华东理工大学《化工原理》整套课件
合集下载
华东理工化工原理第一章01
连续性假定 -- 流体是由无数质点组成的,彼此 间没有间隙,完全充满所占空间的连续介质 目的:用微积分描述流体的各种参数
1.1.2 考察方法----拉格朗日法和欧拉法 拉格朗日法---选定流体质点,跟踪质点描述 状态参数 欧拉法---选定空间位置,考察区域内不同质点 状态与时间关系 ① 轨线与流线的区别(录像) 轨线 - 同一流体质点在 不同时刻 所占空间位置 的连线 流线 - 同一瞬时不同流体质点 的速度方向连线
PA
—
PB
= ( ρi − ρ ) gR
上式表明:当压差计两端的流体相同时, R直接反映的是虚拟压强差。
PA - PB = ( ρi - ρ ) gR - ( z A - z B ) gR
拓展:
2.4.2 烟囱拔烟:
pA= p2 +ρ冷gh pB= p2 +ρ热gh 由于ρ冷>ρ热, 则pA>pB 所以拔风 烟囱拔风的必要条件是什么?
流水的有无是静力学问题 流水的多少是动力学问题 判据是看z大小,还是p大小? 同一水平高度比压强 p左=pA+ρgzA=PA p右=pB+ρgzB=PB
已知:ρA = ρB = ρ, ρi > ρ, 解:
= Hg ( ρi – ρ )
求: R 和 H 、pA 和pB间的关系;
PA – PB = Rg ( ρi – ρ )
ρHg = ?
2.3.2 基准 绝对压强:以绝对真空为基准 表压、真空度:以大气压为基准 表压 = 绝对压-大气压 真空度 =大气压-绝对压
表压 = 绝对压 - 大气压 真空度 = 大气压 - 绝对压
2.4 静力学方程的工程应用 2.4.1 测压: ① U型测压管 已知:R=180mm, h=500mm 求:pA=? (绝压),(表压)
《化工原理绪论》课件
高度自动化
现代化工过程通常采用高度自动化的控制系 统,以实现高效、安全和可靠的生产。
化工过程的效率与能耗
效率
化工过程的效率是指输出有用产物与输入的原材料和能量之比,提高效率可以降低生产 成本和资源消耗。
能耗
化工过程的能耗是指生产过程中所消耗的能源和能量,降低能耗是化工过程的重要发展 方向,可以提高经济效益和环保性能。
VS
新技术
随着科技的不断发展,新技术也不断涌现 ,如微化工技术、3D打印技术等,这些 技术能够实现精细化工过程控制和产品制 造,提高化工过程的效率和安全性。
节能减排与可持续发展
节能减排
随着环保意识的不断提高,节能减排 成为了化工行业的重要发展方向,通 过优化化工过程和采用清洁能源,降 低能源消耗和减少污染物排放。
04
化工过程的优化与控制
化工过程的优化方法
数学模型法
通过建立数学模型描述化工过程 ,利用优化算法求解最优操作条
件。
实验优化法
通过实验设计、实验实施和实验数 据分析,找到最优的工艺参数。
人工智能法
利用机器学习、深度学习等人工智 能技术,对历史数据进行训练和学 习,自动找到最优操作条件。
化工过程的控制策略
化学反应
总结词:反应工程
详细描述:化学反应是化工生产的核 心,涉及到反应速率、反应条件以及 反应过程优化等,对于提高产品质量 和降低能耗具有重要意义。
03
化工过程的分类与特点
化工过程的分类
物理过程
物质状态变化或能量传递的过 程,如蒸发、冷凝、过滤等。
化学过程
物质发生化学反应的过程,如 燃烧、合成、分解等。
生物过程
生物发酵、酶催化等生物化学 过程。
现代化工过程通常采用高度自动化的控制系 统,以实现高效、安全和可靠的生产。
化工过程的效率与能耗
效率
化工过程的效率是指输出有用产物与输入的原材料和能量之比,提高效率可以降低生产 成本和资源消耗。
能耗
化工过程的能耗是指生产过程中所消耗的能源和能量,降低能耗是化工过程的重要发展 方向,可以提高经济效益和环保性能。
VS
新技术
随着科技的不断发展,新技术也不断涌现 ,如微化工技术、3D打印技术等,这些 技术能够实现精细化工过程控制和产品制 造,提高化工过程的效率和安全性。
节能减排与可持续发展
节能减排
随着环保意识的不断提高,节能减排 成为了化工行业的重要发展方向,通 过优化化工过程和采用清洁能源,降 低能源消耗和减少污染物排放。
04
化工过程的优化与控制
化工过程的优化方法
数学模型法
通过建立数学模型描述化工过程 ,利用优化算法求解最优操作条
件。
实验优化法
通过实验设计、实验实施和实验数 据分析,找到最优的工艺参数。
人工智能法
利用机器学习、深度学习等人工智 能技术,对历史数据进行训练和学 习,自动找到最优操作条件。
化工过程的控制策略
化学反应
总结词:反应工程
详细描述:化学反应是化工生产的核 心,涉及到反应速率、反应条件以及 反应过程优化等,对于提高产品质量 和降低能耗具有重要意义。
03
化工过程的分类与特点
化工过程的分类
物理过程
物质状态变化或能量传递的过 程,如蒸发、冷凝、过滤等。
化学过程
物质发生化学反应的过程,如 燃烧、合成、分解等。
生物过程
生物发酵、酶催化等生物化学 过程。
化工原理完整教材课件
实验原理理解
深入理解实验的基本原理,为实验操作和结果分析提供理论依据。
实验数据处理与分析方法
数据记录与整理
掌握实验数据的记录方法,以及如何整理和筛选有效数据 。
误差分析
了解误差的来源和其对实验结果的影响,掌握误差分析和 减小误差的方法。
数据分析与处理
掌握常用的数据处理和分析方法,如平均值、中位数、标 准差等。
物质从高浓度区域向低浓度区域 的转移过程。
传质速率
表示物质转移快慢的物理量,与 扩散系数、浓度差和传质面积成
正比。
扩散系数
表示物质在介质中扩散快慢的物 理量,与物质的性质、温度和压
力有关。
吸收
吸收过程
利用混合气体中各组分在液体溶剂中的溶解度差异,使气体混合 物中的有害组分或杂质组分被吸收除去的过程。
在制药工业和食品工业中,化工原理 涉及药物的合成、分离和提纯,以及 食品的加工和保藏等环节。
02
流体流动
流体静力学
总结词
描述流体在静止状态下的压力、密度和重力等特性。
详细描述
流体静力学主要研究流体在静止状态下的压力分布、流体对容器壁的压力以及 流体与固体之间的作用力。它涉及到流体的平衡性质和流体静压力的基本规律 。
利用气体在液体中的溶解度差异,通过鼓入空气或通入其他气体 产生泡沫而实现分离的方法。
05
化学反应工程
化学反应动力学基础
1 2 3
反应速率与反应机理
介绍反应速率的定义、计算方法以及反应机理的 基本概念,阐述反应速率的测定和影响因素。
反应动力学方程
介绍反应动力学方程的建立、求解及其在化学反 应工程中的应用,包括速率常数、活化能等参数 的确定方法。
对流传热速率方程
深入理解实验的基本原理,为实验操作和结果分析提供理论依据。
实验数据处理与分析方法
数据记录与整理
掌握实验数据的记录方法,以及如何整理和筛选有效数据 。
误差分析
了解误差的来源和其对实验结果的影响,掌握误差分析和 减小误差的方法。
数据分析与处理
掌握常用的数据处理和分析方法,如平均值、中位数、标 准差等。
物质从高浓度区域向低浓度区域 的转移过程。
传质速率
表示物质转移快慢的物理量,与 扩散系数、浓度差和传质面积成
正比。
扩散系数
表示物质在介质中扩散快慢的物 理量,与物质的性质、温度和压
力有关。
吸收
吸收过程
利用混合气体中各组分在液体溶剂中的溶解度差异,使气体混合 物中的有害组分或杂质组分被吸收除去的过程。
在制药工业和食品工业中,化工原理 涉及药物的合成、分离和提纯,以及 食品的加工和保藏等环节。
02
流体流动
流体静力学
总结词
描述流体在静止状态下的压力、密度和重力等特性。
详细描述
流体静力学主要研究流体在静止状态下的压力分布、流体对容器壁的压力以及 流体与固体之间的作用力。它涉及到流体的平衡性质和流体静压力的基本规律 。
利用气体在液体中的溶解度差异,通过鼓入空气或通入其他气体 产生泡沫而实现分离的方法。
05
化学反应工程
化学反应动力学基础
1 2 3
反应速率与反应机理
介绍反应速率的定义、计算方法以及反应机理的 基本概念,阐述反应速率的测定和影响因素。
反应动力学方程
介绍反应动力学方程的建立、求解及其在化学反 应工程中的应用,包括速率常数、活化能等参数 的确定方法。
对流传热速率方程
华东理工大学化工原理讲稿和ppt
力运动
1.固动,流静 2.固静,流动 3.固动,流动
阻力—曳力是一对力 流体受到固体给的力—阻力 固体受到流体给的力—曳力
静止流体中:
曳力=形体曳力+表面曳力
2.3 曳力和曳力系数
d p uρ
对于球体,爬流时( Re p =
µ
<2)
Stokes 理论解: 表面曳力=2πµdpu 形体曳力=πµdpu 表面曳力为主 斯托克斯定律 Fd=3πµdpu
非爬流时如何? 按牛顿定律:F与单位 时间产生的动量有关
单位时间排开流体的量 m=Apuρ Ap指向下的最大投影面积 设排开速度u2与下落速度u成正比, 则FD∝mu∝Apρu2 2 定义曳力系数ζ ρu FD = ζAp ζ~ Rep
2
实验测定
用三段曲线来表示ζ~关系 24 ζ = Re<2 Re
6 4 2 4d p g ( ρ p − ρ ) ut = 为一般计算式 3 ρζ 6
p p p p
Re<2时, 斯托克斯区 π d 3 ( ρ − ρ ) g = 3πd µu p p p t 得
2 dp (ρ p − ρ )g ut = 18 µ
6
影响因素
ut是颗粒与流体的综合特性。 ut采用了极限处理方法
②强放热反应
③沙子炉石油热裂解
5 气力输送 1.优点:①密闭 ②不受地形的限制 ③连续化 ④结合其它操作 稀相输送:固气比小 密相输送:固气比大
2.输送装置 ①真空吸引式
②压送式
③吸-压回转式
改进判据: d p ut ρ 4d p ( ρ p − ρ ) g 由 Re = 和ζ = µ 3 ρut2 恰当组合,消去待求变量 组成新判据 2 ζRe 可消去ut ζ/Re2可消去dp
1.固动,流静 2.固静,流动 3.固动,流动
阻力—曳力是一对力 流体受到固体给的力—阻力 固体受到流体给的力—曳力
静止流体中:
曳力=形体曳力+表面曳力
2.3 曳力和曳力系数
d p uρ
对于球体,爬流时( Re p =
µ
<2)
Stokes 理论解: 表面曳力=2πµdpu 形体曳力=πµdpu 表面曳力为主 斯托克斯定律 Fd=3πµdpu
非爬流时如何? 按牛顿定律:F与单位 时间产生的动量有关
单位时间排开流体的量 m=Apuρ Ap指向下的最大投影面积 设排开速度u2与下落速度u成正比, 则FD∝mu∝Apρu2 2 定义曳力系数ζ ρu FD = ζAp ζ~ Rep
2
实验测定
用三段曲线来表示ζ~关系 24 ζ = Re<2 Re
6 4 2 4d p g ( ρ p − ρ ) ut = 为一般计算式 3 ρζ 6
p p p p
Re<2时, 斯托克斯区 π d 3 ( ρ − ρ ) g = 3πd µu p p p t 得
2 dp (ρ p − ρ )g ut = 18 µ
6
影响因素
ut是颗粒与流体的综合特性。 ut采用了极限处理方法
②强放热反应
③沙子炉石油热裂解
5 气力输送 1.优点:①密闭 ②不受地形的限制 ③连续化 ④结合其它操作 稀相输送:固气比小 密相输送:固气比大
2.输送装置 ①真空吸引式
②压送式
③吸-压回转式
改进判据: d p ut ρ 4d p ( ρ p − ρ ) g 由 Re = 和ζ = µ 3 ρut2 恰当组合,消去待求变量 组成新判据 2 ζRe 可消去ut ζ/Re2可消去dp
华东理工大学化工原理课件
A
式中:A——垂直于流动方向的管截面积 已知速度分布 ur 的表达式,求平均流速:
∫ u dA u=
A r
A
(3)质量流速G
单位时间内流体流过管道单位截面积的流体质量称为 质量流速G,其单位为 Kg/(m 2 ⋅ s)。
qm G= = uρ A
(4)质量守恒方程
取截面1-1至2-2之间 的管段作为控制体 (欧拉法,截面固定)
1.3.2 机械能守恒
根据牛顿第二定律固体质点运动,无摩擦(理想条件) 机械能=位能+动能=常数 流体流动,无摩擦(理想流体,无粘性μ=0、F=0、 τ=0) 机械能=位能+动能+压强能=常数
u2 = 常数 单位质量流体所具有的机械能= gz + + ρ 2 p
1.3.2 机械能守恒
(1)沿轨线(拉格朗日考察法,是某一流体质点的轨迹)的机械能守 恒 1 ∂p 立方体微元所受各力平衡(静止): X − =0 ρ ∂x 在运动流体中,立方体微元表面不受剪应力,微元受力与静止流 体相同,但受力不平衡造成加速度,即: 1 ∂p dux X− = ρ ∂x dt 设流体微元在dt时间力位移dl,它在x轴上的分量位dx,将dx乘 上式各项得: 1 ∂p du dx 1 2 X− dx = x dx = dux = ux dux = dux ρ ∂x dt dt 2
对于其他表面,也可以写出相应的表达式
②体积力
设单位质量流体上的体积力在x方向的分量为x (N/Kg),则微元所受的体积力在x方向的分量 为 xρδxδyδz ,该流体处于静止状态,外力之和必 等于零、对x方向,有:
∂p δ x ∂p δ x (p− )δ yδ z − ( p + )δ yδ z + x ρδ xδ yδ z = 0 ∂x 2 ∂x 2
式中:A——垂直于流动方向的管截面积 已知速度分布 ur 的表达式,求平均流速:
∫ u dA u=
A r
A
(3)质量流速G
单位时间内流体流过管道单位截面积的流体质量称为 质量流速G,其单位为 Kg/(m 2 ⋅ s)。
qm G= = uρ A
(4)质量守恒方程
取截面1-1至2-2之间 的管段作为控制体 (欧拉法,截面固定)
1.3.2 机械能守恒
根据牛顿第二定律固体质点运动,无摩擦(理想条件) 机械能=位能+动能=常数 流体流动,无摩擦(理想流体,无粘性μ=0、F=0、 τ=0) 机械能=位能+动能+压强能=常数
u2 = 常数 单位质量流体所具有的机械能= gz + + ρ 2 p
1.3.2 机械能守恒
(1)沿轨线(拉格朗日考察法,是某一流体质点的轨迹)的机械能守 恒 1 ∂p 立方体微元所受各力平衡(静止): X − =0 ρ ∂x 在运动流体中,立方体微元表面不受剪应力,微元受力与静止流 体相同,但受力不平衡造成加速度,即: 1 ∂p dux X− = ρ ∂x dt 设流体微元在dt时间力位移dl,它在x轴上的分量位dx,将dx乘 上式各项得: 1 ∂p du dx 1 2 X− dx = x dx = dux = ux dux = dux ρ ∂x dt dt 2
对于其他表面,也可以写出相应的表达式
②体积力
设单位质量流体上的体积力在x方向的分量为x (N/Kg),则微元所受的体积力在x方向的分量 为 xρδxδyδz ,该流体处于静止状态,外力之和必 等于零、对x方向,有:
∂p δ x ∂p δ x (p− )δ yδ z − ( p + )δ yδ z + x ρδ xδ yδ z = 0 ∂x 2 ∂x 2
化工原理_第三版_陈敏恒_课件_华东理工内部 第02章
2 p p u pK=pV时 H 0 V k H f 01 H f 1 K g max g g 2g p0 pV H g max H f 01 ( NPSH )C g g
规定必需汽蚀余量 (NPSH)r=(NPSH)c+Δ, 进泵样本,与流量有关 2 p u 实际汽蚀余量 NPSH 1 1 pV g 2 g g 须比(NPSH)r大0.5m以上, 最大允许安装高度[Hg]为
②管路特性曲线下移,
p ↓,图解思维 因 g
qV↑,H↓,η不定
例2 图示管路输送液体, 泵转速n=2900r/min时, 泵特性曲线为 He=40-0.1qV2 (He单位为m,qV单位为m3/h) 流量为10m3/h, 现欲采用 降低转速的办法使流量 减少30% (流动处于阻力 平方区) 。 求:转速n’应降至多少?
例如: H单=20-2qV2 2 H并=20-0.5qV
工作点 q V ’≠ 2 q V
如图:
串联 可见串联后压头并不是原来的两倍; 同样并联后流量也不是原来的两倍; 并且串并联的数量越多,增幅越小。
并联
(3)组合方式的选择
P H 单 max 时, 当 g
必须串联
本次讲课习题:
第二章 1, 2, 3,4,5
2.2.4.2 汽蚀余量NPSH
2 p1 u12 pk uk 由1至K:g 2 g g 2 g H f 1 K
pK=pV, 发生汽蚀, 这时p1最小, 定义临界汽蚀余量(NPSH)c
2 p1min u12 pV uk ( NPSH )C H f 1 K g 2 g g 2 g 2 p p u 由0至K: 0 H g H f 01 H k k f 1 K g g 2 g
规定必需汽蚀余量 (NPSH)r=(NPSH)c+Δ, 进泵样本,与流量有关 2 p u 实际汽蚀余量 NPSH 1 1 pV g 2 g g 须比(NPSH)r大0.5m以上, 最大允许安装高度[Hg]为
②管路特性曲线下移,
p ↓,图解思维 因 g
qV↑,H↓,η不定
例2 图示管路输送液体, 泵转速n=2900r/min时, 泵特性曲线为 He=40-0.1qV2 (He单位为m,qV单位为m3/h) 流量为10m3/h, 现欲采用 降低转速的办法使流量 减少30% (流动处于阻力 平方区) 。 求:转速n’应降至多少?
例如: H单=20-2qV2 2 H并=20-0.5qV
工作点 q V ’≠ 2 q V
如图:
串联 可见串联后压头并不是原来的两倍; 同样并联后流量也不是原来的两倍; 并且串并联的数量越多,增幅越小。
并联
(3)组合方式的选择
P H 单 max 时, 当 g
必须串联
本次讲课习题:
第二章 1, 2, 3,4,5
2.2.4.2 汽蚀余量NPSH
2 p1 u12 pk uk 由1至K:g 2 g g 2 g H f 1 K
pK=pV, 发生汽蚀, 这时p1最小, 定义临界汽蚀余量(NPSH)c
2 p1min u12 pV uk ( NPSH )C H f 1 K g 2 g g 2 g 2 p p u 由0至K: 0 H g H f 01 H k k f 1 K g g 2 g
化工原理_第三版_陈敏恒_课件_华东理工内部 第01章
=1.204×105Pa(绝压) 5 5 4 pA=1.204×10 -1.013×10 =1.91×10 Pa(表压)
1.2.4.2 烟囱拔烟
pA=p2+ρ冷gh pB=p2+ρ热gh 由于ρ冷>ρ热,则pA>pB 所以拔风 烟囱拔风的必要条件是什么?
1.2.4.3 浮力的本质
物体上下所受压强不同 取微元: 压差力=(p2-p1)dA=ρghdA=ρgdV排 V排=ΣdV排
4)质量守恒方程(连续性方程) 取控制体作物料衡算(欧拉法)
1u1 A1 2 u 2 A2 .dV t V 定态流动: .dV 0 t V
1u1 A1 2 u 2 A2 c
即:q m 1 q m 2 c — —连续性方程式 对不可压缩流体: c,q v1 q v 2 c u1 A1 u 2 A2 c,
分析方法(数学分析法) ①取控制体 ②作力衡算 ③结合本过程的特点,解微分方程 1.2.1.4 静力学方程应用条件 ①同种流体且不可压缩(气体高差不大时仍可用) ②静止(或等速直线流动的横截面---均匀流) ③重力场 ④单连通 1.2.2 流体的总势能 总势能 (压强能与位能之和) 虚拟压强
1.2.3 压强的表示方法 1.2.3.1 单位
流线演示:
返回
流体黏性:
返回
1.3 流体流动中的守恒原理 1.3.1 质量守恒
1)流量、流速 流量——质量流量qm, kg/s (ρ· qv ) 体积流量qv, m3/s 流速——质量流速G, kg/m2s( qm /A) 体积流速u, m/s ( qv /A) 2)点速度u 圆管:粘性,速度分布 工程处理方法:平均值
积分得 p+ρgz=常数 或 p1 p2 gz1 gz 2 等高等压,等压面
华东理工化工原理课程设计ppt
(塔径定后及流体力学校核时可调整)
计算两相流动参数
F LV Ls Vs ρL ρV
Vs——气相流率,m3/s Ls——液相流率,m3/s
查图4-9得气相负荷因子C20 计算液泛速度uf
u f C 20 (
20
)
0 .2
(
L V V
)
0 .5
溶液的表面张力 手算参考文献[1]p25
2.3.4负荷性能图 参考[1]p135 要详细计算 V ①液相下限线 ②液相上限线 ③漏液线 ④过量液沫夹带线 ⑤溢流液泛线 ⑥精馏线和提馏线
m /s 1
3
A 精馏线 4
●
B 提馏线 5
●
2 3
3 L m /s
(精馏段与提馏段负荷应在负荷性能图内)
①液相下限线 由how=6mm计算
V 4
●
A 精馏线 B 提馏线 5
2.3.2塔板详细设计
参考[1]p117
参考表4-11取hw 取ho
(为保证液封ho<hw或用凹受液盘折降液板)
由塔径取WS WC 参考[1]p119
由Lw/D查图 4-21得Wd
计算鼓泡区面积Aa
取筛孔直径d0 (3-8;10-25mm )及t/d0(2.5~4)
计算开孔率φ及筛孔面积A0
2.3.3塔板流体力学校核 参考[1]p133 ①板压降校核 干板压降+液层阻力 △p总<△p允许 ②液沫夹带量校核 eV<0.1kg液/kg汽 ③溢流液泛条件校核 降液管内泡沫层高度 Hfd<HT+hw ④液体在降液管内停留时间校核 τ=Af Hd /LS>3~5s ⑤漏液点的校核(需试差) k=uo /uow>1.5~2
《化工原理第一讲》ppt课件
•单元操作特点: •1〕.都是物理操作。 •2〕.都是化工消费过程中共有的操作。 •3〕.用于不同化工消费过程的同一单元操作,其原理一 样,所用设备亦通用。
化工单元操作的目的是:
①物料的保送;
②物料物理形状的改动;
③混合物料的分别。
三传实际:动量;热量;质量
一反:化学反响
2 单位制与单位换算
•1〕 单位制
结晶器
II
I
P kg/h
96%KNO3
R kg/h 37.5%KNO3
• 4.列算式: • 方框I:总物料:1000=W+P • KNO3组
方分框:1I0I0:0×总0物.2料=W:×S=0+PP+×R 0.96
KNO3组分:S×0.5=P×0.96+R×0.375
W=791.7 kg/h P=208.3 kg/h S=974.8 kg/h R=766.5 kg/h
解:1.绘简图 0.095kg/s
25℃溶液 1.0kg/s
换热器
80℃溶液 1.0kg/s
2.定基准:1s,0℃,液体 3.划范围:以换热器为衡算范围
120℃饱和水 0.095kg/s
120℃饱和水蒸汽 0.095kg/s
25℃溶液 1.0kg/s
换热器
80℃溶液 1.0kg/s
120℃饱和水 0.095kg/s
• 阅历公式的单位换算,也可采用换算因数将规定单位换 算成所要求单位。
• 例0-2:水蒸汽在空气中分散系数为:
1.46104
5
T2
D
P T441
式中:D-分散系数,ft2/h;
P-压强,atm;
T-兰氏温度,oR。
试将式中各符号单位换算成 D:m2/s;P:Pa;T:K
华东理工大学化工原理讲稿和ppt
+
xD R+1
②提馏段操作方程
V yn+1 = Lxn + DxD − FxF
yn
=
L V
xn−1
+
DxD − V
FxF
yn
=
(R
RD + 1)D
+ −
qF (1 −
q)F
xn−1
+
(R
DxD − FxF + 1)D − (1 − q)F
③操作线
精馏段过(xD, xD)点,截距
提馏段过(xW, xW)点, 斜率
⑷由上往下按平衡关系、操作关系依次交替作阶 梯
④最优加料位置的确定 xm−1 < xq < xm 为最佳加料位置, 过前或过后N↑
5.2 设计型计算命题
已知:F, xF, xD, xW 选择:P, q, R
求:N, m
①总压 P 的选择与加热、冷凝温度、α有关
②回流比的选择
经济上,R↑, 能耗↑
f (P,t)
道尔顿分压定律
yA
=
pA P
=
PA0 ( P
t
)
x
A
相∴平K衡A常= 数PA0定,义注为意KKAA并= 非xyAA常数
①泡点线(液相线)
xA
=
P − PB0 (t ) PA0 (t ) − PB0 (t )
②露点线(汽相线)
yA
=
PA0 P
P− PA0 (t )
PB0 (t ) − PB0 (t )
= α1α 2 Λ
αN
xN 1− xN
由y1=xD,xN=xW(塔釜)
且记 α = N α1α 2 Λ α N ,N=Nmin
化工原理_第三版_陈敏恒_课件_华东理工内部第03章
3.2 混合机理 3.2.1 搅拌器的两个功能 (1)总体流动 将流体输送到搅拌釜内各处 大尺度宏观混合。
(2)强剪切或高度湍动 产生剪切力场或旋涡 小尺度宏观混合,促进微观混合。 注意:流体不是靠桨叶直接打碎的,而是靠高剪 切力场撕碎的。
射流现象
作用 ①夹带 ②剪切, 脉动
3.2.2 均相液体的混合机理 (1)低黏度液体的混合 总体流动+高度湍动 最小液团尺寸为10μm量级 (2)高黏度及非牛顿流体的混合 多处于层流状态——混合机理主要依赖于 充分的总体流动。 3.2.3 非均相物系的混合机理 (1)液滴或气泡的分散
(3) 偏心安装 ——破坏循环回路 的对称性 (录像)
(4) 装导流筒——避免短路及死区
3.4 搅拌功率 3.4.1 混合效果与功率消耗 功率消耗 P =ρgHqV 增加功率——改善混合效果 能量合理有效利用——与桨形、尺寸选择有关 大尺度:qv大;小尺度:H大;→P大 对搅拌器,要求能消耗更多的功率(如设置挡 板),以获得较好的搅拌效果。(与泵不同) 搅拌器设计:不是设法提高效率η,而是设法增 加功率P。尽管如此,搅拌装置仍存在能量的有 效利用。 如需要快速分布,要有大流量; 如需要高破碎度,要有高湍动。
(3)气泡尺度的分布 原理基本相同,但气液界面张力比液液界面 张力为大,气液密度差大,大气泡易浮升到液 面,因此分散更加困难。
(3)搅拌器的性能 3.3.1 常用搅拌器的性能 (1) 旋桨式搅拌器(录像) qV大,H小,轴向流出 叶片端速度5~15m/s 适于低黏度液体 μ<10Pa· s (2) 涡轮式搅拌器(录像) qV小,H大,径向流出 叶片端速度3~8m/s 适于中等黏度液体 μ<50Pa· s
1
3.4.3 搅拌功率的分配
化工原理(全套课件148p) 课件
§1、2流体静力学及其应用
▪ 1、流体静止时的性质 : ▪ 质量m , 体积 V 密度 ρ ▪ 压强P =压力P
静止流体所受力---压强(压力)
▪ 1)压强的定义:静止流体单位面积上所受 到的压力称为压强,习惯上称压力。
▪ 2)压强的符号:P ▪ 3)压强的单位:1atm =101325Pa
=760mmHg =10.33mH2O= 1.033at ▪ 4)压强大小的表征: ▪ 表压=绝对压强—当地大气压 ▪ 真空度=当地大气压—绝对压强
化工原理
梁燕波
绪论
▪ 根据专业人才培养的目标和《化工原理》 课程的教学目的,我们选择了由何潮洪、 冯宵编写的教材《化工原理》。该课程是 一门重要的技术基础课,在整个专业教学 过程中是承前启后,由理及工的桥梁。要 求学生了解工业生产中所涉及的问题,掌 握解决问题的途径,并能运用经济观点综 合处理问题,提高分析和解决问题的能力。 为学生在今后的学习和工作中,正确而有 效地联系工业生产打下基础。
化工原理课程的要求
▪ 化工原理分为: ▪ 理论课和实践课(实验、见习)
1、理论课要求
▪ 1、 上课时间 ▪ 2、所用教材:由冯宵、何潮洪主编 由科学出版
社出版的“十一五“国家级规划教材,《化工 原理》上下册。 ▪ 3、教学内容 :上册 流体力学基础、流体输送 机械、热量传递基础、传热过程计算与换热器。 下册 质量传递基础、气体吸收、蒸馏、气— 液传质设备。 ▪ 4、上课要求:课堂做笔记、每次有作业,使用 计算器,每周交作业,每章有测试。
上两式为流体静 力学方程。
补充练习
▪ 我们可以用汞柱和水柱表示压强,也可以 用空气柱表示。
▪ P=ρgh ; 101325=1.29*9.8*h ; h=8015m
化工原理ppt课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案全套电子讲义完整版ppt
二、压力、流速和流量的测量
为了了解和控制生产过程,需要测定管路或设备内的 压力、流速及流量等参数,以便合理地选用和安装测量仪 表。而这些测量仪表的工作原理又多以流体的静止或流动 规律为依据。
第二节 流体静力学
一、流体的压缩性
流体的特征是分子之间的内聚力极小,几乎有无限的 流动性,而且可以几乎毫无阻力地将其形状改变。当流速 低于声速时,气体和液体的流动具有相同的规律。
热力学基本方程式是以液体为例推导出来的,也适用 于气体。因在化工容器中,气体的密度也可认为是常数。 值得注意的是,静力学基本方程式只能用于静止的连通着 的同一种流体内部,因为他们是根据静止的同一种连续的 液柱导出的。
3、静力学基本方程的应用 流体静力学基本方程在化工生产过程中应用广泛,通 常用于测量流体的压力或压差、液体的液位高度等。
2、静力学基本方程的讨论
(1)在静止的液体中,液体任一点的压力与液体密度 和其深度有关。液体密度越大,深度越大,则该点的压力 越大。
(2)在静止的、连续的同一液体内,处于同一水平面 上各点的压力均相等。此压力相等的截面称为等压面。
第二节 流体静力学
(3) 当液体上方的压力或液体内部任一点的压p1 力 有变化时,液体内部各点的压力p2 也发生同样大小的变 化。
气压强为基准测得的流体 表压=绝对压强-(外界)大气压强
③真空度 当被测流体内的绝对压强小于当地(外界)大气压强 时,使用真空表进行测量时真空表上的读数称为真空度。即
真空度=(外界)大气压强-绝对压强
第二节 流体静力学
在这种条件下,真空度值相当于负的表压值。 图1-1 绝对压强、表压和真空度的关系 因此,由压力表或真空表上得出的读数必须根据当时、 当地的大气压强进行校正,才能得到测点的绝对压。 绝对压强、表压强与真空度之间的关系,可以用图11表示。 为了避免绝对压强、表压与真空度三者关系混淆,在 以后的讨论中规定,对表压和真空度均加以标注,如 2000Pa(表压)、600mmHg(真空度)。如果没有注明, 即为绝压。
为了了解和控制生产过程,需要测定管路或设备内的 压力、流速及流量等参数,以便合理地选用和安装测量仪 表。而这些测量仪表的工作原理又多以流体的静止或流动 规律为依据。
第二节 流体静力学
一、流体的压缩性
流体的特征是分子之间的内聚力极小,几乎有无限的 流动性,而且可以几乎毫无阻力地将其形状改变。当流速 低于声速时,气体和液体的流动具有相同的规律。
热力学基本方程式是以液体为例推导出来的,也适用 于气体。因在化工容器中,气体的密度也可认为是常数。 值得注意的是,静力学基本方程式只能用于静止的连通着 的同一种流体内部,因为他们是根据静止的同一种连续的 液柱导出的。
3、静力学基本方程的应用 流体静力学基本方程在化工生产过程中应用广泛,通 常用于测量流体的压力或压差、液体的液位高度等。
2、静力学基本方程的讨论
(1)在静止的液体中,液体任一点的压力与液体密度 和其深度有关。液体密度越大,深度越大,则该点的压力 越大。
(2)在静止的、连续的同一液体内,处于同一水平面 上各点的压力均相等。此压力相等的截面称为等压面。
第二节 流体静力学
(3) 当液体上方的压力或液体内部任一点的压p1 力 有变化时,液体内部各点的压力p2 也发生同样大小的变 化。
气压强为基准测得的流体 表压=绝对压强-(外界)大气压强
③真空度 当被测流体内的绝对压强小于当地(外界)大气压强 时,使用真空表进行测量时真空表上的读数称为真空度。即
真空度=(外界)大气压强-绝对压强
第二节 流体静力学
在这种条件下,真空度值相当于负的表压值。 图1-1 绝对压强、表压和真空度的关系 因此,由压力表或真空表上得出的读数必须根据当时、 当地的大气压强进行校正,才能得到测点的绝对压。 绝对压强、表压强与真空度之间的关系,可以用图11表示。 为了避免绝对压强、表压与真空度三者关系混淆,在 以后的讨论中规定,对表压和真空度均加以标注,如 2000Pa(表压)、600mmHg(真空度)。如果没有注明, 即为绝压。
化工原理多媒体教学课件
1 . 化学工程学科中的基本概念
化工单元操作的分类 根据单元操作的理论基础进行的分类
1)以动量传递(momentum transfer)理论为基础: 流体流动、流体输送机械、沉降、过滤、搅拌、固体流态化 等
2)以热量传递(heat transfer)理论为基础: 加热、冷却、蒸发 等 3)以质量传递(mass transfer)理论为基础: 吸收、精馏、萃取、干燥 等
产过程与设备计算的工程技术学科。
化学工程:研究以化学工业为代表的过程工业中有关化学过程 和物理过程的一般原理和共性规律,解决过程和装置的开发、 设计、操作及优化的理论和方法问题。
化工单元操作:(unit operation of Chemical Engineering):
一物理性的化工基本操作过程。 任何一种化工过程(chemicals production process)均是由若干化工单 元操作及化学反应过程有机组合而成。
流体中发生的这三种传递现象(transport phenomena)都是由于
流体质点的运动和分子扩散运动所产生的结果。
流体流动: 研究流体流动的规律,完成流体输送的任务。
流体输送机械:研究流体输送机械的性能特点,进行正确的选用及安装。
沉降:利用密度差,从气体或液体中分离悬浮的固体颗粒、液滴或气泡。
过滤:根据尺寸不同的截留,从气体或液体中分离悬浮的固体颗粒。
随着新产品、新工艺的开发或为实现绿色化工生产,对物理过程提出了
一些特殊要求,又不断地发展出新的单元操作或化工技术,如膜分离、参数 泵分离、电磁分离、超临界技术等。同时,以节约能耗,提高效率或洁净无 污染生产的集成化工艺(如反应精馏、反应膜分离、萃取精馏、多塔精馏系 统的优化热集成等)将是未来的发展趋势。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据欧根方程,取
∆P L
=
C1µu
+
C2
ρu2
代入空气数据
470=C1×1.81×10-5×0.4+C2×1.2×0.42 2300=C1×1.81×10-5×0.9+C2×1.2×0.92 解得C1=3.9×106, C2=2301
一氧化碳
∆P L
=
C1µu
+
C2 ρu2
=3.9×106×2.4×10-5×0.5+2301×11.4×0.52
体积当量dev,
V
=
π
6
d
3 ev
面积当量des,S
=
πd
2 es
比表面当量dea,
a
=
6 dea
两个独立的, 取dev和球形度(形状系数)ψ
ψ≤1
例1
边长为L=4mm的正方体颗粒
求:dev,des,dea,ψ,a
解: V
=
L3
=
π
6
d
3 ev
d eV
=
L3
6
π
=
4 × 1.24
=
5mm
S
=
6 L2
方式2.混入悬浮液
工业上,例如用板框压滤机 过滤完毕时,框内充满滤饼
5 过滤计算 5.1 物料衡算
悬浮液含固量表示方法: 质量分数w, kg固体/kg悬浮液
体积分数φ, m3固体/m3悬浮液
取1kg悬浮液 φ =
w/ ρp
取1m3悬浮液
dp 0
fd(d p )
定平均直径dm,准则:比表面相等 原因:流动较慢时,阻力以表面剪切力为主,
表面积对阻力影响大
a
=
ΣSi ΣVi
=
Σ(
mi
ρp
ai
)
m/ ρp
=
Σxiai
由
a
=
6
ψdm
,ai
=
6
ψd
i
得
dm
=
1
Σ
xi di
2.3 床层特性
①空隙率 ε
=
V空 V床
=
V床 − Vp V床
∴ Vp = (1 − ε )V床
=6604 Pa/m
本例也可用a,ε表达,
∆P L
=
4.17
a2 (1 −
ε3
εபைடு நூலகம்
)2
µu
+
0.29
a(1 −
ε3
ε
)
ρu2
先用实验值算出a、ε,再用a、ε来计算实际工 艺物料的压降
3.4两种实验规划方法的比较 量纲分析法:
对过程无须有深刻理解, “黑箱”法 ①析因实验 ②无量纲化 ③测定性实验 数学模型法:
①流体物性:ρ,μ ②操作因素: u ③设备因素: 颗粒直径,
颗粒大小分布, 空隙大小
2 颗粒床层的特性
2.1 单颗粒的特性
球形颗粒,只需一个参数dp
颗粒特性:体积
V
=
π
6
d
3 p
表面积
S
=
πd
2 p
比表面
a
=
S V
=
6 dp
实际遇到两个问题:
①非球形
②大小不一(分布)
非球形:定当量直径,目标不同结果不同
ε受充填方式的影响
与dp无关
ε
=
1
−
πd
3 p
/
d
3 p
6
=
0.48
与dp分布有关
②床层比表面
aB
S = V床
=
S(1 − ε )
Vp
=
a(1 − ε )
3.流体通过固定床的压降
几何边界复杂,无法解析解,要靠实验 数学模型法主要步骤:
3.1 简化模型 过程特征: ①爬流,表面剪切力为主,
形体力(压差力)为次 ②空隙中实际速度与空隙大小有关
对过程有深刻理解,能将过程大幅度简化 ①简化模型 ②解析解 ③验证性实验
4.过滤原理及设备 4.1基本原理 最简单的过滤操作:
布氏漏斗 悬浮液中固体颗粒被 过滤介质截留,清液在 压差下通过多孔过滤介 质,使固液分离。 过滤介质缝隙并不需要比颗粒小---架桥现象
“穿滤” 5%
颗粒粘,不出滤液—用助滤剂 助滤剂 刚性颗粒 方式1.预涂
=
πd
2 eS
deS = L
6 = 4 ×1.38 = 5.5mm
π
a
=
S V
=
6 L2 L3
=
6 d ea
dea = L = 4mm
a
=
6 d ea
=
6 0.004
= 1500m2
/ m3
ψ
=
d
2 eV
d
2 eS
52 = 5.52
= 0.81
②dev, des, dea三者关系
dea
= ψdev
=
ψ
d 1.5 es
dea≤dev≤des
2.2 颗粒群的特性 大小不一: 筛分分析 1 kg 颗粒群
频率函数
(粒级质量分率~dp)
fi
=
xi di−1 −
di
特点:某粒级范围的颗粒质量分率 =该范围曲线下的面积
曲线下的面积和=1
分布函数F与频率函数f的关系
f
=
dF d(d p )
∫ F (d p ) =
ρu2
粘性项 惯性项
Re’< 3时,可忽略惯性项
Re’> 100时,可忽略粘性项
影响因素分析:
①物性:ρ,μ ②操作:u ③设备:ψ,dm,ε
空隙率的影响最大,
(1 − ε )2
3
例2 要估计20℃, 1.0MPa(绝)的CO通过固定床脱
硫器的压降, 用20℃, 101.3kPa(绝)的空气进行实测
a(1 −
ε3
ε
)
ρu2
=
λ
'
a(1 −
ε3
ε
)
ρu2
3.3 实验验证
λ'=
4.17 Re'
+
0.29
∆P L
=
4.17
a2
(1 −
ε3
ε
)2
µu
+
0.29
a(1 −
ε3
ε
)
ρu2
用
a
=
6
ψdev
代入,得欧根方程:
∆P L
=
150
(1 − ε )2 ε 3 (ψdev )2
µu
+
1.75
(1 − ε ) ε 3ψdev
a2 (1 −
ε3
ε
)2
µu
=
K
a2 (1 −
ε3
ε
)2
µu
实验得康采尼方程
∆P L
=
5
a2 (1 −
ε3
ε
)2
µu
适用范围:Re’<2
床层雷诺数
Re'=
d e u1 ρ 4µ
=
ρu a(1 − ε
)µ
宽范围:
细管
hf
=
∆P
ρ
=λ
Le de
u12 2
∆P L
=
λ
Le L
ρu12
2de
=
λ
Le 8L
简化原则: 模型与原型①表面积要相等
②空隙容积相等 将原型简化成一组平行细管 细管直径de
3.2 解数学模型
u1
=
u
ε
de
=
4 × 流通面积 润湿周边
=
4 × 流动空间 润湿表面
de
=
4εV床 a(1 − ε )V床
=
4ε a(1 − ε )
细管层流
∆P
=
32µu1 Le
d
2 e
得
∆P L
=
2
Le L
测得
u=0.4m/s时
∆P L
=
470 Pa
/
m
,
u=0.9m/s时
∆P L
=
2300Pa / m
。
求:CO以u=0.5m/s通过时的
∆P L
。
已知:20℃,1.0MPa(绝)的一氧化碳 µ=2.4×10-5Pa·s, ρ=11.4kg/m3
解:20℃, 常压空气ρ=1.2kg/m3, µ=1.81×10 -5Pa·s
考试复习重点资料(最新版)
资料见第二页
封
面
第1页
第四章 流体通过颗粒层的流动
1 概述 1.1 工业背景
固定床—由许多固体颗粒堆积成的静止颗粒层
1.2 固定床阻力的影响因素