是p的必要不充分条件,求实数m的取值范围.【再练一题】设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足|x﹣3|<1.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.思维升华充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.基础知识训练1.有如下命题:①函数中有三个在上是减函数;②函数有两个零点;③若,则其中真命题的个数为()A.B.C.D.2.下列关于命题的说法错误的是()A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若的极值点,则”的逆命题为真命题3.下列命题中真命题的是A.若为假命题,则p,q均为假命题B.“”是“”的充要条件C.命题:若,则的逆否命题为:若,则D.对于实数x,y,p:,q:,则p是q的充分不必要条件4.下列有关命题的叙述错误的是A.命题“”的否定是“”B.已知向量,则“”是“”的充分不必要条件C.命题“若,则的逆否命题为“若,则”D.“”是的充分不必要条件5.设是方程的两个不等实根,记.下列两个命题:①数列的任意一项都是正整数;②数列第5项为10. ( ) A.①正确,②错误B.①错误,②正确C.①②都正确D.①②都错误6.下面命题正确的是A.若,则B.命题“”的否定是“”C.若向量满足,则的夹角为钝角D.“”是“”的必要不充分条件7.下列命题中正确的是()A.在中,为等腰三角形的充要条件B.“”是“”成立的充分条件C.命题“”的否定是“”D.命题“若,则”的逆否命题是“若,则”8.“是“直线与圆相切的A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件9.函数上不单调的一个充分不必要条件是A.B.C.D.10.“”是“对任意恒成立”的A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件11.方程表示双曲线的一个充分不必要条件是A.B.C.D.12.“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.设:关于的方程有解;:函数在区间上恒为正值,则的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.设,直线,直线,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件15.若“”是“”的充分而不必要条件,则实数的取值范围是A.B.C.D.16.已知其中a为常数,且若p为真,求x的取值范围;若p是q的必要不充分条件,求a的取值范围.17.已知命题;命题(1)若的必要条件,求实数的取值集合;(2)当时,若为真,为假,求实数的取值集合18.已知命题:方程表示焦点在轴上的椭圆;命题:实数满足.(Ⅰ) 若命题中椭圆的长轴长为短轴长的2倍,求实数的值;(Ⅱ) 命题是命题的什么条件?19.已知.(1)是否存在实数,使的充要条件?若存在,求出的取值范围,若不存在,请说明理由;(2)是否存在实数,使的必要条件?若存在,求出的取值范围,若不存在,请说明理由.20.已知命题对数式)有意义;命题实数满足不等式.(1)若为真,求实数的取值范围;(2)若的充分不必要条件,求实数的取值范围.能力提升训练1.已知,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.给出下列说法: ①“”是“”的充分不必要条件;②定义在上的偶函数的最大值为30;③命题“”的否定形式是“”.其中正确说法的个数为A .0B .1C .2D .3 3.角是△的两个内角.下列六个条件中,“”的充分必要条件的个数是 ①; ②; ③; ④; ⑤; ⑥A .B .C .D .4.已知抛物线C: 24x y =,直线:1l y =−,PA,PB 为抛物线C 的两条切线,切点分别为A,B ,则“点P 在直线l 上”是“PA ⊥PB ”的( )条件A .必要不充分B .充分不必要C .充要D .既不充分也不必要 5.设是定义在正整数集上的函数,且满足:“当成立时,总可以推出成立”,给出以下四个命题: ① 若,则;② 若,则;③ 若,则;④ 若,则.其中真命题的个数为( )个A .1B .2C .3D .46.给出以下命题,其中真命题的个数是( ) ①若“”是假命题,则“”是真命题; ②命题“若,则”为真命题;③若,则!④直线与双曲线交于两点,若,则这样的直线有3条;A .1B .2C .3D .47.已知p :实数m 使得椭圆2212x y m +=的离心率,22e ⎛⎫∈ ⎪ ⎪⎝⎭. (1)求实数m 的取值范围;(2)若:9q t m t ≤≤+, p 是q 的充分不必要条件,求实数t 的取值范围. 8.求证:关于的方程有实数根,且两根均小于2的充分不必要条件是.9.已知命题:p 实数x 满足()20123281nnn n n n nx x C C C C C −−≤−+−++− ;命题:q 实数x 满足2(0)x m m −≤>.(1)当3m =时,若“p 且q ”为真,求实数x 的取值范围; (2)若“非p ”是“非q ”的必要不充分条件,求实数m 的取值范围. 10.已知,其中.(1)若,且为真,求的取值范围;(2)若的充分不必要条件,求实数的取值范围.。

高考数学复习点拨 谈谈“充要条件”问题的证明

高考数学复习点拨 谈谈“充要条件”问题的证明

1 / 1谈谈“充要条件”问题的证明在期末复习时,出现这样一道练习题: 已知y x ,都是非零实数,且y x >,求证:yx 11<的充要条件是0>xy . 学生在证明过程中暴露出许多意想不到的错误,总结一下大概有这么三个问题:(1)解题很不规范,因为有关充要条件的证明通常要分两个方面(最好标明①必要性.②充分性)来书写过程,最后还应该有一个“综上所述”来肯定一下所证的问题.然而有不少学生没有这样分步表达,而是眉毛胡子一把抓,凌乱不堪.(2)这道题本身就可看作是不等式的一个性质,有些学生用这性质来证这个性质,出现循环论证,以致过程太简洁,只写了几个式子.(3)有些学生试图想通过等价性来证明问题,然而也由于心有想而没说出或说不出,没有使用“⇔”符号来叙述证题过程,而只证了一个方面就结束了.出现上面这些问题的原因是:书上没有相关例题示范,教师在课堂上也很少讲(不是没讲过,而是讲得少)相关例题.此处为弥补证明“充要条件”这一不足,特举几例细说之.上面练习题的解答:证明:(1)必要性.由y x 11< 得 011<-y x 即 0<-xyxy 又由y x >得0<-x y , 所以 0>xy . (2)充分性.由0>xy 及y x >得xyyxy x > 即y x 11<.综上所述:yx 11<的充要条件是0>xy . 评注:(1)要证明命题的条件是充要的,必须要证两个方面,即既证明原命题成立,也证它的逆命题成立,证明原命题成立即证明条件的充分性,证明逆命题成立即证明条件的必要性.(2) 区分“充分性”与“必要性”的方法:利用“A的充要条件是B”与“A的充分(不必要)条件是B”中“B是A的充分条件”的一致性,可以断定:由B证出A是“充分性”,通俗地说“后推出前”是“充分性”.(3) 如果分不清两方面中哪方面是充分性还是必要性,那么不写出“充分性”与“必要性”等文字也可以,但要标注(1),(2).当然如果采用“⇔”符号来叙述证题过程,就不好再分两个方面了.(4)对于充要条件,要熟悉它的同义词语:“当且仅当”, “等价于”, “…反之也成立”“需且只需”“原命题成立,逆命题也成立” , 立几中的“确定”等等。

2020新课标高考数学讲义:空间点、线、面的位置关系含解析

2020新课标高考数学讲义:空间点、线、面的位置关系含解析

②一个平面内已知直线必垂直于另一个平面内的无数条直线;③一个平面内任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确的命题是()A.①②B.①③C.②D.②④解析:选C.构造正方体ABCD-A1B1C1D1,如图,①,在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,BD⊂平面ABCD,但A1D与BD不垂直,故①错;②,在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,l是平面ADD1A1内的任意一条直线,l与平面ABCD内同AB平行的所有直线垂直,故②正确;③,在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,但A1D与平面ABCD不垂直,故③错;④,在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,且平面ADD1A1∩平面ABCD=AD,过交线AD上的点作交线的垂线l,则l可能与另一平面垂直,也可能与另一平面不垂直,故④错.故选C.4.(20xx·福建省质量检查)如图,AB是圆锥SO的底面圆O的直径,D是圆O上异于A,B的任意一点,以AO为直径的圆与AD的另一个交点为C,P为SD的中点.现给出以下结论:①△SAC为直角三角形;②平面SAD⊥平面SBD;③平面PAB必与圆锥SO的某条母线平行.平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.[对点训练]1.(水浒原创)如图,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,D是A1B1的中点,F在BB1上.(1)求证C1D⊥平面A A1B1B;(2)在下列给出的三个条件中选哪两个条件可使AB1⊥平面C1DF?并证明你的结论.①F为BB1的中点;②AB1=3;③A A1=2.解:(1)证明:因为ABC-A1B1C1是直三棱柱,所以A1C1=B1C1=1,且∠A1C1B1=90°.又D是A1B1的中点,所以C1D⊥A1B1.因为A A1⊥平面A1B1C1,C1D⊂平面A1B1C1,所以A A1⊥C1D,又AA1∩A1B1=A1,所以C1D⊥平面A A1B1B.(2)选①③能证明AB1⊥平面C1DF.证明如下:连接DF,A1B,所以DF∥A1B,在△ABC中,AC=BC=1,∠ACB=90°,则AB=2,又AA1=2,则A1B⊥AB1,所以DF⊥AB1,因为C1D⊥平面A A1B1B,AB1⊂平面A A1B1B,所以C1D⊥AB1.因为DF∩C1D=D,所以AB1⊥平面C1DF.2.如图,已知斜三棱柱ABC-A 1B1C1中,点D,D1分别为AC,A1C1上的点.(1)当A1D1D1C1等于何值时,BC1∥平面AB1D1?(2)若平面BC1D∥平面AB1D1,求ADDC的值.解:(1)如图,取D1为线段A1C1的中点,此时A1D1D1C1=1,连接A1B交AB1于点O,连接OD1.由棱柱的性质,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.5.如图,在矩形ABCD中,AB=3,BC=1,将△ACD沿AC折起,使得D折起后的位置为D1,且D1在平面ABC上的射影恰好落在AB上,在四面体D1ABC的四个面中,有n对平面相互垂直,则n等于()A.2 B.3C.4 D.5解析:选B.如图,设D1在平面ABC上的射影为E,连接D1E,则D1E⊥平面ABC,因为D1E⊂平面ABD1,所以平面ABD1⊥平面ABC.因为D1E⊥平面ABC,BC⊂平面ABC,所以D1E⊥BC,又AB⊥BC,D1E∩AB=E,所以BC⊥平面ABD1,又BC⊂平面BCD1,所以平面BCD1⊥平面ABD1,因为BC⊥平面ABD1,AD1⊂平面ABD1,所以BC⊥AD1,又CD1⊥AD1,BC∩CD1=C,所以AD1⊥平面BCD1,又AD1⊂平面ACD1,所以平面ACD1⊥平面BCD1.所以共有3对平面互相垂直.故选B.6.(多选)如图,在正方体ABCD-A1B1C1D1中,点P在线段BC1上运动,则下列判断中正确的是()A .平面PB 1D ⊥平面ACD 1 B .A 1P ∥平面ACD 1C .异面直线A 1P 与AD 1所成角的范围是⎝⎛⎦⎤0,π3 D .三棱锥D 1­APC 的体积不变解析:选ABD.对于A ,根据正方体的性质,有DB 1⊥平面ACD 1,又DB 1⊂平面PB 1D ,则平面PB 1D ⊥平面ACD 1,故A 正确;对于B ,连接A 1B ,A 1C 1,易证明平面BA 1C 1∥平面ACD 1,又A 1P ⊂平面BA 1C 1,所以A 1P ∥平面ACD 1,故B 正确;对于C ,当P 与线段BC 1的两端点重合时,A 1P 与AD 1所成角取最小值π3,当P 与线段BC 1的中点重合时,A 1P 与AD 1所成角取最大值π2,故A 1P 与AD 1所成角的范围是⎣⎡⎦⎤π3,π2,故C 错误;对于D ,V 三棱锥D 1­APC =V 三棱锥C -AD 1P ,因为点C 到平面AD 1P 的距离不变,且△AD 1P 的面积不变,所以三棱锥C -AD 1P 的体积不变,故D 正确.故选ABD.二、填空题7.(20xx·××市质量监测(一))如图,在正方体ABCD -A 1B 1C 1D 1中,下面结论中正确的是________.(写出所有正确结论的序号)答案:539.在长方体ABCD -A 1B 1C 1D 1中,AB =AD =4,AA 1=2.过点A 1作平面α与AB ,AD 分别交于M ,N 两点,若AA 1与平面α所成的角为45°,则截面A 1MN 面积的最小值是________,此时AM =________.解析:如图,过点A 作AE ⊥MN ,连接A 1E ,因为A 1A ⊥平面ABCD ,所以A 1A ⊥MN ,所以MN ⊥平面A 1AE ,所以A 1E ⊥MN ,平面A 1AE ⊥平面A 1MN ,所以∠AA 1E 为AA 1与平面A 1MN 所成的角,所以∠AA 1E =45°,在Rt △A 1AE 中,因为AA 1=2,所以AE =2,A 1E =22,在Rt △MAN 中,由射影定理得ME ·EN =AE 2=4,由基本不等式得MN =ME +EN ≥2ME·EN =4,当且仅当ME =EN ,即E 为MN 的中点时等号成立,所以截面A 1MN 面积的最小值为12×4×22=42.因为AM 2+AN 2=MN 2,所以AM =22.答案:42 22 三、解答题10.如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .证明:(1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以EF ∥AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD , BC ⊂平面BCD 且BC ⊥BD , 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又因为AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC . 又因为AC ⊂平面ABC , 所以AD ⊥AC .11.如图所示,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:(1)AF ∥平面BCE ; (2)平面BCE ⊥平面CDE .证明:(1)如图,取CE 的中点G , 连接FG ,BG .因为F 为CD 的中点, 所以GF ∥DE 且GF =12DE .因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB ∥DE , 所以GF ∥AB .又因为AB =12DE ,所以GF =AB .所以四边形GFAB 为平行四边形,则AF ∥BG . 因为AF ⊄平面BCE ,BG ⊂平面BCE , 所以AF ∥平面BCE .(2)因为△ACD 为等边三角形,F 为CD 的中点, 所以AF ⊥CD .因为DE ⊥平面ACD ,AF ⊂平面ACD , 所以DE ⊥AF . 又CD ∩DE =D , 所以AF ⊥平面CDE .。

1.4 充分、必要条件(精讲)(解析版)

1.4 充分、必要条件(精讲)(解析版)

1.4 充分、必要条件(精讲)考法一命题及其判断【例1】(1)(2020·全国高一课时练习)下列语句为命题的是( ) A .250x +≥ B .求证对顶角相等 C .0不是偶数D .今天心情真好啊(2)(2020·全国高一课时练习)命题“三角形中,大边对大角”,改成“若p ,则q ”的形式,则( ) A .三角形中,若一边较大,则其对的角也大,真命题 B .三角形中,若一边较大,则其对的角也大,假命题 C .若一个平面图形是三角形,则大边对大角,真命题 D .若一个平面图形是三角形,则大边对大角,假命题 【答案】(1)C (2)A )【解析】(1)对于A 选项,250x +≥为不等式,不能判定真假,故不是命题;对于B 选项,“求证对顶角相等”为操作命令;对于D 选项,为感叹句,不是命题.故选:C. (2))命题中“三角形中”是大前提,条件应该是“大边”,结论是“对大角”,所以正确选项为A.【一隅三反】1.(2019·宁波市第四中学高二期中)命题“若a ,b 都是奇数,则+a b 是偶数”的逆否命题是( ) A .若两个整数a 与b 的和+a b 是偶数,则a ,b 都是奇数 B .若两个整数a ,b 不都是奇数,则+a b 不是偶数C .若两个整数a 与b 的和+a b 不是偶数,则a ,b 都不是奇数D .若两个整数a 与b 的和+a b 不是偶数,则a ,b 不都是奇数 【答案】D【解析】由逆否命题定义可知:命题“a ,b 都是奇数,则+a b 是偶数”的逆否命题是:“若+a b 不是偶数,则a ,b 不都是奇数”.故选:D .2.(2020·全国高三专题练习(文))命题“若21x <,则11x -<<”的逆否命题是( ) A .若21x ≥,则1x ≥,或1x ≤- B .若11x -<<,则21x < C .若1x >,或1x <-,则21x >D .若1x ≥或1x ≤-,则21x ≥【解析】命题“若21x <,则11x -<<”的逆否命题是“若1x ≥或1x ≤-,则21x ≥”. 故选:D.3.(2020·黑龙江高二期末(文))若1x >,则0x >的否命题是( ) A .若1x >,则0x ≥ B .若1x ≤,则0x > C .若1x ≤,则0x ≤ D .若1x <,则0x <【答案】C【解析】“若1x >,则0x >”的否命题是“若1x ≤,则0x ≤”.故选:C.考法二 充分、必要条件【例2】(1)(2019年天津市高考数学试卷(理科))设x ∈R ,则“250x x -<”是“|1|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2019安徽省合肥市第一中学)不等式22530x x --≥成立的一个充分不必要条件是( ) A .0x ≥ B .0x <或2x > C .2x <-D .12x ≤-或3x ≥ 【答案】(1)B (2)C【解析】(1)化简不等式,可知 05x <<推不出11x -<;由11x -<能推出05x <<, 故“250x x -<”是“|1|1x -<”的必要不充分条件,故选B . (2)解不等式22530x x --≥,得3x ≥或12x ≤-, 结合四个选项,D 是其充要条件,AB 是其既不充分也不必要条件,C 选项2x <-是其充分不必要条件.故选:C. 【一隅三反】1.(北师大版新教材2.1必要条件与充分条件)设集合{}1,A a =,{}1,2,3B =,则“3a =”是“B A ⊇”的( ) A .充分条件 B .必要条件C .没有充分、必要性D .既是充分又是必要条件【解析】当3a =,集合{}1,3A =,{}1,2,3B =,所以B A ⊇正确,即“3a =”是“B A ⊇”的充分条件,所以正确选项为A.2.(2020届山东省烟台市高考诊断性测试)设x ∈R ,则“|2|1x -<”是“2230x x +->”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】|2|1x -<,解得13x <<,2230x x +->,解得3x <-或1x >,“13x <<”成立,则“3x <-或1x >”成立, 而“3x <-或1x >”成立,“13x <<”不一定成立,所以“|2|1x -<”是“2230x x +->”的充分不必要条件.故选:A3.若集合{}|0A x x =>,下列各式是“a A ∈”的充分不必要条件的是( ) A .1a >- B .1a >C .0a ≥D .0a >【答案】B【解析】集合{}|0A x x =>,当1a >时,a A ∈,反之不成立,即为充分不必要条件,所以正确选项为B.考法三 求参数【例3】(《2020年高考一轮复习讲练测》)已知:|1|2p x +> ,:q x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .1a ≤ B .3a ≤-C .1a ≥-D .1a ≥【答案】D【解析】由题意知::|1|2p x +>可化简为{|31}x x x <->或,:q x a >, 所以q 中变量取值的集合是p 中变量取值集合的真子集,所以1a ≥.1“关于x 的不等式2x 2ax a 0-+>的解集为R”的一个必要不充分条件是 ( ) A .0a 1<< B .10a 3<<C .0a 1≤≤D . a 0<或1a 3>【答案】C【解析】因为关于x 的不等式220x ax a -+>的解集为R , 所以函数2()2f x x ax a =-+的图象始终落在x 轴的上方,即2440a a ∆=-<,解得01a <<,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集, 对比可得C 选项满足条件,故选C. 2.已知1:12p x ≥-,:||2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(,4]-∞ B .[1,4]C .(1,4]D .(1,4)【答案】C 【解析】由112x ≥-,即302x x -≤-,解得23x <≤, 由||2x a -<得22a x a -<<+, 若p 是q 的充分不必要条件,则2223a a -≤⎧⎨+>⎩,解得14a <≤,实数a 的取值范围为(]1,4, 故选:C.3.(河南省高中毕业班阶段性测试(四)理科数学试)关于x 的不等式()()30x a x -->成立的一个充分不必要条件是11x -<<,则a 的取值范围是( ) A .1a ≤- B .0a <C .2a ≥D .1a ≥【答案】D【解析】由题可知()1,1-是不等式()()30x a x -->的解集的一个真子集.当3a =时,不等式()()30x a x -->的解集为{}3x x ≠,此时()1,1- {}3x x ≠; 当3a >时,不等式()()30x a x -->的解集为()(),3,a -∞⋃+∞,()1,1- (),3-∞,合乎题意;当3a <时,不等式()()30x a x -->的解集为()(),3,a -∞⋃+∞, 由题意可得()1,1- (),a -∞,此时13a ≤<. 综上所述,1a ≥.故选:D.考法四 充分性必要性的证明【例4】(2020年【衔接教材暑假作业】初高中衔接数学)已知,x y 都是非零实数,且x y >,求证:11x y<的充要条件是0xy >. 【答案】见解析【解析】(1)必要性:由11x y <,得11x y-<0,即0y x xy -<, 又由x y >,得0y x -<,所以0xy >. (2)充分性:由0xy >及x y >,得x y xy xy>,即11x y <.综上所述,11x y<的充要条件是0xy >【一隅三反】1.(2020年【衔接教材 暑假作业】初高中衔接数学(新人教版)) 求证:关于x 的方程210x mx ++=有两个负实根的充要条件是2m ≥. 【答案】详见解析 【解析】充分性:2m ≥,∴240m ∆=-≥,方程210x mx ++=有实根,设210x mx ++=的两根为1x ,2x , 由韦达定理知:1210x x =>,∴1x 、2x 同号, 又122x x m +=-≤-,∴1x ,2x 同为负根;必要性:210x mx ++=的两个实根1x ,2x 均为负,且121=x x , ∴121112()22m x x x x -=-+-=-⎛⎫ ⎪⎝⎭+- ()22111112101x x x x x +++=-=-≥, ∴2m ≥.所以命题得证.2.求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0. 【答案】见解析.【解析】 (1)必要性:因为方程20ax bx c ++=有一正根和一负根,所以240b ac ∆=->为12120(,cx x x x a=<方程的两根),所以ac <0. (2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=<0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根. 综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.。

2020年高考江苏版高考数学 1.2 命题的四种形式,充分、必要条件

2020年高考江苏版高考数学  1.2 命题的四种形式,充分、必要条件

题、逆命题、否命题和逆否命题中真命题的个数是
.
解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.
答案 2
考向基础
考点二 充分、必要条件
1.充分条件与必要条件
(1)如果p⇒q,那么p是q的充分条件,q是p的① 必要条件 .
(2)如果p⇒q,q⇒p,那么p是q的② 充要条件 .
2.充分条件与必要条件的两种表示方法
考向突破
考向一 充分、必要条件的判断
例1 (2019届江苏泰兴中学检测)“a=0”是“函数f(x)=sin x- 1 +a为奇
x
函数”的
条件(从“充分不必要”“必要不充分”“充要”
或“既不充分也不必要”中选填一个).
解析 显然a=0时, f(x)=sin x- 1 为奇函数;当f(x)为奇函数时, f(-x)+f(x)=0,
也正确,故②为真命题;③若ab是正整数,则a,b不一定都是正整数,例如a
=-1,b=-3,故③为假命题. 答案 ②
方法二 充分、必要条件的判断方法
1.定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题. 2.集合法:建立命题p,q相应的集合.p:A={x|p(x)成立},q:B={x|q(x)成立}, 那么从集合的观点看:①若A⊆B,则p是q的充分条件,若A⫋B,则p是q的 充分不必要条件;②若B⊆A,则p是q的必要条件,若B⫋A,则p是q的必要 不充分条件;③若A⊆B且B⊆A,即A=B,则p是q的充要条件. 3.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化 为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.
(2)当x∈A,且x∉(A∩B)时,满足x∈(A∪B),即充分性不成立,若x∉(A∪B),则x∉(

高考数学专题《全称量词与存在量词、充要条件》习题含答案解析

高考数学专题《全称量词与存在量词、充要条件》习题含答案解析

专题1.2 全称量词与存在量词、充要条件1.(全国高考真题(理))设命题2:,2nP n N n ∃∈>,则P ⌝为( ) A .2,2nn N n ∀∈> B .2,2nn N n ∃∈≤ C .2,2nn N n ∀∈≤ D .2,2n n N n ∃∈=【答案】C 【解析】特称命题的否定为全称命题,所以命题的否命题应该为2,2nn N n ∀∈≤,即本题的正确选项为C.2.(2021·四川高三三模(理))命题p “(0,)x ∀∈+∞,sin x x >”的否定p ⌝为( ) A .0(0,)x ∃∈+∞,00sin x x > B .0(0,)x ∃∈+∞,00sin x x ≤ C .00],(x ∃∈-∞,00sin x x > D .00],(x ∃∈-∞,00sin x x ≥【答案】B 【解析】由含有一个量词的命题的否定的定义判断. 【详解】因为命题p “(0,)x ∀∈+∞,sin x x >”是全称量词命题,所以其否定是存在量词命题,即0:(0,)p x ⌝∃∈+∞,00sin x x ≤. 故选:B3.(2021·上海高三二模)设α:x >1且y >2,β:x +y >3,则α是β成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】A 【解析】利用充分条件和必要条件的定义进行判断即可. 【详解】练基础解:若“1x >且2y >”则“3x y +>”成立,当5x =,1y =时,满足3x y +>,但1x >且2y >不成立, 故1x >且2y >”是“3x y +>”的充分非必要条件. 故选:A .4.(2021·江西高三三模(理))设x ∈R ,则"22x -<<"是"12x <<"的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】用集合法判断即可. 【详解】因为集合{|12}x x <<是集合{|22}x x -<<的真子集, 所以“22x -<<”是“12x <<”的必要不充分条件. 故选:B.5.(2021·浙江绍兴市·高三三模)已知z 是复数,i 是虚数单位,则“z i =-”是“21z =-”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】根据复数的运算及充分必要条件的判断即可求得结果. 【详解】∵z i =-,∴()221z i =-=-; ∵21z =-,∴z i =±.故“z i =-”是“21z =-”的充分而非必要条件. 故选:A.6.(2021·四川高三二模(文))若l ,m 是平面α外的两条不同直线,且//m α,则“//l m ”是“//l α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】根据线线、线面的平行关系,结合条件间的推出关系,判断“//l m ”、“//l α”之间的充分、必要关系. 【详解】∵l ,m 是平面α外的两条不同的直线,//m α,∴若//l m ,则推出“//l α”;若//l α,则//l m 或l 与m 相交;∴若l ,m 是平面α外的两条不同直线,且//m α,则“//l m ”是“//l α”的充分不必要条件. 故选:A.7.(2021·北京高三二模)“0a ≤是”“函数ln ,0()2,0xx x f x a x >⎧=⎨-+≤⎩有且只有一个零点”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】根据函数零点的性质,结合充分条件和必要条件的定义进行判断即可. 【详解】当0x >时,令()0f x =,则ln 0x =,1x ∴=, 当0x >时,()f x 有一个零点为1, 函数()f x 只有一个零点,∴当0x ≤时,()2x f x a =-+无零点,即2x a >或2x a <, ∴当0x ≤时,(]20,1x ∈,1a ∴>或0a ≤,0a ∴≤是函数()f x 只有一个零点的充分不必要条件,故选:A.8.(2021·四川泸州市·高三三模(理))“5m =”是“双曲线C :2214x y m m+=-的虚轴长为2”的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】根据双曲线C :2214x y m m+=-的虚轴长为2求出对应的m 值即可判断.【详解】若双曲线C :2214x y m m+=-的虚轴长为2,则当0m >且40m -<时,即4m >时,2=,解得5m =,当0m <且40m ->时,即0m <时,2=,解得1m =-,所以“双曲线C :2214x y m m +=-的虚轴长为2”对应的m 值为5m =或1m =-,故“5m =”是“双曲线C :2214x y m m+=-的虚轴长为2”的充分但不必要条件.故选:A.9.(2021·上海高三二模)已知函数()2sin(2)f x x ϕ=+,则“2ϕπ=”是“()f x 为偶函数”的( )条件 A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件【答案】A 【解析】 当2ϕπ=时,()2cos2f x x =,根据奇偶性的定义判断为偶函数,反之当()f x 为偶函数时,2k πϕπ=+,k Z ∈,从而可得结果.【详解】 当2ϕπ=时,()2sin 22cos 22f x x x π⎛⎫=+= ⎪⎝⎭,∵()()()2cos 22cos2f x x x f x -=-==,∴()f x 为偶函数. 当()f x 为偶函数时,2k πϕπ=+,k Z ∈,综上所述2ϕπ=是()f x 为偶函数的充分不必要条件, 故选:A.10.(2021·四川高三三模(理))已知数列{}n a 为等比数列,“650a a >>”是“数列{}n a 为递增数列”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】根据等比数列的通项公式、数列的单调性,结合充分必要条件的定义分析可得答案. 【详解】当650a a >>,则651a q a =>,且5140aa q=>,则数列{}n a 为递增数列; 反之,当数列{}n a 为递增数列时,也有可能出现650a a >>,故为充分不必要条件. 故选:B1.(2021·陕西汉中市·高三二模(文))直线:0l x y a -+=,圆C :222x y +=,则“2a =”是“l 与圆C 相切”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】根据充分条件和必要条件的判断方法,分别判断充分性和必要性,即可的到答案. 【详解】圆C 的方程222x y +=,其圆心坐标为()0,0,半径为r =当2a =时,直线20l x y -+=:,圆心到直线的距离d r ===,此时,直线l 与圆C 相切,故充分性成立;当直线l 与圆C 相切时,圆心到直线的距离d ==所以2a =±,故必要性不成立,所以,“2a =”是“直线l 与圆C 相切”的充分不必要条件. 故选:B .练提升2.(2021·江西高三其他模拟(文))“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】先求出方程221x ny +=表示焦点在x 轴 上的圆锥曲线对应的n 的范围,再结合两者的关系可得两者之间的条件关系. 【详解】当0n <时,方程221x ny +=表示焦点在x 轴上的双曲线;当0n >时,221x ny +=可化为2211y x n+=, 因为椭圆的焦点在x 轴上,所以11n>即1n >, 故方程221x ny +=表示焦点在x 轴上的圆锥曲线时,0n <或1n >,故“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的充分不必要条件,故选:A.3.(2021·湖南高三三模)设a ,b ,m 为实数,给出下列三个条件:①33a b >:②22am bm >;③11a b<,其中使a b >成立的充分不必要条件是( ) A .① B .②C .③D .①②③【答案】B 【解析】利用充分条件和必要条件的定义逐个分析判断即可 【详解】解:对于①,当33a b >时,a b >成立,而当a b >时,33a b >成立,所以33a b >是a b >的充要条件,所以①不合题意;对于②,当22am bm >时,由不等式的性质可知a b >成立,而当a b >,0m =时,22am bm >不成立,所以22am bm >是a b >的充分不必要条件,所以②符合题意;对于③,当1,1a b =-=时,11a b <成立,而a b >不成立,当1,1a b ==-时,a b >成立,而11a b<不成立,所以11a b<是a b >的既不充分也不必要条件,所以③不合题意, 故选:B4.(2021·浙江高三月考)在ABC 中,“ABC 为钝角三角形”是“cos cos A B +>的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】考虑两个条件之间的推出关系后可判断两者之间的条件关系. 【详解】取2,63A C B ππ===,则121cos cos 22A B -+=<<故“ABC 为钝角三角形”推不出“cos cos A B +>若cos cos A B +>若A 为钝角或直角,则cos cos B A >≥A 为锐角,同理B 为锐角. 若2A B π+≥,则022B A ππ<-≤<,故cos cos sin 2A B B π⎛⎫≤-=⎪⎝⎭,所以sin cos cos cos B B A B +≥+>4B π⎛⎫+> ⎪⎝⎭.故2A B π+<即C 为钝角.故“cos cos A B +>能推出“ABC 为钝角三角形”,故选:B.5.(2021·江西上饶市·高三其他模拟(理))将函数()cos(2)6f x x π=-向左平移()0ϕϕ>个单位长度,所得图像的对应函数为()g x ,则“3πϕ=”是“()g x 为奇函数”的( )A .充分不必要B .必要不充分C .充要条件D .既不充分也不必要【答案】A 【解析】 分别从3πϕ=及()g x 为奇函数出发,证明对方是否成立,从而验证二者的关系.【详解】 当3πϕ=时,()cos[2()]sin 236g x x x ππ=+-=-,易知()g x 为奇函数,则“3πϕ=”是“()g x 为奇函数”的充分条件;当 “()g x 为奇函数”时,()cos[2()]cos(22)66g x x x ππϕϕ=+-=+-,则必有26232k k ππππϕπϕ-=+⇒=+,k Z ∈, 故3πϕ=只是其中一个值,则“3πϕ=”是“()g x 为奇函数”的不必要条件;故选:A6.【多选题】(2020·全国高一课时练习)下列命题是真命题的为( ) A .2,10x R x ∀∈--< B .,,n Z m Z nm m ∀∈∃∈=C .所有圆的圆心到其切线的距离都等于半径D .存在实数x ,使得213234x x =-+ 【答案】ABC 【解析】根据题意,依次分析各选项即可得答案. 【详解】对于A ,2,0x R x ∀∈-≤,所以210x --<,故A 选项是真命题; 对于B ,当0m =时,nm m =恒成立,故B 选项是真命题;对于C ,任何一个圆的圆心到切线的距离都等于半径,故C 选项是真命题. 对于D ,因为()2223122-+=-+≥x x x ,所以21132324x x ≤<-+.故D 选项是假命题. 故选:ABC.7.【多选题】(2021·湖南常德市·高三一模)下列说法正确的是( )A .命题:0,1∃<->x p x e x 的否定¬:0,1x p x e x ∀<-B .二项式5(12)x +的展开式的各项的系数和为32C .已知直线a ⊂平面α,则“l a //”是//l α”的必要不充分条件D .函数1sin sin y x x=+的图象关于直线2x π=对称【答案】AD 【解析】根据特称命题的否定求解方法可判断A ;令1x =代入二项式即可求得各项的系数和,可判断B ;由于直线l 与α的关系不确定故能判断C ;判断()f x π-是否等于()f x ,就能判断D 是否正确.【详解】解:对于A :命题:0,1∃<->xp x e x 的否定¬:0,1x p x e x ∀<-≤,故A 正确;对于B :二项式5(12)x +的展开式的各项的系数和为55(12)3+=,故B 错误; 对于C :已知直线a ⊂平面α,由于直线l 与α的关系不确定, 故“l a //”是//l α”的既不必要不充分条件,故C 错误; 对于D :由于x 关于2x π=的对称点为x π-,故1()sin sin f x x x=+,满足11()sin()sin ()sin()sin f x x x f x x x πππ-=-+=+=-, 故函数1sin sin y x x=+的图象关于直线2x π=对称,故D 正确.故选:AD .8.【多选题】(2021·湖南高三月考)下列“若p ,则q ”形式的命题中,p 是q 的必要条件的是( ) A .若两直线的斜率相等,则两直线平行 B .若5x >,则10x >C .已知a →是直线a 的方向向量,n →是平面α的法向量,若a α⊥,则a n →→⊥ D .已知可导函数()f x ,若0()0f x '=,则()f x 在0x x =处取得极值 【答案】BD 【解析】只需判断必要性是否成立即可.【详解】对于A ,两直线平行时,两直线的斜率相等或斜率都不存在,所以必要性不成立; 对于B ,x > 10时,x > 5,所以必要性成立;对于C ,若a n →→⊥,则a //a 或a ⊂a ,所以必要性不成立;对于D ,f (x )在0x x =处取得极值时,必有0()0f x '=,必要性成立. 故选: BD9.(2021·四川高三三模(文))已知函数2()2f x x ax b =-+,()x R ∈.下列四个命题: ①a R ∃∈,使()f x 为偶函数;②若(0)(2)f f =,则()f x 的图象关于直线1x =对称; ③若20a b -≤,则()f x 在区间[,)a +∞上是增函数; ④若220a b -->,则函数()()2h x f x =-有两个零点. 其中所有真命题的序号是___________. 【答案】①③ 【解析】根据一元二次函数及绝对值函数的性质,结合奇偶性,对称性,单调性对每一项进行分析即可. 【详解】若()f x 为偶函数,则22()2()2f x x ax b f x x ax b -=++==-+,则22222224()0x ax b x ax b ax x b ++=-+⇒+=对x R ∀∈恒成立,则0a =, 故①正确;(0)f b =,(2)44f a b =-+,若(0)(2)f f =,即44b a b =-+,则441b a b a =-+⇔=或4422b a b a b -=-+⇔-=, 若取0,2a b ==-,则2()2f x x =-关于0x =对称,②错误; 若20a b -≤,函数22y x ax b =-+的判别式2440a b ∆=-≤,即220y x ax b =-+≥,22()22f x x ax b x ax b =-+=-+,由二次函数性质,知()f x 在区间[,)a +∞上是增函数,③正确;取0,4a b ==-,满足220a b -->,则22()4242f x x x =-=⇔-=或2-,解得x =,即()()2h x f x =-有4个零点,④错误;故答案为:①③10.(2021·浙江高一期末)命题“x R ∀∈,210x x ++>”的否定是_______________;设a ,b ,c 分别是ABC 的三条边,且a b c ≤≤.我们知道ABC 为直角三角形,那么222+=a b c .反过来,如果222+=a b c ,那么ABC 为直角三角形.由此可知,ABC 为直角三角形的充要条件是222+=a b c .请利用边长a ,b ,c 给出ABC 为锐角三角形的一个充要条件是______________.【答案】x R ∃∈,210x x ++≤ 222a b c +>【解析】根据全称量词命题的否定直接写出即可;根据勾股定理,充要条件及反证法得出ABC 为锐角三角形的一个充要条件是222a b c +>.【详解】解:根据全称量词命题的否定为存在量词命题可知,命题“x R ∀∈,210x x ++>”的否定是x R ∃∈,210x x ++≤;设a ,b ,c 是ABC 的三条边,且a b c ≤≤,ABC 为锐角三角形的一个充要条件是222a b c +>. 证明如下:必要性:在ABC 中,C ∠是锐角,过点A 作AD BC ⊥于点D ,如下图:根据图象可知()222222AB AD BD AC CD BC CD =+=-+- 2222222222AC CD BC CD BC CD AC BC BC CD AC BC =-++-⋅=+-⋅<+,即222AB AC BC <+,222a b c +>可得证.充分性:在ABC 中,222a b c +>,所以C ∠不是直角.假设C ∠是钝角,如下图:过点A 作AD BC ⊥,交BC 延长线于点D ,则()222222AB AD BD AC CD BC CD =+=-++ 2222222222AC CD BC CD BC CD AC BC BC CD AC BC =-+++⋅=++⋅>+,即222AB AC BC >+,222a b c +<,与222a b c +>矛盾.故C ∠为锐角,即ABC 为锐角三角形.1.(2019年高考全国Ⅱ卷理)设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .2.(2019·天津高考真题(文))设x ∈R ,则“05x <<”是“11x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件 练真题D .既不充分也不必要条件【答案】B【解析】11x -<等价于02x <<,故05x <<推不出11x -<; 由11x -<能推出05x <<.故“05x <<”是“|1|1x -<”的必要不充分条件.故选B .3.(2019年高考浙江)若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.故选A.4.(2020·北京高考真题)已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦; 0, 0a >b>a b +≥4a b +≤4a b ≤+≤4ab ≤=1, =4a b 4ab ≤=5>4a+b 4a b +≤4ab ≤(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121k k k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选:C.5.(2018·浙江省高考真题)已知两条直线,a b 和平面α,若b α⊂,则//a b 是//a α的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件【答案】D【解析】当b α⊂时,若//a b 时,a 与α的关系可能是//a α,也可能是a α⊂,即//a α不一定成立,故////a b a α⇒为假命题;若//a α时,a 与b 的关系可能是//a b ,也可能是a 与b 异面,即//a b 不一定成立,故////a a b α⇒也为假命题;故//a b 是//a α的既不充分又不必要条件故选:D6.(2020·全国高考真题(理))设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α; 若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题; 对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题, 14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题. 故答案为:①③④.。

专题02 常用逻辑用语--《2023年高考数学命题热点聚焦与扩展》【原卷版】

专题02  常用逻辑用语--《2023年高考数学命题热点聚焦与扩展》【原卷版】

【热点聚焦】常用逻辑用语主要从三个方面考查,分别为充分必要条件的判断、充要条件的探求、由充分条件和必要条件探求参数的取值范围以及全称量词与存在量词.由于充要条件知识载体丰富,因此题目往往具有一定综合性.【重点知识回眸】一、充要条件1.充分条件、必要条件与充要条件的概念p⇒q p是q的充分条件,q是p的必要条件p⇒q,且q p p是q的充分不必要条件p q,且q⇒p p是q的必要不充分条件p⇔q p是q的充要条件p q,且q p p是q的既不充分也不必要条件提醒:A是B的充分不必要条件是指:A⇒B且B A,A的充分不必要条件是B是指:B⇒A且A B,弄清它们区别的关键是分清谁是条件,谁是结论.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于q是p的充分不必要条件.其他情况依次类推.3.充分、必要条件与集合的子集之间的关系设A={x|p(x)},B={x|q(x)}.(1)若A⊆B,则p是q的充分条件,q是p的必要条件.(2)若A B,则p是q的充分不必要条件,q是p的必要不充分条件.(3)若A=B,则p是q的充要条件.二、全称量词和存在量词1.全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.2.存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含有一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)∃x0∈M,p(x0)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0)∀x∈M,p(x)提醒:含有一个量词的命题的否定的规律是“改量词,否结论”. 三、简单的逻辑联结词【新教材地区不含此内容!】 1.命题中的或、且、非叫做逻辑联结词. 2.命题p 且q 、p 或q 、非p 的真假判断pqp 且q p 或q 非p真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假 假 假假真3.提醒:“命题的否定”与“(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.4.含有逻辑联结词的命题真假的判断规律(1)p ∨q :“有真则真,全假才假”,即p ,q 中只要有一个真命题,则p ∨q 为真命题,只有p ,q 都是假命题时,p ∨q 才是假命题.(2)p ∧q :“有假则假,全真才真”,即p ,q 中只要有一个假命题,则p ∧q 为假命题,只有p ,q 都是真命题时,p ∧q 才是真命题. (3) p : p 与p 的真假相反.【典型考题解析】热点一 充分、必要条件的判定【典例1】(2022·天津·高考真题) “x 为整数”是“21x +为整数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不允分也不必要条件【典例2】(2022·浙江·高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【典例3】(2019·天津·高考真题(文))设x ∈R ,则“05x <<”是“11x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【典例4】(2018·北京·高考真题(理))设向量,a b 均为单位向量,则“|3||3|a b a b -=+”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 【规律方法】充要条件的三种判断方法:(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据由p ,q 成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题. 热点二 充分条件、必要条件的探求与应用【典例5】(2023·全国·高三专题练习)“不等式20x x m -+>在R 上恒成立”的充要条件是( ) A .14m >B .14m <C .1m <D . 1m【典例6】(2017·上海·高考真题)已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A .0a ≥B .0b ≤C .0cD .20a b c -+=【典例7】【多选题】(2023·全国·高三专题练习)“关于x 的不等式220x ax a -+> 对R x ∀∈恒成立”的一个必要不充分条件是( ) A .01a << B .01a ≤≤C .103a <<D .0a ≥【总结提升】充分、必要条件的探求方法(与范围有关)先求使结论成立的充要条件,然后根据“以小推大”的方法确定符合题意的条件. 热点三 利用充分、必要条件求参数的取值范围【典例8】(2023·全国·高三专题练习)若“2340x x -->”是“223100x ax a -->”的必要不充分条件,则实数a 的取值范围是_________. 【总结提升】利用充要条件求参数的两个关注点(1)巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍. 热点四 全称命题、特称命题的否定与真假判断【典例9】(2020·山东·高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x >D .x R ∀∈,20x ≥【典例10】(2016·浙江·高考真题(理))命题“*,x R n N ∀∈∃∈,使得2n x ≥”的否定形式是 A .*,x R n N ∀∈∃∈,使得2n x < B .*,x R n N ∀∈∀∈,使得2n x < C .*,x R n N ∃∈∃∈,使得2n x <D .*,x R n N ∃∈∀∈,使得2n x <【典例11】(2022·全国·高三专题练习)已知命题p :0x R ∃∈,01x =-或02x =,则( ) A .p ⌝:x R ∀∈,1x ≠-或2x ≠ B .p ⌝:x R ∀∈,1x ≠-且2x ≠ C .p ⌝:x R ∀∈,1x =-且2x =D .p ⌝:0x R ∃∉,01x =-或02x =【典例12】(2021·全国·高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【典例13】(2023·全国·高三专题练习)已知命题p :[]21,2,1x x a ∀∈+≥,命题q :[]1,1x ∃∈-,使得210x a +->成立,若p 是真命题,q 是假命题,则实数a 的取值范围为 _____. 【总结提升】1.全称命题与特称命题的否定(1)改量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.(2)否结论:对原命题的结论进行否定. 2.全称命题与特称命题真假的判断方法命题名称 真假 判断方法一 判断方法二 全称命题 真 所有对象使命题真 否定为假 假 存在一个对象使命题假 否定为真 特称命题真存在一个对象使命题真否定为假3.根据全(特)称命题的真假求参数的思路与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题.解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围.【精选精练】一、单选题1.(2020·山东·高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2023·全国·高三专题练习)已知命题p :∀x >0,总有(x +1)ln x >1,则¬p 为( ) A .∃x 0≤0,使得(x 0+1)ln x 0≤1 B .∃x 0>0,使得(x 0+1)ln x 0≤1 C .∃x 0>0,总有(x 0+1)ln x 0≤1 D .∃x 0≤0,总有(x 0+1)ln x 0≤13.(2023·全国·高三专题练习)已知()sin f x x x =-,命题P : 0,2x π⎛⎫∀∈ ⎪⎝⎭,()0f x <,则( )A .P 是假命题,()0,02P x f x π⎛⎫∀∈≥ ⎪⎝⎭¬:,B .P 是假命题,()000,02P x f x π⎛⎫∃∈≥ ⎪⎝⎭¬:,C .P 是真命题,()0,02P x f x π⎛⎫∀∈ ⎪⎝⎭¬:,>D .P 是真命题,()000,02P x f x π⎛⎫∃∈≥ ⎪⎝⎭¬:,4.(2021·天津·高考真题)已知a ∈R ,则“6a >”是“236a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.(2021·北京·高考真题)已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件6.(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件7.(2021·全国·高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022·北京·高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.(2020·浙江·高考真题)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.(2017·山东·高考真题(文))已知命题p :x R ∃∈,210x x -+≥;命题q :若22a b <,则.a b <下列命题为真命题的是( ) A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝11.(2021·陕西·西安中学高三期中)已知命题“R x ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是( ) A .(,1)-∞- B .(1,3)- C .(3,)-+∞D .(3,1)-12.(2023·全国·高三专题练习)“2log (1)0x +<”成立的一个必要而不充分条件是( ) A .112x -<<-B .0x >C .10x -<<D .0x <二、多选题13.(2023·全国·高三专题练习)若“2340x x +-<”是“222()330x k x k k -+++≥”的充分不必要条件,则实数k 可以是( ) A .8- B .5- C .1 D .4三、填空题14.(2018·北京·高考真题(理))能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.15.(2023·全国·高三专题练习)若“对任意实数02,π⎡⎤∈⎢⎥⎣⎦x ,sin ≤x m ”是真命题,则实数m 的最小值为__.16.(2023·全国·高三专题练习)若命题“∃x ∈R ,使得x 2﹣(a +1)x +4≤0”为假命题,则实数a 的取值范围为__.17.(2020·全国·高考真题(理))设有下列四个命题: p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝ 四、解答题18.(2023·全国·高三专题练习)已知不等式102x x+≥-的解集为条件p ,关于x 的不等式222310x mx m m +---<(23m >-)的解集为条件q . (1)若p 是q 的充分不必要条件,求实数m 的取值范围; (2)若p 的充分不必要条件是q ,求实数m 的取值范围.。

高中数学高考总复习充分必要条件习题及详解

高中数学高考总复习充分必要条件习题及详解

高中数学高考总复习充分必要条件习题及详解一、选择题1.(文)已知a、b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案] D[解析]a2>b2不能推出a>b,例:(-2)2>12,但-2<1;a>b不能推出a2>b2,例:1>-2,但12<(-2)2,故a2>b2是a>b的既不充分也不必要条件.(理)“|x-1|<2成立”是“x(x-3)<0成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[答案] B[解析]由|x-1|<2得-2<x-1<2,∴-1<x<3;由x(x-3)<0得0<x<3.因此“|x-1|<2成立”是“x(x-3)<0成立”的必要不充分条件.2.(2010·福建文)若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件[答案] A[解析]当x=4时,|a|=42+32=5当|a|=x2+9=5时,解得x=±4.所以“x=4”是“|a|=5”的充分而不必要条件.3.(文)已知数列{a n},“对任意的n∈N*,点P n(n,a n)都在直线y=3x+2上”是“{a n}为等差数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析] 点P n (n ,a n )在直线y =3x +2上,即有a n =3n +2,则能推出{a n }是等差数列;但反过来,{a n }是等差数列,a n =3n +2未必成立,所以是充分不必要条件,故选A.(理)(2010·南充市)等比数列{a n }中,“a 1<a 3”是“a 5<a 7”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分与不必要条件[答案] C[解析] 在等比数列中,q ≠0,∴q 4>0,∴a 1<a 3⇔a 1q 4<a 3q 4⇔a 5<a 7.4.(09·陕西)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 由m >n >0可以得方程mx 2+ny 2=1表示焦点在y 轴上的椭圆,反之亦成立.故选C.5.(文)设集合A ={x |x x -1<0},B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] ∵A ={x |0<x <1},∴A B ,故“m ∈A ”是“m ∈B ”的充分不必要条件,选A. (理)(2010·杭州学军中学)已知m ,n ∈R ,则“m ≠0或n ≠0”是“mn ≠0”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵mn ≠0⇔m ≠0且n ≠0,故选A.6.(文)(2010·北京东城区)“x =π4”是“函数y =sin2x 取得最大值”的( ) A .充分不必要条件高考总复习含详解答案B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] x =π4时,y =sin2x 取最大值,但y =sin2x 取最大值时,2x =2k π+π2,k ∈Z ,不一定有x =π4. (理)“θ=2π3”是“tan θ=2cos ⎝⎛⎭⎫π2+θ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 解法1:∵θ=2π3为方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3是tan θ=2cos ⎝⎛⎭⎫π2+θ成立的充分条件; 又∵θ=8π3也是方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3不是tan θ=2cos ⎝⎛⎭⎫π2+θ的必要条件,故选A. 解法2:∵tan θ=2cos ⎝⎛⎭⎫π2+θ,∴sin θ=0或cos θ=-12, ∴方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解集为A =⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π或θ=2k π±23π,k ∈Z , 显然⎩⎨⎧⎭⎬⎫2π3A ,故选A. 7.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[答案] B[解析] 两直线垂直的充要条件是(m +2)(m -2)+3m (m +2)=0即m =12或m =-2,∴m =12是两直线相互垂直的充分而不必要条件. 8.(2010·浙江宁波统考)设m ,n 是平面α内的两条不同直线,l 1,l 2是平面β内两条相交直线,则α⊥β的一个充分不必要条件是( )A .l 1⊥m ,l 1⊥nB .m ⊥l 1,m ⊥l 2C .m ⊥l 1,n ⊥l 2D .m ∥n ,l 1⊥n[答案] B[解析] 当m ⊥l 1,m ⊥l 2时,∵l 1与l 2是β内两条相交直线,∴m ⊥β,∵m ⊂α,∴α⊥β,但α⊥β时,未必有m ⊥l 1,m ⊥l 2.9.(2010·黑龙江哈三中)命题甲:⎝⎛⎭⎫12x,21-x,2x 2成等比数列;命题乙:lg x ,lg(x +1),lg(x+3)成等差数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] B[解析] 由条件知甲:(21-x )2=⎝⎛⎭⎫12x ·2x 2, ∴2(1-x )=-x +x 2,解得x =1或-2;命题乙:2lg(x +1)=lg x +lg(x +3), ∴⎩⎪⎨⎪⎧ (x +1)2=x (x +3)x +1>0x >0x +3>0,∴x =1,∴甲是乙的必要不充分条件.10.(2010·辽宁文,4)已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)高考总复习含详解答案C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)[答案] C[解析] ∵f ′(x )=2ax +b ,又2ax 0+b =0,∴有f ′(x 0)=0故f (x )在点x 0处切线斜率为0∵a >0 f (x )=ax 2+bx +c∴f (x 0)为f (x )的图象顶点的函数值∴f (x )≥f (x 0)恒成立故C 选项为假命题,选C.[点评] 可以用作差法比较.二、填空题11.给出以下四个命题:①若p ∨q 为真命题,则p ∧q 为真命题.②命题“若A ∩B =A ,则A ∪B =B ”的逆命题.③设a 、b 、c 分别是△ABC 三个内角A 、B 、C 所对的边,若a =1,b =3,则A =30°是B =60°的必要不充分条件.④命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题,其中真命题的序号是________.[答案] ②③④[解析] ①∵p ∨q 为真,∴p 真或q 真,故p ∧q 不一定为真命题,故①假.②逆命题:若A ∪B =B ,则A ∩B =A ,∵A ∪B =B ,A ⊆B ,∴A ∩B =A ,故②真.③由条件得,b a =sin B sin A =3,当B =60°时,有sin A =12,注意b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°,或B =120°.故③真; ④否命题:若f (x )不是奇函数,则f (-x )不是奇函数,这是一个真命题,假若f (-x )为奇函数,则f [-(-x )]=-f (-x ),即f (-x )=-f (x ),∴f (x )为奇函数,与条件矛盾.12.(文)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域.有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集;其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ①④[解析] 结合题设的定义,逐一判断,可知①④正确.(理)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ③④[解析] ①整数a =2,b =4,a b不是整数; ②如将有理数集Q ,添上元素2,得到数集M ,则取a =3,b =2,a +b ∉M ;③由数域P 的定义知,若a ∈P ,b ∈P (P 中至少含有两个元素),则有a +b ∈P ,从而a +2b ,a +3b ,…,a +nb ∈P ,∴P 中必含有无穷多个元素,∴③对.④设x 是一个非完全平方正整数(x >1),a ,b ∈Q ,则由数域定义知,F ={a +b x |a 、b ∈Q }必是数域,这样的数域F 有无穷多个.13.(2010·辽宁葫芦岛四校联考)设有两个命题:p :不等式⎝⎛⎭⎫13x +4>m >2x -x 2对一切实数x 恒成立;q :f (x )=-(7-2m )x 是R 上的减函数,如果p 且q 为真命题,则实数m 的取值范围是________.[答案] (1,3)[解析] ∵⎝⎛⎭⎫13x =4>4,2x -x 2=-(x -1)2+1≤1, ∴要使⎝⎛⎭⎫13x +4>m >2x -x 2对一切x ∈R 都成立,应有1<m ≤4;由f (x )=-(7-2m )x 在R上是单调减函数得,7-2m >1,∴m <3,∵p 且q 为真命题,∴p 真且q 真,∴1<m <3.高考总复习含详解答案14.(2010·福建理)已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2-x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k +1).其中所有正确结论的序号是________.[答案] ①②④[解析] 对于①,f (2)=0,又f (2)=2f (1)=0,∴f (1)=0,同理f (4)=2f (2)=0,f (8)=0……f (1)=2f (12)=0, ∴f (12)=0,f (14)=0…… 归纳可得,正确.对于②④当1<x ≤2时,f (2x )=4-2x ,而2<2x ≤4,∴当2<x ≤4时,f (x )=4-x同理,当4<x ≤8时,f (x )=8-x ……∴当2m -1<x ≤2m 时,f (x )=2m -x ,故②正确,④也正确.而③中,若f (2n +1)=9,∵2n <2n +1≤2n +1∴f (x )=2n +1-x ,∴f (2n +1)=2n +1-2n -1=9,∴2n =10,∴n ∉Z ,故错误.三、解答题15.已知c >0.设命题P :函数y =log c x 为减函数.命题Q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c恒成立.如果P 或Q 为真命题,P 且Q 为假命题,求c 的取值范围.[解析] 由y =log c x 为减函数得0<c <1当x ∈⎣⎡⎦⎤12,2时,因为f ′(x )=1-1x 2,故函数f (x )在⎣⎡⎦⎤12,1上为减函数,在(1,2]上为增函数.∴f (x )=x +1x在x ∈⎣⎡⎦⎤12,2上的最小值为f (1)=2 当x ∈⎣⎡⎦⎤12,2时,由函数f (x )=x +1x >1c 恒成立.得2>1c ,解得c >12如果P 真,且Q 假,则0<c ≤12如果P 假,且Q 真,则c ≥1所以c 的取值范围为(0,12]∪[1,+∞). 16.给出下列命题:(1)p :x -2=0,q :(x -2)(x -3)=0.(2)p :m <-2;q :方程x 2-x -m =0无实根.(3)已知四边形M ,p :M 是矩形;q :M 的对角线相等.试分别指出p 是q 的什么条件.[解析] (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0⇒/ x -2=0.∴p 是q 的充分不必要条件.(2)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根⇒/ m <-2.∴p 是q 的充分不必要条件.(3)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形.∴q ⇒/ p .∴p 是q 的充分不必要条件.17.(文)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且q ≠1),求数列{a n }成等比数列的充要条件.[解析] 当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=(p -1)p n -1,由于p ≠0,q ≠1,高考总复习含详解答案∴当n ≥2时,{a n }为公比为p 的等比数列.要使{a n }是等比数列(当n ∈N *时),则a 2a 1=p . 又a 2=(p -1)p ,∴(p -1)p p +q=p ,∴p 2-p =p 2+pq ,∴q =-1,即{a n }是等比数列的必要条件是p ≠0,且p ≠1,且q =-1.再证充分性:当p ≠0,且p ≠1,且q =-1时,S n =p n -1.当n =1时,S 1=a 1=p -1≠0;当n ≥2时,a n =S n -S n -1=(p -1)p n -1.显然当n =1时也满足上式,∴a n =(p -1)p n -1,n ∈N *,∴a n a n -1=p (n ≥2),∴{a n }是等比数列. 综上可知,数列{a n }成等比数列的充要条件是p ≠0,p ≠1,且q =-1.(理)(2010·哈三中模拟)已知函数f (x )=12(x -1)2+ln x -ax +a . (1)若x =2为函数极值点,求a 的值;(2)若x ∈(1,3)时,f (x )>0恒成立,求a 的取值范围.[解析] (1)f ′(x )=(x -1)+1x -a ,由f ′(2)=0得,a =32; (2)当a ≤1时,∵x ∈(1,3),∴f ′(x )=⎝⎛⎭⎫x +1x -(1+a )≥2-2=0成立,所以函数y =f (x )在(1,3)上为增函数,对任意的x ∈(1,3),f (x )>f (1)=0,所以a ≤1时命题成立;当a >1时,令f ′(x )=(x -1)+1x -a =0得,x =(a +1)±(a +1)2-42,则函数在 (0,(a +1)-(a +1)2-42)上为增函数, 在((a +1)-(a +1)2-42,(a +1)+(a +1)2-42)上为减函数,在((a +1)+(a +1)2-42,+∞)上为增函数, 当a ≤73时,1≤(a +1)+(a +1)2-42≤3, 则f (1)>f ((a +1)+(a +1)2-42),不合题意,舍去. 当a >73时,函数在(1,3)上是减函数,f (x )<f (3)<0,不合题意,舍去. 综上,a ≤1.。

新人教高考数学专题复习《充要条件 》测试题

新人教高考数学专题复习《充要条件 》测试题

第五课时:§1.5充要条件教学目的:①知识目标:理解并掌握充分条件、必要条件、充要条件的意义;能够判断给定的两个命题的充要关系。

②能力目标:能够利用本节知识解决和代数、几何、三角等高中数学有关的问题;③情感目标:进一步培养逻辑思维能力,理解数学的严谨性。

教学重点、难点及其突破:高考对本节内容的考查,主要是以代数、几何、三角等高中数学的各个方面内容为载体,判断两个命题间的充要关系,这也就是节课的重点,也是难点。

学习中要注意各知识点的联系。

教学方法:讲授法。

高考要求及学法指导:基本的逻辑知识是人们认识和研究问题不可缺少的工具.高考中主要考查命题与命题之间的逻辑关系以及判断是非的能力和推理能力,这里尤其要重视反证法的应用。

教学过程:一、知识点复习:(一)判断命题充要条件有如下三种常用方法:1、定义法;2、等价法:即利用与非B非A;B A与非A非B;A B与非B非A的等价关系,对于条件或结论是不等关系(否定式)的命题,一般运用等价法:3、利用集合间的包含关系判断命题之间的充要关系,设满足条件p的元素构成集合A,满足条件q 的元素构成集合B:(1)若A B,则p是q成立的充分条件.(2)若A=B,则p是q成立的充要条件.(3)若A B,则p是q成立的充分不必要条件.(4)若A B,且B A,则p是q成立的既不充分也不必要条件.(二)四种命题1、一般地,用p和q分别表示原命题的条件和结论,用和分别表示p和q的否定,于是四种命题的形式就是:原命题:若p则q(p q);逆命题:若q则p(q);否命题:若则 ()逆否命题:若则 ()2、四种命题的关系3、一个命题的真假与其它三个命题的真假有如下四条关系:(Ⅰ)原命题为真,它的逆命题不一定为真;(Ⅱ)原命题为真,它的否命题不一定为真;(Ⅲ)原命题为真,它的逆否命题一定为真;(Ⅳ)逆命题为真,否命题一定为真;(三)充要条件1、如果p成立则q成立,即,则p是q的充分条件,q是p的必要条件.如果p成立则q成立,且q成立则p成立,即,则称p是q的充分必要条件.2、充要关系的判断我们常用推出符号“”来判断两个命题之间的充要关系。

充要条件-2020年新课标高考备考数学题型全解密(原卷版)

充要条件-2020年新课标高考备考数学题型全解密(原卷版)

★课标卷高考(采分点)(6)★:充要条件的考查:①『解题策略』:“若p 则q ”为真,记作“p q ⇒”; “若p 则q ”为假,记作“p q ⇒/”。

充要条件及其判断方法:(充要条件贯穿于整个高中数学,且可以与任何内容综合去考。

)方法一:直接法1.A B ⇒ A 是B 的充分条件,同时B 是A 的必要条件。

2.,A B B A ⇒⇒/ A 是B 的充分而非必要条件,同时B 是A 的必要而非充分条件。

3.,A B B A ⇒⇒ 即A B ⇔ A 、B 互为充要条件。

4.A ,B B A ⇒⇒// A 是B 的既非充分又非必要条件。

方法二:集合法(是高考考题采用最多的一种方法,也是在考试中优先考虑的一种方法)把A 与B 转化为两个集合:前面的1.等价于A B ⊆; 2.等价于,A B B A ⊆⊄;3.等价于,,A B B A ⊆⊆即A B =;4.等价于,A B B A ⊄⊄。

方法三:利用⇒的传递性:A ,,B B C ⇒⇒则A C ⇒。

②【考题例析】:(2008年新课标全国卷8)平面向量,共线的充要条件是 ( ) A.,方向相同 B.,两向量中至少有一个为零向量C.R ∈∃λ,λ=D.存在不全为零的实数1λ,2λ,21=+λλ【解析】:A 、B 选项是充分不必要条件,C 选项中,当=,≠时,不存在λ,选D.③「☆历年新课标全国卷同类试题汇总☆」1.(2008年新课标全国卷II)函数)(x f 在0x x =处导数存在,若00':,0)(:x x q x f p ==是)(x f 的极值点,则( )A.p 是q 的充分必要条件B.p 是q 的充分条件,但不是q 的必要条件C.p 是q 的必要条件,但不是q 的充分条件D.p 既不是q 的充分条件,也不是q 的必要条件 ④〖新课标全国卷与其它省市同类高考试题荟萃〗1.(2010年辽宁卷)已知0>a ,则0x 满足关于x 的方程b ax =的充要条件是 ( ) A.220011,22x R ax bx ax bx ∃∈-≥- B.220011,22x R ax bx ax bx ∃∈-≤-C.220011,22x R ax bx ax bx ∀∈-≥-D.220011,22x R ax bx ax bx ∀∈-≤- 2.(高考题)对任意实数,,a b c ,给出下列命题:①“a b =”是“ac bc =”的充要条件;②“5a +是无理数”是“a 是无理数”的充要条件;③“a b >”是“22a b >”的充分条件;④“5a <”是“3a <”的必要条件.其中真命题的个数是 ( )A.1B.2C.3D.43.(高考题)已知:0,:0,p a q ab ≠≠则p 是q 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.(高考题)111222,,,,,a b c a b c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为 M 和N ,那么“111222a b c a b c ==”是“M N =”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件5.(高考题)一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分而不必要条件是 ( )A.0a <B.0a >C.1a <-D.1a >6.(高考题)“14m <”是“一元二次方程20x x m ++=”有实数解的 ( ) A.充分非必要条件 B.充分必要条件C.必要非充分条件D.非充分必要条件7.(高考题)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件8.(高考题)设R x ∈,则“12x >”是“0122>-+x x ”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.(高考题)已知p 是r 的充分而不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①s 是q 的充要条件; ②p 是q 的充分条件而不是必要条件; ③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件.则正确命题的序号是( )A.①④⑤B.①②④C.②③⑤D.②④⑤10.(高考题)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的 ( )A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件11.(高考题)已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.(高考题)设点),(y x P ,则“2=x 且1-=y ”是“点P 在直线01:=-+y x l 上”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件13.(高考题)设R b a ∈,,则“()02<-a b a ”是“b a <”的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.(高考题)设b a ,是实数,则“b a >”是“22b a >”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件15.(高考题)设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件16.(高考题)在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,则“b a ≤”是“B A sin sin ≤”的( ) A.充分必要条件 B.充分非必要条件C.必要非充分条件D.非充分非必要条件17.(高考题)“0<x ”是“0)1ln(<+x ”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件18.(高考题)直线1:+=kx y l 与圆1:22=+y x O 相交于B A ,两点,则“1=k ”是“OAB ∆的面积为21”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件19.(高考题)设R b a ∈,,则“b a >”是“b b a a >”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件20.(高考题)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 21.(高考题)设四边形ABCD 的两条对角线为BD AC ,,则“四边形ABCD 为菱形”是“BD AC ⊥”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件22.(高考题)设b a ,都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件23.(高考题)设B A ,是两个集合,则“A B A =”是“A B ⊆”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件24.(高考题)设x R ∈,则“21x -<”是“220x x +-> ”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件25.(2016年山东卷)已知直线b a ,分别在两个不同的平面βα,内.则“直线a 和直线b 相交”是“平面α和平面β相交”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件26.(2016年四川卷)设p :实数y x ,满足()()21122≤-+-y x ,q :实数y x ,满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件27.(2016年天津卷)设{}n a 是首项为正数的等比数列,公比为q ,则“0<q ”是“对任意的正整数n ,0212<+-n n a a ”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件28.(2016年天津卷)设R y x ∈>,0,则“y x >”是“y x >”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件29.(2017年天津卷)设R ∈θ,则“ππ||1212θ-<”是“1sin 2θ<”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件30.(2018年天津卷)设R ∈θ,则“11||22x -<”是“31x <”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件31.(2018年天津卷)设R ∈θ,则“38x >”是“||2x >” 的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 ⑤《回归教材﹑经典习题(高考母题)》〖母题1〗从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分又不必要条件”中,选出适 当的一种填空:(1)“0a =”是“函数2()()f x x ax x R =+∈”为偶函数的 .(2)“sin sin αβ>”是“αβ>”的 .(3)“M N >”是“22log log M N >”的 .(4)“x M N ∈”是“x M N ∈”的 .〖母题2〗“1a =”是“函数22cos sin y ax ax =-的最小正周期为π”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件〖母题3〗“2a b c +>”的一个充分条件是( ) A.a c >或b c > B.a c >且b c <C.a c >且b c >D.a c >或b c <。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

08高考数学充要条件的判定测试充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p 和结论q 之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场(★★★★★)已知关于x 的实系数二次方程x 2+ax +b =0有两个实数根α、β,证明:|α|<2且|β|<2是2|a |<4+b 且|b |<4的充要条件.●案例探究[例1]已知p :|1-31-x |≤2,q :x 2-2x +1-m 2≤0(m >0),若⌐p 是⌐q 的必要而不充分条件,求实数m 的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若⌐p 是⌐q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p :|1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10 q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 x∵p 是q 的充分不必要条件,∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集. 又∵m >0∴不等式x 的解集为1-m ≤x ≤1+m ∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, ∴实数m 的取值范围是[9,+∞).[例2]已知数列{a n }的前n 项S n =p n +q (p ≠0,p ≠1),求数列{a n }是等比数列的充要条件. 命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性. 知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n 项和与通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧与方法:由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n关系式去寻找a n 与a n +1的比值,但同时要注意充分性的证明.解:a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p 若{a n }为等比数列,则nn a a a a 112+==p ∴qp p p +-)1(=p , ∵p ≠0,∴p -1=p +q ,∴q =-1这是{a n }为等比数列的必要条件.下面证明q =-1是{a n }为等比数列的充分条件.当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1 (p ≠0,p ≠1) 211)1()1(-----=n n n n p p p p a a =p 为常数 ∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1.●锦囊妙计本难点所涉及的问题及解决方法主要有:(1)要理解“充分条件”“必要条件”的概念:当“若p 则q ”形式的命题为真时,就记作p ⇒q ,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 、B 互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).●歼灭难点训练一、选择题1.(★★★★)函数f (x )=x |x +a |+b 是奇函数的充要条件是( )A.ab =0B.a +b =0C.a =bD.a 2+b 2=02.(★★★★)“a =1”是函数y =cos 2ax -sin 2ax 的最小正周期为“π”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也不是必要条件二、填空题3.(★★★★)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的_________.4.(★★★★)命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.三、解答题5.(★★★★★)设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n }、{b n }满足:b n =nna a a n +++++++ΛΛ321221,求证:数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.(★★★★★)已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.8.(★★★★★)p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b |=|α·β|=|α|·|β|<2×2=4.设f (x )=x 2+ax +b ,则f (x )的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f (±2)>0.即有⇒⎩⎨⎧>+->++024024b a b a 4+b >2a >-(4+b ) 又|b |<4⇒4+b >0⇒2|a |<4+b(2)必要性:由2|a |<4+b ⇒f (±2)>0且f (x )的图象是开口向上的抛物线.∴方程f (x )=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f (x )=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.歼灭难点训练一、1.解析:若a 2+b 2=0,即a =b =0,此时f (-x )=(-x )|x +0|+0=-x ·|x |=-(x |x +0|+b ) =-(x |x +a |+b )=-f (x ).∴a 2+b 2=0是f (x )为奇函数的充分条件,又若f (x )=x |x +a |+b 是奇函数,即f (-x )=(-x )|(-x )+a |+b =-f (x ),则必有a =b =0,即a 2+b 2=0.∴a 2+b 2=0是f (x )为奇函数的必要条件.答案:D2.解析:若a =1,则y =cos 2x -sin 2x =cos2x ,此时y 的最小正周期为π.故a =1是充分条件,反过来,由y =cos 2ax -sin 2ax =cos2ax .故函数y 的最小正周期为π,则a =±1,故a =1不是必要条件.答案:A二、3.解析:当a =3时,直线l 1:3x +2y +9=0;直线l 2:3x +2y +4=0.∵l 1与l 2的A 1∶A 2=B 1∶B 2=1∶1,而C 1∶C 2=9∶4≠1,即C 1≠C 2,∴a =3⇔l 1∥l 2.答案:充要条件4.解析:若P (x 0,y 0)是F (x ,y )=0和G (x ,y )=0的交点,则F (x 0,y 0)+λG (x 0,y 0)=0,即F (x ,y )+λG (x ,y )=0,过P (x 0,y 0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a =α+β,b =αβ.判定的条件是p :⎩⎨⎧>>12b a 结论是q :⎩⎨⎧>>11βα(注意p 中a 、b 满足的前提是Δ=a 2-4b ≥0)(1)由⎩⎨⎧>>11βα,得a =α+β>2,b =αβ>1,∴q ⇒p (2)为证明p q ,可以举出反例:取α=4,β=21,它满足a =α+β=4+21>2,b =αβ=4×21=2>1,但q 不成立. 综上讨论可知a >2,b >1是α>1,β>1的必要但不充分条件.6.证明:①必要性:设{a n }成等差数列,公差为d ,∵{a n }成等差数列.d n a n n n n d n a n na a a b n n 32)1(1])1(3221[)21(32121121⋅-+=+++-++⋅+⋅++++=+++++++=∴ΛΛΛΛΛ 从而b n +1-b n =a 1+n ·32d -a 1-(n -1) 32d =32d 为常数. 故{b n }是等差数列,公差为32d . ②充分性:设{b n }是等差数列,公差为d ′,则b n =(n -1)d ′∵b n (1+2+…+n )=a 1+2a 2+…+na n ① b n -1(1+2+…+n -1)=a 1+2a 2+…+(n -1)a n② ①-②得:na n =2)1(2)1(--+n n b n n n b n -1 ∴a n =d n b d n b n d n b n b n b n n n '⋅-+='-+--'-++=--+-23)1(])2([21])1([2121211111,从而得a n +1-a n =23d ′为常数,故{a n }是等差数列. 综上所述,数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.解:①必要性:由已知得,线段AB 的方程为y =-x +3(0≤x ≤3)由于抛物线C 和线段AB 有两个不同的交点,所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y x 有两个不同的实数解. 消元得:x 2-(m +1)x +4=0(0≤x ≤3)设f (x )=x 2-(m +1)x +4,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤<⇒≥++-=≥=>⨯-+=∆3210310304)1(39)3(04)0(044)1(2m m m f f m ②充分性:当3<x ≤310时, x 1=2)1(1216)1(122+-+>-+-+m m m m >0 3216)1310(1310216)1(1222=-+++≤-+-+=m m x ∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组x 有两组不同的实数解.因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件3<m ≤310. 8.解:若关于x 的方程x 2+mx +n =0有2个小于1的正根,设为x 1,x 2.则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1, 根据韦达定理:⎩⎨⎧<<<-<⎩⎨⎧=-=+10202121n m n x x m x x 得 有-2<m <0;0<n <1即有q ⇒p .反之,取m =-21491,02131,21,312⨯-=∆=+-=x x n <0 方程x 2+mx +n =0无实根,所以p q综上所述,p 是q 的必要不充分条件.。

相关文档
最新文档