数学建模数码相机定位模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名):
参赛队员(打印并签名) :1.
2.
3.
指导教师或指导教师组负责人(打印并签名):
日期:年月日
赛区评阅编号(由赛区组委会评阅前进行编号):
高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):
数码相机定位模型
摘要
本文利用光学原理建立物体成像位置关系的数学模型,解决了相机系统标定中的如何确定靶标圆心对应像坐标和固定相机的相对位置等问题。
针对如何确定靶标圆心对应像坐标问题,我们分析讨论了各种影像分析方法,基于针孔成像原理和相机坐标系变换矩阵的思想,建立了线性相机模型,利用透视变换矩阵确定摄像机的位置标定思想给出算法,通过找靶标和像平面上对应公切线切点的方法取点,利用取定的点和算法求得相机成像内外参数,利用MATLAB编程求解,求得靶标圆心对应像坐标。
结果如下:在问题1要求的三维坐标系下A,B,C,D,E圆心对应的像坐标是(单位:mm):(,,),(,,),(,,),(,,),(,,).
针对设计一种方法检验我们模型的问题,我们采用最小二乘法拟合椭圆,确定中心点,改变所选取的标定点,求得多组中心的值,比较每组中心值与拟合的中心点,差别不大。并对方法的精度和稳定性进行了讨论。
针对如何确定两部固定相机相对位置的问题,以物坐标为中间变量,通过坐标矩阵的变换建立模型,给出算法,最终确定两部相机的相对位置。
本论文通过两种方法对比分析,结果相对吻合,模型的可信度较高。考虑到畸变因素的影响,本论文进行了模型改进,使模型具有更高的精度,有较强的推广性。
关键词:针孔成像线性相机模型坐标系变换矩阵公切线切点最小二乘法拟合椭圆
1、问题重述
数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。
标定的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利
用这两组像点的几何关系就可以得到这两
部相机的相对位置。然而,无论在物平面或
像平面上我们都无法直接得到没有几何尺
寸的“点”。实际的做法是在物平面上画若
干个圆(称为靶标),它们的圆心就是几何
的点了。而它们的像一般会变形,如图1所
示,所以必须从靶标上的这些圆的像中把圆
心的像精确地找到,标定就可实现。
图1 靶标上圆的像
有人设计靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。以AC边上距离A点30mm处的B 为圆心,12mm为半径作圆,如图2所示(略)。用一位置固定的数码相机摄得其像,如图3所示(略)。
问题:
(1)建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标, 这里坐标系原点取在该相机的焦点,x-y平面平行于像平面;
(2)对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标, 该相机的像距(即焦点到像平面的距离)是1577个像素单位(1毫米约为个像素单位),相机分辨率为1024×786;
(3)设计一种方法检验你们的模型,并对方法的精度和稳定性进行讨论;(4)建立用此靶标给出两部固定相机相对位置的数学模型和方法。
2、模型假设
假设相机镜头(凸透镜)前后两侧弧度、介质均相同,即镜头前后两侧折射率相同。
假设相机镜头是很完善的,没有缺损或倾斜等外部形变。
假设物平面和像平面的中心与镜头的光学中心在同一条直线(光轴)上。
假设物平面的点经透镜折射后都可以被像平面接到。
假设问题1中靶标和像平面的图形是已知的。
像平面上点的像坐标的原点为该相机的光学中心,x-y平面平行与像平面。
假设不考虑照相机畸变。
有效焦距f为相机镜头光学中心到像平面的距离,即像距。
3、符号说明
O x y:图像像素坐标系
f f f
(,)
u v:像点像素坐标
OXY:图像物理坐标系
X Y:像点物理坐标
(,)
(,,)
x y z:物点相机坐标系
c c c
Ox y z:世界坐标系
w w w
(,,)
x y z:物点世界坐标
w w w
R:旋转正交变换矩阵
T:平移变换矩阵
f:有效焦距
M:为相机成像内部参数阵
1
M:为相机成像外部参数阵
2
M:称为投影矩阵
4、模型建立及求解
问题1
4.1.1问题分析
本问题的整体思路是:在仅已知物平面和像平面,相机的其他属性参数未知的前提下,建立照相机模型,确定靶标(物平面)上的点到该照相机像平面的像坐标的映射关系,其中包括照相机成像系统内外几何及光学参数的标定,从而达到只要给定标靶上的点,就可直接通过模型求得其像坐标的目的。
在具体建立照相机模型时,由于照相机与摄相机在成像原理上没有本质区别,因此沿用现有比较成熟的摄机标定技术的理论思想。对于问题1,根据假设,靶标和像平面的图形是已知的,利用针孔成像原理建立模型,引入常用的相机模型坐标体系,确定各坐标体系的转换关系,建立线性相机模型,利用透视变换矩阵的相机标定技术的思想给出算法,求取相机模型的内部参数和外部参数。
考虑到上述模型是基于靶标点与像点已确定的前提下才能实现的,而实际