次函数待定系数法求函数解析式
用待定系数法求二次函数解析式的几种方法
用待定系数法求二次函数解析式的几种方法二次函数解析式是高中数学中最基本的概念,其表示的是简单的直线、抛物线或是曲线的方程。
它的复杂性使得学生更易于弄清楚,并且在数学知识的建立上也有较大的作用。
本文将介绍用待定系数法求二次函数解析式的几种方法。
首先,用待定系数法求二次函数解析式也称为求因式分解法,是一种求解二次函数解析式的有效方法。
它所给出的解析式可以使用此解析式求解函数的最大值、最小值以及极值点,有助于研究函数的拓展和深入分析。
求解二次函数解析式的待定系数法通常包括以下几个步骤:首先,将二次函数解析式以下式形式表达:ax + bx + c = 0;其次,求解ax + bx + c的系数a、b、c的解,即a、b、c的值,这样就可以得到完整的二次函数解析式;最后,根据完整的二次函数解析式,可以进行函数曲线的画法,以便对函数特征进行更深入的分析。
这种求解二次函数解析式的待定系数法还可以用来求二次不等式的解。
这些不等式的解也可以用上述的方法求出,只需将其表示成ax + bx + c 不等式的形式,并根据所给的条件来解系数a、b、c,从而得到最终的不等式解。
此外,学生也可以使用特殊的因式分解法,通过将二次函数解析式表示成ax+bx+c=f(x)形式,通过求出形式系数a、b、c来求解因式分解法。
这种方法可以用来求解多项式方程,从而得到多项式函数的解析式。
在求解二次函数时,还有一种简便而又实用的方法,即通过图表的方法,根据函数图象的特点求出函数的解析式,从而更加简单、快捷地求解二次函数。
通过以上介绍,用待定系数法求二次函数解析式的几种方法已经清楚地展示出来。
由此可见,求解二次函数解析式使用待定系数法可以得到准确、完整的解析式,从而有助于学生更好地理解函数的拓展及应用,进而深入认识数学知识,受益匪浅。
用待定系数法求一次函数的解析式
用待定系数法求一次函数的解析式
用待定系数法求一次函数的解析式
一次函数的解析式可以用待定系数法来求。
待定系数法是指,在未知系数的函数中假定各个未知系数都为一个常数,然后用它们来求解该函数,最后得出最终的解析式。
例如,一次函数为 y=2ax+b,那么可以用待定系数法求解解析式: (1) 先将未知系数 a 和 b 分别假定为常数 K1 和 K2。
即y=K1x + K2
(2) 用实验数据求出 K1 和 K2 的值。
例如,实验数据如下表:
x t1 t2 t3
y t3 t7 t11
由上表可知,当 x=1 时, y=K1*1 + K2=3;
当 x=2 时,y=K1*2 + K2=7;
当 x=3 时,y=K1*3 + K2=11.
设K1=2,代入上式可得K2=1,即K1=2,K2=1。
即K1+K2=2+1=3
(3) 将 K1 和 K2 带入原函数中,得出最终的解析式。
- 1 -。
待定系数法求一次函数解析式题目和解析过程
待定系数法求一次函数解析式题目和解析过程摘要:1.待定系数法简介2.一次函数的概念和形式3.如何使用待定系数法求一次函数解析式4.解析过程示例5.总结正文:1.待定系数法简介待定系数法是一种数学方法,通过给定一些未知数的系数,然后根据已知条件建立方程组,求解这些系数,从而得到未知数的值。
这种方法在求解函数解析式时被广泛应用。
2.一次函数的概念和形式一次函数是指形如y=ax+b 的函数,其中a 和b 是常数,x 是自变量,y 是因变量。
在这个函数中,a 被称为斜率,它表示函数图像的倾斜程度;b 被称为截距,它表示函数图像与y 轴的交点。
3.如何使用待定系数法求一次函数解析式求解一次函数解析式的一般步骤如下:(1)确定函数的形式。
根据已知条件,先假设函数的形式为y=ax+b。
(2)列出方程组。
根据题目所给的条件,列出关于a 和b 的方程组。
(3)解方程组。
通过求解方程组,得到a 和b 的值。
(4)写出解析式。
将求得的a 和b 代入原假设的函数形式中,得到待求函数的解析式。
4.解析过程示例例如,如果已知函数经过点(1,2) 和(2,4),求该函数的解析式。
(1)假设函数形式为y=ax+b。
(2)列出方程组:a +b = 22a + b = 4(3)解方程组:将第一个方程变形为b = 2 - a,代入第二个方程得到2a + (2 - a) = 4,解得a = 2,再代入第一个方程得到b = 0。
(4)写出解析式:y = 2x。
5.总结待定系数法是求解一次函数解析式的有效方法,通过给定系数,建立方程组,求解系数,从而得到函数解析式。
人教版初三数学:待定系数法求二次函数的解析式—知识讲解(基础)
待定系数法求二次函数的解析式—知识讲解(基础)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式. 【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax 2+bx+c(a ≠0),由题意得:⎪⎩⎪⎨⎧-=++-=++-=+-53939c b a c b a c b a 解得⎪⎩⎪⎨⎧-==-=531c b a ∴所求的二次函数的解析式为y=-x 2+3x-5.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0). 举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例1】【变式】(2014秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c ,把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ; ∴抛物线的对称轴x=﹣=﹣=﹣.2.(2015•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2), 设此二次函数的解析式为y=a (x ﹣1)2﹣2, 把点(2,3)代入解析式,得: a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2. 【总结升华】本题已知顶点,可设顶点式. 举一反三:【高清课程名称:待定系数法求二次函数的解析式 高清ID 号: 356565 关联的位置名称(播放点名称):例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x 轴的另一个交点坐标为(40),.3.(2016•丹阳市校级模拟)抛物线的图象如图,则它的函数表达式是 .当x时,y >0.【思路点拨】观察可知抛物线的图象经过(1,0),(3,0),(0,3),可设交点式用待定系数法得到二次函数的解析式.y >0时,求x 的取值范围,即求抛物线落在x 轴上方时所对应的x 的值. 【答案】y=x 2﹣4x +3.x <1,或x >3 【解析】解:观察可知抛物线的图象经过(1,0),(3,0),(0,3), 由“交点式”,得抛物线解析式为y=a (x ﹣1)(x ﹣3), 将(0,3)代入, 3=a (0﹣1)(0﹣3), 解得a=1.故函数表达式为y=x 2﹣4x +3.由图可知当x <1,或x >3时,y >0.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y 轴交于点C .(1)求二次函数解析式; (2)求△ABC 的面积. 【答案与解析】(1)设抛物线解析式为(2)(4)y a x x =+-(a ≠0),将(3,5)代入得5(32)(34)a =+-,∴ 1a =-.∴ (2)(4)y x x =-+-. 即228y x x =-++.(2)由(1)知C(0,8), ∴ 1(42)8242ABC S =+⨯=△.【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直CBAO长度,即的长(结果精确到0.1mm)【答案】R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB和半径OC互相平分,∴OC⊥AB ,OM=MC=OC=OA.∴∠B=∠A=30°,∴∠AOB=120°∴S扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】【变式】如图(1),在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是().A.449-π B.849-π C.489-π D.889-πAEB F P图(1)【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:2 8028=. 3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
第22章 第8课 用待定系数法求二次函数解析式(一般式)
∵a=1>0,
∴二次函数有最小值.
-
- ××-(-)
∴当x=- =- =2时,ymin=
=
=-4.
×
×
返回目录
思维过关
5.(数形结合思想)在平面直角坐标系xOy中,抛物线y=ax2 +bx+
c(a,b,c为常数,且a≠0)经过A(-2,-4)和B(3,1)两点.
∴抛物线的解析式为y=-x2-2x+3.
返回目录
能力过关
3.(数形结合思想)已知某二次函数的图象如图所示,求这个二次函数
的解析式.
解:设二次函数的解析式为y=ax2+bx+c.
由图象可知二次函数的图象过点(0,2),(1,0),(2,0),
将三个点的坐标分别代入,得
= ,
= ,
ቐ = ++, 解得ቐ=-,
(1)求b和c的值(用含a的代数式表示);
解:把A(-2,-4)和B(3,1)代入y=ax2+bx+c,
= -,
-+=-,
得ቊ
解得ቊ
=--.
+ + = .
返回目录
(2)若该抛物线开口向下,且经过C(2m-3,n),D(7-2m,n)两点,当
k-3<x<k+3时,y随x的增大而减小,求k的取值范围.
ቐ = ++, 解得ቐ=-,
= -+.
=-.
∴抛物线的解析式为y=2x2-x-1.
返回目录
根据图表信息求二次函数解析式
已知二次函数的图象如图所示,求它的解析式.
解:由图象知二次函数过(0,3),(-1,0),(3,0)三点,设其解析式
为y=ax2+bx+c.将三个点的坐标分别代入,得
用待定系数法确定二次函数解析式
二、求二次函数的解析式 (1)关键是求出待定系数的值. (2)设解析式的形式:解(1)∵图象顶点为(1,-6),
∴设其解析式为 y=a(x-1)2-6.
∵图象经过点(2,-8),
∴-8=a(2-1)2-6.∴a=-2.
∴函数解析式为 y=-2(x-1)2-6.
例3拓展应用:抛物线 y=ax2+bx+c经过A(-2,-4),
O(0,0),B(2,0)三点 (1)求抛物线 y=ax2+bx+c的解析式。 (2)若点M是该抛物线对称轴上的一点,求AM+OM的 最小值。 y
-2
O。 B 。 x
。 M 。
A。
-4
x=1
。 A1 (4,-4)
【变式训练】
1.二次函数y x 2 bx c的图象的最低点为( - 1,3),
此函数解析式 _____________ 2.抛物线 y=-x2+bx+c 的图象如图 所示, 求此抛物线的解析式。 3.已知二次函数 y=ax2+bx+c 中的 x,y 满足下表:
当已知抛物线上三个点时,设一般式
例1 二次函数的图象经过点A(1,3) ,B(0,3) ,C(-1,1)三点 求此函数的解析式;
解:设所求函数关系式为 y=ax2+bx+c,
∵图象经过点 A(1,3), B(0,3), C(-1,1),
c=3, ∴a+b+c=3, a-b+c=1. a=-1, 解得b=1, c=3.
14待定系数法求二次函数解析式(讲+练)【7种题型】
22.1.5待定系数法求二次函数解析式 二次函数解析式常见有以下几种形式 : (1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).题型1:一般式求二次函数解析式-一个或两个参数未知1.若抛物线y =x 2+bx +c 的对称轴为y 轴,且点P (2,6)在该抛物线上,则c 的值为( ) A .﹣2B .0C .2D .4题型2:一般式求二次函数解析式-a 、b 、c 未知2.二次函数y =ax 2+bx+c (a≠0)的图象过点A (﹣1,8)、B (2,﹣1),与y 轴交于点C (0,3),求二次函数的表达式.题型3:顶点式求二次函数解析式3.已知抛物线的顶点是A(2,﹣3),且交y 轴于点B(0,5),求此抛物线的解析式.【变式3-2】已知如图,抛物线的顶点D的坐标为(1,-4),且与y轴交于点C(0,-3).(1)求该函数的关系式;(2)求该抛物线与x轴的交点A,B的坐标.题型4:交点式求二次函数解析式4.已知二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0),C(0,-3)三点,求这个二次函数的解析式.题型5:综合-待定系数法与二次函数的性质5.已知:二次函数的图象经过点A(−1,0),B(0,−3)和C(3,12).(1)求二次函数的解析式并求出图象的顶点D的坐标;(2)设点M(x1,y1),N(1,y2)在该抛物线上,若y1≤y2,直接写出x1的取值范围.题型6:综合-待定系数法求最短距离6.如图,已知抛物线y=1a(x−2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.【变式6-1】如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.题型7:综合-三角形面积7.如图,在平面直角坐标系xOy中,抛线y=ax2+bx+2过B(-2,6),C(2,2)两点。
九年级上-待定系数法求二次函数的解析式
待定系数法求二次函数的解析式知识集结知识元利用一般式求二次函数的解析式知识讲解已知三个点求二次函数的解析式,一般选择一般式,基本的作法是:(1)设出二次函数的一般式;(2)将三个点的值分别代入到解析式中,得到一个三元一次方程组;(3)解方程组得出三个字母的值,即可得到为此函数的解析式.例题精讲利用一般式求二次函数的解析式例1.'二次函数y=ax2+bx+c的变量x与变量y的部分对应值如下表:求此二次函数的解析式.'例2.'y=ax2+b与y=x+2交于A、B两点,A点横坐标为﹣1,B点横坐标为2,求二次函数解析式.'例3.'已知:抛物线y=ax2+bx+c经过A(﹣1,8)、B(3,0)、C(0,3)三点(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.'利用顶点式求二次函数的解析式知识讲解当已知条件中出现二次函数的顶点或者顶点的横、纵坐标之一等顶点相关的内容时,会考虑用顶点式来求解二次函数的解析式.例题精讲利用顶点式求二次函数的解析式例1.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3 B.y=﹣2(x+1)2+3C.y=﹣(2x+1)2+3 D.y=﹣(2x﹣1)2+3例2.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3C.y=(x﹣2)2+2 D.y=(x﹣2)2+4例3.将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=.例4.'已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.'利用两点式(也叫交点式、双根式)求二次函数的解析式知识讲解当已知的点中出现与x轴的交点时,常会考虑设成两点式求二次函数的解析式,此类问题已知点的坐标的形式比较多,除了可以直接已知与x轴的两个交点坐标外,还可以已知其中一个与x轴的交点的坐标及对称轴等其他形式.例题精讲利用两点式(也叫交点式、双根式)求二次函数的解析式例1.若抛物线经过(0,1)、(-1,0)、(1,0)三点,则此抛物线的解析式为()A.B.C.D.例2.抛物线与轴的两个交点为(-1,0),(3,0),其形状与抛物线相同,则的函数关系式为()B.C.D.A.例3.过(﹣1,0),(3,0),(1,2)三点的抛物线的顶点坐标是()A.(1,2)B.(1,)C.(﹣1,5)D.(2,)例4.'已知抛物线y=ax2+bx+c经过点(﹣5,0)、(﹣1,0)、(1,12),求这个抛物线的表达式及其顶点坐标.'顶点在原点的二次函数解析式的求法知识讲解2(a≠0)的形式,其中一次项系数和顶点在原点的二次函数的解析式的结构一定是形如y=ax常数项都为0,所以顶点在原点是一个非常强大的已知条件,接下来再找到一个等量关系即可.例题精讲顶点在原点的二次函数解析式的求法例1.若二次函数函数的图象是顶点在原点,则的值为()A.-2 B.2C.±2 D.4例2.'抛物线的顶点在原点,且经过点(﹣2,8),求该抛物线的解析式.'例3.'一个函数的图象是以原点为顶点,y轴为对称轴的抛物线,且经过点M(﹣2,4),(1)求出这个抛物线的函数表达式,并画出函数图象;(2)写出抛物线上点M关于y轴对称的点N的坐标,并求出△MON的面积.'顶点在 y 轴上的二次函数的解析式的求法知识讲解顶点在y轴上的抛物线的解析式的形式是b=0,即一次项系数为0.例题精讲顶点在 y 轴上的二次函数的解析式的求法与抛物线顶点相同,形状也相同,而开口方向相反的抛物线对应的函数是().A.B.C.D.例2.已知一抛物线的顶点在y轴上,且过二点(1,2)、(2,5),则此抛物线的解析式为.例3.对称轴是y轴且过点A(1,3)、点B(﹣2,﹣6)的抛物线的解析式为.顶点在 x 轴上的二次函数的解析式的求法知识讲解顶点在x轴上的二次函数可以有多种表述方法:(1)与x轴只有唯一的交点;(2)判别式等于0;(3)图象不在x轴上方(或下方);(4)对应的一元二次方程有两个相等的实根等.例题精讲顶点在 x 轴上的二次函数的解析式的求法已知抛物线的顶点在轴上,则等于()A.4B.8C.-4D.16例2.若函数的图象顶点在轴上,则的值为()A.B.-1C.D.或例3.'如图,已知二次函数y=ax2+bx+c的图象顶点在x轴上,且OA=1,与一次函数y=﹣x﹣1的图象交于y轴上一点B和另一交点C.(1)求抛物线的解析式;(2)点D为线段BC上一点,过点D作DE⊥x轴,垂足为E,交抛物线于点F,请求出线段DF的最大值.'过原点的二次函数的解析式的求法知识讲解2(a≠0)的形式,其中一次项系数和顶点在原点的二次函数的解析式的结构一定是形如y=ax常数项都为0,所以顶点在原点是一个非常强大的已知条件,接下来再找到一个等量关系即可.例题精讲过原点的二次函数的解析式的求法例1.如图所示的抛物线是二次函数的图象,那么的值是()D.±2A.2B.-2C.例2.'二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).求此二次函数的解析式.'例3.'已知抛物线经过原点,点(1,﹣4)和(﹣1,2),求抛物线解析式.'例4.'如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求抛物线的解析式;(2)设抛物线的顶点为B,求△OAB的面积S.'与长度相关的解析式的求法知识讲解在利用线段的长度或者线段之间的等量关系求二次函数解析式时,可以先通过已知条件求出所需的点的坐标,再将点的坐标代入到设出的二次函数的解析式中求出字母的值即可.例题精讲与长度相关的解析式的求法例1.'已知二次函数y=ax2+bx+c的图象经过点A(1,﹣6),对称轴是直线x=3,与x轴交于A、B 两点,且AB=8.求函数解析式.'例2.'如图,已知Rt△ABC的斜边AB在x轴上,斜边上的高CO在y轴的正半轴上,且OA=1,OC=2,求经过A、B、C三点的二次函数解析式.'例3.'在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C (如图),点C的坐标为(0,﹣3),且BO=CO.(1)求出B点坐标和这个二次函数的解析式;(2)若顶点为D,求四边形ABDC的面积.'与面积相关的解析式的求法知识讲解在利用几何图形的面积求二次函数解析式时,可以先通过已知条件求出所需的点的坐标,再将点的坐标代入到设出的二次函数的解析式中求出字母的值即可.例题精讲与面积相关的解析式的求法例1.'已知二次函数y=ax2+2ax﹣4(a≠0)的图象与x轴交于点A,B(A点在B点的左侧),与y 轴交于点C,△ABC的面积为12,求此二次函数的解析式.'例2.'在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+kx+4与y轴交于A,与x轴的负半轴交于B,且△ABO的面积是8.(1)求点B的坐标和此二次函数的解析式;(2)当y≤4时,直接写出x的取值范围.'例3.'已知抛物线y=ax2﹣2x+c的对称轴为直线x=﹣1,顶点为A,与y轴正半轴交点为B,且△ABO的面积为1.(1)求抛物线的表达式;(2)若点P在x轴上,且PA=PB,求点P的坐标.'利用几何综合性质求函数解析式知识讲解利用几何性质求函数解析式是求解析式中的较难问题,其难点在于对几何性质的探究,并通过几何性质找到所需的点或列出所需的等式.例题精讲利用几何综合性质求函数解析式例1.'如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.'例2.'如图,已知点A的坐标为(﹣2,2),点B的坐标为(﹣1,﹣),菱形ABCD的对角线交于坐标原点O.(1)求C、D两点的坐标;(2)求菱形ABCD的面积;(3)求经过A、B、D三点的抛物线解析式,并写出其对称轴方程与顶点坐标.'例3.'已知抛物线y=a(x﹣h)2﹣2(a,h,是常数,a≠0),x轴交于点A,B,与y轴交于点C,点M为抛物线顶点.(Ⅰ)若点A(﹣1,0),B(5,0),求抛物线的解析式;(Ⅱ)若点A(﹣1,0),且△ABM是直角三角形,求抛物线的解析式;(Ⅲ)若抛物线与直线y1=x﹣6相交于M、D两点①用含a的式子表示点D的坐标;②当CD∥x轴时,求抛物线的解析式.'当堂练习单选题练习1.顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是()A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2练习2.若抛物线经过(0,1)、(-1,0)、(1,0)三点,则此抛物线的解析式为()A.B.C.D.练习3.与抛物线顶点相同,形状也相同,而开口方向相反的抛物线对应的函数是().A.B.C.D.练习4.如图所示的抛物线是二次函数的图象,那么的值是()D.±2A.2B.-2C.练习5.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3C.y=(x﹣2)2+2 D.y=(x﹣2)2+4练习1.已知一抛物线的顶点在原点,对称轴为y轴,且经过点(3,﹣3),则该抛物线的函数解析式为.练习2.对称轴是y轴且过点A(1,3)、点B(﹣2,﹣6)的抛物线的解析式为.练习3.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.练习4.将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=.解答题练习1.'如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)求此抛物线顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.'练习2.'一个函数的图象是以原点为顶点,y轴为对称轴的抛物线,且经过点M(﹣2,4),(1)求出这个抛物线的函数表达式,并画出函数图象;(2)写出抛物线上点M关于y轴对称的点N的坐标,并求出△MON的面积.'练习3.'如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求抛物线的解析式;(2)设抛物线的顶点为B,求△OAB的面积S.'练习4.'如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x轴的负半轴交于点B,且△AOB的面积为6.(1)求该二次函数的表达式;(2)如果点P在x轴上,且△ABP是等腰三角形,请直接写出点P的坐标.'练习5.'已知,抛物线的顶点为P(3,﹣2),且在x轴上截得的线段AB=4.求抛物线的解析式.'练习6.'如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(3,0),点C在y轴的正半轴上,且AB=OC.求这个二次函数的解析式.'练习7.'直线l过点A(4,0)和B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=,求二次函数关系式.'练习8.'如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x轴的负半轴交于点B,且△AOB的面积为6.求该二次函数的表达式.'练习9.'如图,已知点A的坐标为(﹣2,2),点B的坐标为(﹣1,﹣),菱形ABCD的对角线交于坐标原点O.(1)求C、D两点的坐标;(2)求菱形ABCD的面积;(3)求经过A、B、D三点的抛物线解析式,并写出其对称轴方程与顶点坐标.'练习10.'y=ax2+b与y=x+2交于A、B两点,A点横坐标为﹣1,B点横坐标为2,求二次函数解析式.'练习11.'已知:抛物线y=ax2+bx+c经过A(﹣1,8)、B(3,0)、C(0,3)三点(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.'。
待定系数法求一次函数解析
感谢您的观看
THANKS
未知参数较多或未知参数之间的关系不明确
待定系数法更为适用,可以通过设立方程组求解。
与其他方法的结合使用
• 在某些情况下,可能需要结合待定系数法和点斜式或两点式来 求解一次函数的解析式。例如,已知一点和斜率,同时还需要 确定其他参数时,可以先使用点斜式得到初步的函数解析式, 再结合待定系数法求解其他参数。
实例二:已知与x轴交点求一次函数解析式
总结词
利用与x轴交点坐标求一次函数解析式
VS
详细描述
给定一次函数与x轴的交点$(x_0, 0)$,通 过待定系数法可以求出一次函数$y = kx + b$的解析式。首先,根据交点坐标计算斜 率$k = frac{0 - b}{x_0 - 0} = frac{b}{x_0}$,然后代入交点坐标$(x_0, 0)$求出截距$b = 0 - kx_0$,最终得到一 次函数解析式。
实例三:已知与y轴交点求一次函数解析式
总结词
利用与y轴交点坐标求一次函数解析式
详细描述
给定一次函数与y轴的交点$(0, y_0)$,通过 待定系数法可以求出一次函数$y = kx + b$ 的解析式。首先,根据交点坐标计算截距 $b = y_0$,然后根据斜率$k$和截距$b$ 的关系计算斜率$k = frac{y_0 - b}{0 - 0} = frac{y_0 - y_0}{0} = 0$,最终得到一次函 数解析式。
03
待定系数பைடு நூலகம்求一次函数解析 步骤
设定一次函数形式
一次函数的一般形式为 $y = kx + b$,其中 $k$ 和 $b$ 是待 求的系数。
根据题目条件,设定一次函数的具体形式,例如 $y = kx + b$。
九年级数学待定系数法求二次函数的解析式
y -27 -13 -3 3 5 3
则当x=1时,y的值为 A.5 B.-3 C.-13 D.-27
5. 已知二次函数中,其函数与自变量之间 的部分对应值如下表所示:
.
x …0 1 2 3 4 …
y …4 1 0 1 4 …
点A(x1,y1)、B(x2,y2)在函数的图象上,
部分图象如图所示,则关于x的一元二次方程
x2 2x k 0 的一个解x1 3,另一个
解 x2 ;
y
O1 3
x
(第15题图)
22.1.4二次函数 y=ax2+bx+c的图象
8 6 4 2
-4 -2
24
1.完成下列表格:
二次函数 开口方向 对称轴 顶点坐标
y=2(x+3)2+5
向上 直线x=-3 (-3,5)
y 1 (x 4)2 4 2
x
如何平移:
y 3 (x 1)2 4
y 3 (x 1)2 2 4
y 3 (x 3)2 3 4
y 3 (x 5)2 2 4
发展性训练
1.由y=3(x+2)2+4的图像经过怎样的平移 变换,可以得到y=3x2的图像.
右移2单位,下移4单位
2.把函数y=x2-2x的图像向右平移2个单 位,再向下平移3个单位所得图像对应 的函数解析式为
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析 式:
伴随抛物线的解析式: y=-2x2+1 。
伴随直线的解析式: y=-2x+1 。
(2)若一条抛物线的伴随抛物线和伴随直线分别是y= -x2-3和y= -
用待定系数法求二次函数的解析式---顶点式
4.已知:二次函数的图象经过原点,对称轴是直线x=-2,最高点的纵坐标 为4,求:该二次函数解析式.
解:∵二次函数的图象对称轴是直线x=-2,最高点的纵坐标为4, ∴抛物线的顶点坐标为(-2,4), ∴设y=a(x+2)2+4(a≠0), ∵二次函数的图象经过原点, ∴代入(0,0)点,则有0=a(0+2)2+4,解得a=-1, ∴二次函数解析式为:y=-x2-4x.
64
已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次
函数的关系式. 解:设二次函数的解析式为y=a(x−1)2-2, ∵二次函数的图象经过原点, ∴0=a(0−1)2-2, ∴a=2, ∴二次函数的解析式为y=2(x−1)2-2,即y=2x2-4x.
例2 已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图
y=a(x+2)2+1, 再把点(1,-8)代入上式得
a(1+2)2+1=-8, 解得 a=-1. ∴所求的二次函数的表达式是y=-(x+2)2+1或y=-x2-4x-3.
顶点法求二次函数的方法
这种知道抛物线的顶点坐标,求表达式的方法叫做顶点法. 其步骤是: ①设函数表达式是y=a(x-h)2+k; ②先代入顶点坐标; ③将另一点的坐标代入解析式求出a值; ④a用数值换掉,写出函数表达式.
解:对称轴是x=3,顶点是(3,2), 设解析式是y=a(x-3)2+2, 根据题意得:a+2=1, 解得a=-1, ∴解析式是:y=-(x-3)2+2,即y=-x2+6x-7.
待定系数法求二次函数解析式的方法归类(解析版)
专项05 待定系数法求二次函数解析式的方法归类二次函数的四种解析式(1)一般式:y=ax²+bx+c(a、b、c是常数,a不等于0)已知抛物线上任意三点的坐标可求函数解析式。
(2)顶点式:y=a(x-h)²+k(a≠0,a、h、k为常数)。
顶点坐标为(h,k);对称轴为直线x=h;顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最值=k.有时题目会指出让你用配方法把一般式化成顶点式。
(3)交点式:仅限于与x轴即y=0有交点时的抛物线,即b²-4ac≥0]。
已知抛物线与x轴即y=0有交点A(x1, 0)和B(x2, 0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
【典例1】已知在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图像经过点A (1,0)、B(0,-5)、C(2,3).求这个二次函数的解析式,并求出其图像的顶点坐标和对称轴.【答案】解:由这个函数的图象经过点A(1,0)、B(0,-5)、C(2,3),得{a+b+c=0 c=−54a+2b+c=3解得{a=−1 b=6 c=−5所以,所求函数的解析式为y=−x2+6x−5.y=−x2+6x−5=−(x−3)2+4.所以,这个函数图象的顶点坐标为(3,4),对称轴为直线x = 3.【变式1-1】已知二次雨数:y=x2+bx+c过点(1,0),(0,-3)。
求该二次函数的解析式【答案】解:根据题意,得 {0=1+b +c −3=c解得 {b =2c =−3所以所求的二次函数的解析式为y=x 2+2x -3【变式1-2】一个二次函数的图象经过A (0,0),B (1,9),C (-1,-1),求这个二次函数的解析式.【答案】解:设二次函数的解析式为 y =ax 2+bx +c .∵抛物线经过 A(0,0) , B(1,9) , C(−1,−1) ,∴{c =0a +b +c =9a −b +c =−1 ,解得 {a =4b =5c =0,∴y =4x 2+5x【典例2】已知抛物线顶点为(1,﹣4),且又过点(2,﹣3).求抛物线的解析式.【答案】解:∵抛物线顶点为(1,﹣4),∴设抛物线解析式为y =a (x ﹣1)2﹣4,把(2,﹣3)代入得a ﹣4=﹣3,解得a =1,所以抛物线解析式为y =(x ﹣1)2﹣4【变式2-1】已知抛物线的顶点为 (−2,−4) ,且经过点 (1,12) ,求此抛物线的解析式.【答案】解:∵二次函数的图象的顶点为(﹣2,﹣4),∴可设函数解析式为:y =a (x+2)2﹣4,∵函数图象经过点(1, 12) ∴a×9﹣4= 12, ∴a =12 ,∴二次函数的表达式为: y =12(x +2)2−4 . 【变式2-2】已知抛物线的顶点坐标为(1,﹣2),与y 轴交于点(0,﹣4),求抛物线的解析式.【答案】解:∵抛物线的顶点坐标为(1,﹣2),∴设抛物线的解析式为y=a(x−1)2−2,∵抛物线经过点(0,﹣4),∴a−2=−4,解得a=−2,∴抛物线解析式为y=−2(x−1)2−2.【变式2-3】已知抛物线过点A(-1,0),B(0,6),对称轴为直线x=1,求该抛物线的解析式.【答案】解:设抛物线的解析式为y=a(x-1)²+b将A,B点坐标带入得,{0=4a+b,6=a+b,解得a=-2,b=8,则y=-2(x-1)²+8.【典例3】已知一个二次函数的图象经过点A(﹣1,0)、B(3,0)和C(0,﹣3)三点;求此二次函数的解析式.【答案】解:由题意可设二次函数的解析式为:y=a(x+1)(x−3)将C(0,﹣3)代入得:−3=a(0+1)(0−3)解得a=1∴y=(x+1)(x-3)= x2−2x−3∴此二次函数的解析式为:y=x2−2x−3.【变式3-1】已知二次函数图象与x轴的两个交点坐标为(-3,0),(1,0),且与y轴的交点坐标为(0,-3),求这个二次函数的解析式【答案】解:依题意,设函数的解析式为y=a(x+3)(x−1)(a≠0)将点(0,−3)代入,得−3=−3a∴a=1∴所求函数解析式为y=(x+3)(x−1),即y=x2+2x−3【典例4】如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,求抛物线的解析式。
用待定系数法求二次函数解析式
用待定系数法求二次函数解析式待定系数法是求解多项式解析式的有效途径,用来直接求出二次函数解析式的标准型可以以形如$ax^2+bx+c=0$来表示,其中$a,b,c$均为常数。
一、概述1.1 什么是待定系数法待定系数法是指针对未知数多项式的解析方程,通过形如$a_1x^2+a_2x+a_3=0$的解析方程的参数$a_1,a_2,a_3$的确定,来求解形如$ax^2+bx+c=0$的解析式。
1.2 待定系数法的步骤(1)将解析方程形如$ax^2+bx+c=0$的形式确定,将$a,b,c$的系数根据题目替换成未知数,形如$a_1x^2+a_2x+a_3=0$(2)据此,将问题转化为求令$Δ=b_1a_2-2a_1a_3=0$时$a_1,a_2,a_3$的值,其中$b_1$为给定数∵(3)如果$Δ ≠ 0$,有$a_1=Δ/b_1, a_2=2a_1a_3/b_1, a_3=Δ/b_1$(4)将$a_1,a_2,a_3$的值代回原式,可求出$a,b,c$的值(5)最终,得出答案。
二、例题例题1:已知$2x^2+bx+2=0$,求b的值解:由待定系数法可求解出$a_1=2,a_2=b,a_3=2$∴$b_1=2,Δ=2×b−2×2=b-4$∴令$Δ=b-4=0$,解得$b=4$∴$b=4$例题2:已知$2x^2-3x+c=0$,求c的值解:由待定系数法可求解出$a_1=2,a_2=-3,a_3=c$∴$b_1=2,Δ=2×(-3)−2×c=6-2c$∴令$Δ=6-2c=0$,解得$c=3$∴$c=3$三、探究(1)待定系数法的数据限制待定系数法用来求解的多项式解析方程为二次以下的情况,不能用来求解多次多项式方程。
(2)待定系数法的应用范围待定系数法普遍用于求解数学、物理、化学、经济学等学科中,会出现二次式解析方程的问题,它可以用来快速求解解析式,可以极大的节省计算的时间。
用待定系数法求二次函数解析式的几种方法
用待定系数法求二次函数解析式的几种方法待定系数法是一种可以用来求二次函数解析式的有效方法。
基本原理是,通过把二次函数拆分为两个一次函数的乘积,然后根据给定的条件将未知的系数代入到两个一次函数之中,从而计算出二次函数的解析式。
首先,我们可以用待定系数法计算二次函数的标准形式的解析式。
一般来说,二次函数的标准形式是ax^2+bx+c=0,根据定理,二次函数的根为: x = [-b (b^2-4ac)] / 2a.二次函数分解为两个一次函数相乘:ax^2 + bx + c = a(x+p)(x+q),p + q = -b, pq = c.结合给定的条件,将未知的系数代入到两个一次函数之中,即可求得p、q的值。
最后,根据互相关联的关系,计算出q p的值,就可以得到二次函数的标准形式的解析式。
其次,我们可以用待定系数法求解二次函数的非标准形式的解析式。
一般来说,非标准形式的二次函数是一般形式ax^2 + bx + c = 0类似于标准形式,我们可以将二次函数分解为两个一次函数相乘:ax^2 + bx + c = a(x + p/a )(x + q/a)。
对于任意给定的一般形式的二次方程,我们可以先将它降幂变为标准形式,然后再计算p、q的值。
最后,根据互相关联的关系,计算出 q p的值,就可以得到二次函数的非标准形式的解析式。
再次,我们还可以用待定系数法解决一些特殊情况下的二次函数。
比如说,二次函数在x=0处有极值点时,ax^2+bx+c= 0.种情况下,我们可以将二次函数分解为两个一次函数:ax^2 + bx + c = a(x + p)(x + q) + ap, q = 0。
根据给定的条件,将未知的系数代入到两个一次函数之中,即可求得p、q的值。
最后,根据互相关联的关系,计算出q p的值,就可以得到二次函数的特殊情况下的解析式。
总之,待定系数法是一种可以用来求二次函数解析式的有效方法。
它可以用来求解二次函数的标准形式和非标准形式,以及一些特殊情况下的二次函数的解析式。
第22章 第9课 用待定系数法求二次函数解析式(顶点式、交点式)
(2)点P为x轴上方抛物线上一点,若S△PAB=6,求此时点P的坐标.
解:设P(x,y),∴△PAB的高为y.
∵A(-1,0),B(3,0),∴AB=4.
∴S△PAB= ×4y=6.解得y=3.
当y=3时,3=-x2+2x+3.解得x1=0,x2=2.
∴P(0,3)或P(2,3).返回目录Fra bibliotek返回目录
4.抛物线上部分点的横、纵坐标的对应值如下表所列:
x
y
-2 -1
0
4
0
1
2
3
6
6
4
0
请选择合适的方法,求此抛物线的解析式.
解:由表知,抛物线与x轴的交点为(-2,0)和(3,0),
∴设抛物线的解析式为y=a(x+2)(x-3).
将(0,6)代入,得a×2×(-3)=6.解得a=-1.
∴此抛物线的解析式为y=-(x+2)(x-3),
y=-x
(0,4)的抛物线的解析式________________________________.
返回目录
能力过关
3.根据图形求抛物线的解析式.
解:设抛物线的解析式为
y=a(x-1)2+4.
代入点A(3,0),得4a+4=0,解得a=-1.
∴y=-(x-1)2+4=-x2+2x+3.
∴抛物线的解析式为y=-x2+2x+3.
已知二次函数的图象与x轴交点的横坐标分别是x1=-3,x2=
1,且与y轴交点为(0,-3).求这个二次函数的解析式和顶点坐标.
解:设二次函数的解析式为y=a(x+3)(x-1).
把(0,-3)代入,得a×3×(-1)=-3,解得a=1.
∴二次函数的解析式为y=(x+3)(x-1),
待定系数法求二次函数的解析式—知识讲解
待定系数法求二次函数的解析式—知识讲解设定二次函数的解析式为$f(x)=ax^2+bx+c$,其中$a$、$b$和$c$为待定系数。
一、已知函数的根情况一:已知函数的两个根$x_1$和$x_2$,则有以下条件:$$f(x_1)=0$$$$f(x_2)=0$$代入二次函数解析式,可得:$$a{x_1}^2+b{x_1}+c=0$$$$a{x_2}^2+b{x_2}+c=0$$将上述方程组化简,得:$$a{x_1}^2+b{x_1}=-c$$$$a{x_2}^2+b{x_2}=-c$$注意到$x_1$和$x_2$为已知值,$a$、$b$和$c$为待定系数,上述方程可以看作是一个关于$a$、$b$和$c$的线性方程组。
通过解这个方程组,即可求出$a$、$b$和$c$。
情况二:已知函数的一个根$x_1$和函数经过的一个点$(x_3,y_3)$,则有以下条件:$$f(x_1)=0$$$$f(x_3)=y_3$$代入二次函数解析式,可得:$$a{x_1}^2+b{x_1}+c=0$$$$a{x_3}^2+b{x_3}+c=y_3$$将上述方程组化简,得:$$a{x_1}^2+b{x_1}=-c$$$$a{x_3}^2+b{x_3}=y_3-c$$同样地,将上述方程看作是一个关于$a$、$b$和$c$的线性方程组,求解即可得到$a$、$b$和$c$的值。
二、已知函数的值当已知二次函数经过的两个点$(x_1,y_1)$和$(x_2,y_2)$时,同样可以通过设定$a$、$b$和$c$为待定系数,列出方程组来求解。
将已知点代入二次函数解析式,可得:$$a{x_1}^2+b{x_1}+c=y_1$$$$a{x_2}^2+b{x_2}+c=y_2$$进一步化简,得:$$a{x_1}^2+b{x_1}=y_1-c$$$$a{x_2}^2+b{x_2}=y_2-c$$同样地,上述方程可看作是一个关于$a$、$b$和$c$的线性方程组,通过求解该方程组,即可求出$a$、$b$和$c$的值。
二次函数解析式求法(待定系数法)
二次函数解析式求法------待定系数法1.二次函数的三种常用形式一般式:()20y ax bx ca =++≠; 顶点式:()()20y a x h k a =−+≠;交点式:()()()120y a x x x x a =−−≠. 2.求二次函数解析式的一般方法已知图象上三点或三点的对应值,通常选择一般式()20y ax bx c a =++≠;已知图象上顶点坐标(或对称轴和最值),通常选择顶点式()()20y a x h k a =−+≠;已知图象与x 轴的两个交点的横坐标x 1,x 2,通常选择交点式()()()120y a x x x x a =−−≠.3.待定系数法求二次函数解析式的一般步骤用待定系数法确定二次函数解析式的基本方法分四步完成:一设:指先设出恰当的二次函数解析式;二代:指根据题中所给条件,代入二次函数解析式,得到关于a 、b 、c (或h ,k )的方程组;三解:指解方程或方程组;四还原:指将求出的a 、b 、c (或h ,k )代回原解析式中.例题1、已知一个二次函数的图象经过(3,0)、(0,﹣3)、(1,﹣4)三点,求这个二次函数的解析式.2.已知抛物线y=ax2+bx+c经过(﹣1,﹣22),(0,﹣8),(2,8)三点.(1)求出抛物线解析式;(2)判断点(﹣2,﹣40)是否在该抛物线上?说明理由.3、.已知抛物线的顶点坐标是(﹣1,2),且过点(0,32).(1)求此抛物线所对应的函数表达式;(2)求证:对任意实数m,点M(m,﹣m2)都不在此抛物线上.4、在直角坐标平面内,二次函数图象的顶点为(14)A−,,且过点(30)B,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.变式练习1、已知一抛物线与x轴的交点是)0,2A,B(1,0),且经过点(−C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.2、已知二次函数的图象如图所示,求此抛物线的解析式.3.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点;(3)已知抛物线与x轴交于点(1,0),(3,0),且图象过点(0,-3).4.已知抛物线2=++的顶点坐标为(3,-2),且与x轴两交点间的距离为y ax bx c4,则抛物线的解析式为___ _____.5.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C.(1)求二次函数解析式;(2)求△ABC的面积.。
函数解析式的8种求法
函 数 解 析 式 的 八 种 求 法一.待定系数法:(已知函数类型如:一次、二次函数、反比例函数等)若已知)(x f 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得)(x f 的表达式。
【例1】已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x -1)=2x +17,求f(x )的解析式。
分析:所求的函数类型已定,是一次函数。
设f(x)=ax+b(a≠0)则f(x+1)=?,f(x-1)=?解:设f(x)=ax+b(a≠0),由条件得:3[a(x+1)+b]-2[a(x-1)+b]=ax+5a+b=2x+17,∴f(x)=2x+7 【例2】求一个一次函数f(x),使得f{f[f(x)]}=8x+7分析:所求的函数类型已定,是一次函数。
设f(x)=ax+b(a≠0)则f{f[f(x)]}=f{f[ax+b]}=f[a(ax+b)+b]=? 解:设f(x)=ax+b (a≠0),依题意有a[a(ax+b)+b]+b=8x+7 ∴x a 3+b(2a +a+1)=8x+7,∴f(x)=2x+1例 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设bax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 例、已知二次函数)(x f y =满足),2()2(--=-x f x f 且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数)(x f y =的解析式。
分析:二次函数的解析式有三种形式: ① 一般式:)0()(2≠++=a c bx ax x f② 顶点式:()为函数的顶点点其中k h a kh x a x f ,,0)()(2≠++=③ 双根式:的两根是方程与其中0)(,0))(()(2121=≠--=x f x x a x x x x a x f解法1:设)0()(2≠++=a cbx ax x f ,则由y 轴上的截距为1知:1)0(=f ,即c=1 ① ∴ 1)(2++=bx ax x f由)2()2(--=-x f x f 知:1)2()2(1)2()2(22+--+--=+-+-x b x a x b x a 整理得:0)4(=-x b a , 即: 04=-b a ②由被x 轴截得的线段长为22知,22||21=-x x , 即84)()(21221221=-+=-x x x x x x . 得:814)(2=--aab .整理得: 2284a a b =- ③ 由②③得: 2,21==b a , ∴ 1221)(2++=x x x f .解法2:由)2()2(--=-x f x f 知:二次函数对称轴为2-=x ,所以设)0()2()(2≠++=a kx a x f ;以下从略。
待定系数法求一次函数解析式题目和解析过程
一次函数是指一个函数的最高幂次为1的多项式函数,也可以称为线性函数。
它的解析式的一般形式为 y = ax + b,其中 a 和 b 是常数。
本文将介绍通过待定系数法求解一次函数的解析式的方法。
待定系数法的基本原理待定系数法是通过给定的数据点来确定一次函数的解析式。
假设已知两个点(x₁, y₁) 和(x₂, y₂),我们可以通过待定系数法求解一次函数的解析式。
假设一次函数的解析式为 y = ax + b,那么我们可以得到以下两个等式:y₁ = ax₁ + b ...(1) y₂ = ax₂ + b (2)通过解这个方程组,我们可以得到一次函数的解析式。
解析过程假设我们已经知道两个点的坐标为 (3, 5) 和 (7, 9),并且要求解出一次函数的解析式。
我们可以将这两个点的坐标代入方程组 (1) 和 (2):5 = 3a + b ...(3) 9 = 7a + b (4)为了解方程组,我们可以使用消元法或代入法。
在这个例子中,我们将使用消元法。
首先,我们将方程 (3) 乘以 7,方程 (4) 乘以 3,以使得系数 a 的系数相等:35 = 21a + 7b ...(5) 27 = 21a + 3b (6)然后,我们将方程 (6) 从方程 (5) 中减去,消除系数 a:8 = 4b解得 b = 2。
将 b 的解代入方程 (3) 或 (4) 中,我们可以求解 a:5 = 3a + 2 3a = 5 - 2 3a = 3 a = 1所以,我们得到了 a = 1 和 b = 2,代入一次函数的解析式 y = ax + b:y = x + 2因此,通过待定系数法,我们求解出了一次函数的解析式 y = x + 2。
总结待定系数法是一种通过给定的数据点来求解一次函数的解析式的方法。
它的基本原理是通过将数据点代入方程组,然后通过消元法或代入法解方程组,得到一次函数的解析式。
这种方法在实际应用中非常常见,可以用于拟合数据以及预测未知数据点的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练 求二次函数的解析式
一、已知三点求解析式
1.抛物线y =ax 2+bx +c 经过(-1,-22),(0,-8),(2,8)三点,求它的开口方向、对称轴和顶点.
2.一个二次函数的图像经过(0,0),(-1,-1),(1,9)三点.求这个二次函数的解析式.
3. 已知二次函数的图象经过点(-1,-6),(1,-2)和(2,3),求这个二次函数的解析式,并求它的开口方向、对称轴和顶点坐标.
4.已知抛物线y =ax 2+bx +c 经过(1,0),(2,0),(3,4)三点,则求抛物线的解析式。
5. 已知抛物线y =ax 2+bx +c 经过点(-1,10),(2,7),且3a +2b =0,求该抛物线的解析式。
6. 抛物线y =ax 2+bx +c 经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式.
7. 已知抛物线C :y =-x 2+bx +c 经过A (-3,0)和B (0,3)两点,将这条抛物线的顶点记为M ,它的对称轴与x 轴的交点记为N.(1)求抛物线C 的解析式;(2)求点M 的坐标;
8.已知:如图,二次函数y =ax 2+bx +c 的图象经过A ,B ,C 三点.求此抛物线的解析式.
9. 如图所示,求此抛物线的解析式。
10. 如图,抛物线c bx x y ++-=22
1与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3.求抛物线的解析式.
11.如图所示,抛物线y =ax 2+bx -4a 经过点A (-1,0),C (0,
4).
(1)求抛物线的解析式;
(2)已知点D (m ,m +1)在第一象限的抛物线上,求点D 关于
x 轴对称的点的坐标.
12. 如图,已知二次函数y =x 2+bx +c 的图象过点A (1,0),C (0,-3).
(1)求此二次函数的解析式;
(2)在抛物线上存在一点P ,使△ABP 的面积为10,请直接写出点P 的坐标.
13. 如图①,已知抛物线y =ax 2+bx +c 经过点A (0,3),B (3,0),C (4,3).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标和对称轴;
(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积S (图②中阴影部分).
二、已知顶点或对称轴求解析式
1.在平面直角坐标系内,二次函数图象的顶点为A (1,-4),且过点B (3,0),求该二次函数的解析式.
2. 已知二次函数图象的顶点是(1,-3),且经过点M (2,0),求这个函数的解析式.
3.如果抛物线的顶点坐标是(3,-1),与y 轴的交点是(0,-4),求它的解析式。
4.已知抛物线y =x 2+kx +k +3,若抛物线的顶点在y 轴上,求此抛物线的解析式。
5.已知抛物线经过点A (1,0),B (0,3),且对称轴是直线x =2,求该抛物线的解析式.
6.已知某二次函数,当x =3时,函数有最小值-2,且函数图象与y 轴交于)2
5,0(,求此二次函数的解析式。
7. 有一个二次函数的图象,三个同学分别说出了它的一些特点.
李明:对称轴是直线x =4;
赵鑫:函数有最大值为2;
张强:此函数的图象经过点(-3,1)关于y 轴的对称点.
请你根据上述对话写出满足条件的二次函数解析式.
8. 已知抛物线y =ax 2+bx +c 与x 轴交于点A (-3,0),对称轴为直线x =-1,顶点M 到x 轴的距离为2,求此抛物线的解析式.
9.已知二次函数y =x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:求该二次函数的解析式
10.如图,已知抛物线y =-x 2+bx +c 的对称轴为直线x =1,且与x 轴的一个交点为(3,0),求它对应的函
数解析式。
11.如图,已知抛物线的顶点为A (1,4),抛物线与y 轴交于点B (0,3),与x 轴交于C ,D 两点.P 是x 轴上的一个动点.
(1)求此抛物线的解析式;(2)当PA +PB 的值最小时,
求点P 的坐标.
12. 已知二次函数的图象如图所示,求这个二次函数的解析式
三、已知抛物线与x 轴的交点求解析式
1.抛物线与x 轴交于点(-1,0)和(3,0),与y 轴交于点(0,-3),
求此抛物线的解析式。
2.一个二次函数,当自变量x =0时,函数值y =-1,当x =-2与2
1时,y =0.求这个二次函数的解析式.
3.如图,抛物线y =-x 2+bx +c 与x 轴的两个交点分别为A (1,0),B (3,0),求这条抛物线的解析式
4.如图,已知抛物线过A ,B ,C 三点,点A 的坐标为(-1,0),点
B 的坐标为(3,0),且3AB =4O
C ,求抛物线的解析式。
5.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2,-
4),O (0,0),B (2,0)三点.
(1)求抛物线y =ax 2+bx +c 的解析式;
(2)若点M 是抛物线对称轴上一点,求OM +AM 的最小值.
四、根据图形平移求解析式
1.一个二次函数图象的形状与抛物线y =-2x 2相同,顶点坐标为
(2,1),则这个函数的解析式
x … -1 0 1 2 3 4 … y … 10 5 2 1 2 5 …
2.把抛物线y =x 2沿直线y =x 平移2个单位后,其顶点在直线上的A 处,求平移后抛物线的解析式
3.把抛物线y =x 2先向左平移1个单位长度,再向下平移4个单位长度,得到如图所示的二次函数的图象.
(1)求此二次函数的解析式;
(2)在抛物线上存在一点P 使△ABP 的面积为10,请直接写出点P
的坐标
4.如图,经过点A (0,-6)的抛物线c bx x y ++=22
1与x 轴相交于B (-2,0),C 两点.
(1)求此抛物线的解析式和顶点D 的坐标;
(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平
移m (m >0)个单位长度得到新抛物线y 1,若新抛物线y 1的顶点P
在△ABC 内,求m 的取值范围.。