轴向拉压习题答案2
材料力学习题册答案-第2章-拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=
=
=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้
第02章拉压题解
第2章 习题解答2-1 试求图示各杆1-1,2-2,3-3截面的轴力并画出杆的轴力图。
解:(a )N 1-1 = 50 kN ,N 2-2 = 10 kN ,N 3-3 = -20 kN(b )N 1-1 = F ,N 2-2 = 0 ,N 3-3 = F(c )N 1-1 = 0 ,N 2-2 = 4F ,N 3-3 = 3F2-2 图示螺旋压板夹紧装置。
已知螺栓为M20(螺纹内径d =17.3mm ),许用应力[ζ]=50MPa 。
若工件所受的夹紧力为2.5kN ,试校核螺栓的强度。
∑=0BM03=⋅-⨯l F lF A得F = 3 F A243dF A F Aπ==σ233.174105.23⨯π⨯⨯⨯== 31.9 MPa <[ζ]安全2-3 图示结构,A 处为铰链支承,C 处为滑轮,刚性杆AB 通过钢丝绳悬挂在滑轮上。
已知F =70kN ,钢丝绳的横截面积A =500mm 2,许用应力[ζ]=160MPa 。
试校核钢丝绳的强度。
由AB 杆的平衡条件得:∑=0A M 05s i n 4=⋅α-N F α= 45°,2.7945sin 570445sin 54=︒⨯=︒=F N kN4.158500102.793=⨯==σA N MPa <[ζ] ,安全 2-4 图示为一手动压力机,在物体C 上所加的最大压力为150kN ,已知立柱A 和螺杆BB 所用材料的许用应力[ζ]=160MPa 。
1. 试按强度要求设计立柱A 的直径D ;2. 若螺(a )(b )杆BB 的内径d =40mm ,试校核其强度。
解:由平衡条件得 752150==A N kN 1. 由立柱的强度条件 24DN A N AA A π==σ≤[ζ] 得 D ≥4.2416010754][43=⨯π⨯⨯=πζA N mm2. 螺杆的应力1194010150423=⨯π⨯⨯==σBB BB A N MPa <[ζ] 螺杆强度足够。
工程力学轴向拉伸与压缩答案
第5 章轴向拉伸与压缩5-1 试用截面法计算图示杆件各段地轴力,并画轴力图.习题5-1 图解:(a)题F Nx(b)题F NxA(c)题F N(kN)x-3(d)题F N-10x5-2 图示之等截面直杆由钢杆 ABC 与铜杆 CD 在 C 处粘接而成.直杆各部分地直径均为 d =36 mm ,受力如图所示.若不考虑杆地自重,试求 AC 段和 AD 段杆地轴向变形量 Δl AC和 Δl AD习题 5-2 图(F N ) l AB (F N ) l BC解: Δl AC =AB πd 2E s4+BC πd 2 E s 4 150 ×103 × 2000 +100 ×103 ×3000 4 = × = 2.947 mm(F N ) 200 ×103 l π ×362100 ×103 × 2500 × 4 Δl = Δl + CD CD = 2.947 + = 5.286 mm AD AC πd 2 E c4105 ×103 × π ×3625-3 长度 l =1.2 m 、横截面面积为 1.10×l0-3m 2 地铝制圆筒放置在固定地刚性块上;刚性板mC B −6 B 直径 d =15.0mm 地钢杆 BC 悬挂在铝筒顶端地刚性板上;铝制圆筒地轴线与钢杆地轴线重 合.若在钢杆地 C 端施加轴向拉力 F P ,且已知钢和铝地弹性模量分别为 E s =200GPa ,E a =70GPa ;轴向载荷 F P =60kN ,试求钢杆 C 端向下移动地距离.解:u A− u B −F l = P AB E a A a 3(其中 u A = 0)3∴ u =60 ×10 ×1.2 ×10= 0.935 mm B 70 ×10 3 ×1.10 ×10 −3 ×10 6钢杆 C 端地位移为F l60 ×103 × 2.1×103u = u + P BC = 0.935 + = 4.50 m m E s A s200 ×103 × π ×15245-4 螺旋压紧装置如图所示.现已知工件所受地压紧力为 F =4 kN .装置中旋紧螺栓 螺纹地内径 d 1=13.8 mm ;固定螺栓内径 d 2=17.3 mm .两根螺栓材料相同,其许用应力[σ ] =53.0 MPa .试校核各螺栓地强度是否安全.解:∑ M B = 0 ,F A = 2kN ∑ F y = 0 ,F B = 6kN习题 5-4 解图习题 5-4 图 σ = F A = 2000 = A π2000 × 42= 13.37 MPa < [σ ] ,安全. A A d 2 π ×13.8 ×104 σ = F B = 16000= 25.53 MPa <[σ ] ,安全. A B π ×17.32 ×10−645-5 现场施工所用起重机吊环由两根侧臂组成.每一侧臂 AB 和 BC 都由两根矩形截面 杆所组成,A 、B 、C 三处均为铰链连接,如图所示.已知起重载荷 F P =1200 kN ,每根矩形 杆截面尺寸比例 b/h =0.3,材料地许用应力[σ ]=78.5MPa .试设计矩形杆地截面尺寸 b 和 h .4⋅2FF N习题 5-5 图解:由对称性得受力图如习题 5-5 解图所示.∑ F y = 0 ,4F N cos α = F P 习题 5-5 解图F = F P = N 4 cos α 1200 ×103960 = 3.275 ×105 Nσ = F N A= F N 0.3h 2≤ [σ ]9602 + 42025h ≥ F N =0.3[σ ]3.275 ×100.3 × 78.5 ×106= 0.118m b = 0.3h ≥ 0.3 × 0.118 = 0.0354m = 35.4mmh = 118mm ,b = 35.4mm5-6 图示结构中 BC 和 AC 都是圆截面直杆,直径均为 d =20mm ,材料都是 Q235 钢, 其许用应力[σ ]=157MP .试求该结构地许用载荷.B习题 5-6 图习题 5-6 解图∑ F x = 0 , F B = 2F A (1)∑ F y= 0 ,2 F A + 23F B − F P = 0 2(2)1 + 3 F P = F B2(3)F ≤ [σ ] ⋅πd2B43 mdWs由式(1)、(2)得:F ≤ 1 + P2 = 1 + 23 ⋅π d 2 [σ ] 43 ⋅π × 202 ×10−4 ×157 ×106 = 67.4kN 4` (4)F P =2 (1 + 23 ) F A = 2 (1 + 2 3 ) ⋅[σ ]π 24= 90.28kN (5)比较(4)、(5)式,得 [F P ] = 67.4 kN5-7 图示地杆件结构中 1、2 杆为木制,3、4 杆为钢制.已知 1、2 杆地横截面面积A 1=A 2=4000 mm 2,3、4 杆地横截面面积 A 3=A 4=800 mm 2;1、2 杆地许用应力[σ]=20MPa , 3、4 杆地许用应力[σ ]=120 MPa .试求结构地许用载荷[F P ].习题 5-7 图P(a)3(b)解:1. 受力分析:由图(a )有5∑ F y = 0 , F 3 =F P 3 4 4由图(b )由∑ F x = 0 , F 1 = − 5 F 3 = − 3 F P∑ F x = 0 , F 4 = 4 F 3 = 5 43 F P2. 强度计算:5∑ F y = 0 , F 2= − 3F 3 = −F P| F 1 |>| F 2 || F 1 |≤ [σ w ] A 14 F ≤ A [σ ] 3P 1 w F ≤ 3 A [σ ] = 3 × 4000 ×10 −6 × 20 ×10 6 = 60 kN P 4 1 w4F 35F 3 > F 4 , ≤ [σ s ] , A 3F P ≤ [σ ]A 3 3F ≤3 [σ] A 3 ×120 ×10 6 × 800 ×10 −6= 57.6 kN[F P] = 57.6 kNa*5-8 由铝板和钢板组成地复合柱,通过刚性板承受纵向载 荷 F P =38 kN ,其作用线沿着复合柱地轴线方向.试确定:铝板和 钢板横截面上地正应力. 解:此为超静定问题.1. 平衡方程2. 变形协调方程:3. 物性关系方程:F Ns + F Na = F P Δl s = Δl a(1)(2)联立解得⎧F F Ns E s A sE s A s= FNaE a A a(3)习题 5-8 图⎪ Ns = E A E A F P ⎪ ⎨ ⎪F = s s + a E a A a a(压) F NaE A + E A P s s a aσ =F Ns =−E s F P = −E s F P s A E b h + E⋅ 2b h b hE + 2b hE s s 0 a 1 0 s 1 a9 3σ = − 200 ×10 ×385 ×10175MPa (压)= − s 0.03 × 0.05 × 200 ×109 + 2 × 0.02 × 0.05 × 70 ×109σa = F Na A = −b hE E a F P+ 2b hEa 0 s 1 aσ = −175E a E s = −17570 200= −61.25MPa (压)*5-9 铜芯与铝壳组成地复合棒材如图所示,轴向载荷通过两端刚性板加在棒材上. 现已知结构总长减少了 0.24 mm .试求:1.所加轴向载荷地大小; 2. 铜芯横截面上地正应力.习题 5-9 图F NcE A =F NaE A(1)E A E A σ aF = ΔlE c A c , F= ΔlE a A aF Nc + F Na = F P(2)Nc l NalF = F + F = ΔlE c A c + ΔlE a A aP Nc Nal l = Δl E A + E A( c c a a) l= 0.24 ×10−3 ⎧ π 2 =π ⎡ 2 2 ⎤⎫ = ⎨105 ×106 × ×(25 ×10−3 ) + 75 ×106 × × (60 ×10−3 ) − (25 ×10−3 ) ⎬ 30 ×10−3⎩ 4 4 ⎭ = 171 kNF =E c A cNc c c F P + E a A aF =E a A a Na c cF P + E a A a⎧ F Nc E c F P E c F P ⎪σ c = ⎪ A c ⎪ ∴ ⎨= E c A c + E a A a = E c ⋅ πd 2 4 + E a π 2 2 ⋅ (D− d ) 4 ⎪ = F Na ⎪ A a ⎪⎩ = πd 2E c 4E aF Pπ(D 2 − d 2 ) + E a 4 9 32. σ =4 ×105 ×10 ×171×1083.5MPa = c105 ×109 × π × 0.0252 + 70 ×109 × π × (0.062 − 0.025)2σa = σcE a = 83.5 × 70= 55.6MPa E c 105*5-10 图示组合柱由钢和铸铁制成,组合柱横截面为边长为 2b 地正方形,钢和铸铁 各占横截面地一半(b ×2b ).载荷 F P ,通过刚性板沿铅垂方向加在组合柱上.已知钢和铸铁 地弹性模量分别为 E s =196GPa ,E i =98.0GPa .今欲使刚性板保持水平位置,试求加力点地 位置 x =?解:∑ M 0 = 0 , (b ⋅ 2b σ 习题 5-10 图) ⋅( x − b ) = (b ⋅ 2b )σs i( 3 b − x )23∴σ σ s =iE sE i2 x − b = σ i3b − 2 x σ s(1)(2)代入(1)得σ i σ s4 x − 2b = 3b − 2 x5= 98 = 1196 2(2)∴ x = b 65-11 电线杆由钢缆通过旋紧张紧器螺杆稳固.已知钢缆地横截面面积为1×103 mm 2 ,E =200GPa ,[σ ] = 300MPa .欲使电杆有稳固力F R =100kN ,张紧器地螺杆需相对移动多少? 并校核此时钢缆地强度是否安全.F R习题 5-11 图解:(1)设钢缆所受拉力为 F N ,由平衡条件F N cos30°=F RF N =100/ cos30°=115.5kNΔl = F N l = 115.5 ×103 ×10 ×103= 6.67mm EA 200 ×103 ×103× 3 / 2张紧器地螺杆需相对移动 6.67mm .(2)钢缆地应力与强度σ = F N A = 115.5 ×10 103= 115.5MP a < [σ ]所以,强度安全.5-12 图示小车上作用着力 F P =15kN ,它可以在悬架地 AC 梁上移动,设小车对 AC梁地作用可简化为集中力.斜杆 AB 地横截面为圆形(直径 d =20mm),钢质,许用应力 [σ]=160MPa .试校核 AB 杆是否安全.3习题 5-12 图F N ABαF N ACF P习题 5-12 解图解:当小车开到 A 点时,AB 杆地受力最大,此时轴力为 F N A B .(1) 受力分析,确定 AB 杆地轴力 F N A B ,受力图如图 5-12 解图所示, 由平衡方程∑Fy= 0 ,F N AB sin α − F P = 0sin α =解得轴力大小为:0.8 0.82 +1.92F N AB = 38.7kN(2)计算应力σ = F N AB = F N AB = 4 × 38.7 ×10 =123 ×106Pa = 123MPa < [σ ] AB强度安全.A AB πd 2 4π × 202 ×10−65-13 桁架受力及尺寸如图所示.F P =30kN ,材料地抗拉许用应力[σ]+=120MPa , 抗压许用应力[σ]-=60MPa .试设计AC 及AD 杆所需之等边角钢钢号.(提示:利用附录B 型钢表.)F N AC45DAF N ADF PF RA习题 5-13 图习题 5-13 解图解:(1)受力分析,确定 AC 杆和 AD 杆地轴力 F N AC 、 F N AD ,对整体受力分析可得, F R A= F R B = F P 2= 15kN再取节点 A ,受力分析,受力图如图 5-13 解图所示,建立平衡方程D D 3 3 2 4 ∑F y = 0 , − F N AC sin 45 + F R A = 0解得 AC 杆轴力大小为:F N AC = 21.2kN(压)∑ F x = 0 , − F N AC cos 45 + F N AD = 0解得 AD 杆轴力大小为: F N AD = 15kN(拉)(2)强度条件拉杆:A AD = F N AD [σ ]+ = 15 ×10 120 = 125mm 2 压杆:(3)选择钢号A AC = F N AC [σ ]− = 21.2 ×10 60 = 353.3mm 2 拉杆: 20 × 20 × 4压杆: 40 × 40 × 55-14 蒸汽机地气缸如图所示.气缸内径D =560mm ,内压强p =2.5MPa ,活塞杆直径 d =100mm .所有材料地屈服极限σs =300MPa . (1)试求活塞杆地正应力及工作安全系数.(2)若连接气缸和气缸盖地螺栓直径为30mm ,其许用应力[σ]=60MPa ,求连接每个气缸盖 所需地螺栓数.习题 5-14 图解:(1)活塞杆受到地轴力为:⎡π (D 2 F = pA = p − d 2 ) ⎤ = 2.5⎡π (560 −1002 ) ⎤ = 596.12kN N ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ 4 ⎦活塞杆地正应力:σ =F N A 杆596.12 ×103 ) = = 75.9MPa π ×102 / 4 工作安全系数: (2)螺栓数mn = σ s σ= 300 = 3.95 75.93x 3 x y xm = F N = 596.12 ×10 = 14.1 个 A 栓 [σ ]栓 π × 302 / 4 × 60由于圆对称,取m =16个.5-15 图示为硬铝试件,h =200mm ,b =20mm .试验段长度l 0=70mm .在轴向拉力 F P =6kN 作用下,测得试验段伸长Δl 0=0.15mm ,板宽缩短Δb =0.014mm .试计算硬铝地弹 性模量E 和泊松比ν .习题 5-15 图解:(1)计算弹性模量Eε = Δl 0 l 0= 0.15 = 2.143 ×10−3 70σ = F P = 6 ×10 = 150MPa AE = σ = 20 × 2 150 ×106 = 70GPa ε 2.143 ×10−3 (2) 计算泊松比νε = Δb 0 b 0= − 0.014 = −7 ×10−4 20ε ν = y = − 7 ×10−4 = 0.327 ε 2.143 ×10−3上一章返回总目录下一章。
第2章拉压作业参考解答
aEADj + 4.5aEADj = 2aF , Dj = 2F 5.5EA
4. 再由 Hooke 定律:
FN1
=
EADj
=
2F 5.5
=
0.3636F
FN 2
= 1.5EADj
=
1.5´ 2F 5.5
2
(1)图(a)为开槽拉杆,两端受力 F=14kN,b=20mm,b0=10mm,δ=4mm。 (2)图(b)为阶梯形杆,AB 段杆横截面面积为 80mm2,BC 段杆横截面面积为 20mm2, CD 段杆横截面面积为 120mm2。 (3)图(c)为变截面拉杆,上段 AB 的横截面面积为 40mm2,下段 BC 的横截面面积为
DG
=
Dl2
-
2 3
Dl1
-
1 3
Dl3=6.89 ´10-4
m
5
2-15 求附图示圆锥形杆在轴向力 F 作用下的伸长量。弹性模量为 E。
解答 对于截面缓变的圆锥形杆可假设横截面上正应力均匀分布。横截面面积为
A(x)
=
1 4
p [d1l
-
(d1
-
d2 )x]2
/l2
ò ò ò Dl =
l
edx =
FN1
FN3
FN2
D
(2)
(b) 整体分析,示力图见附图(3)。
å M Ai = 0 : FN1 ´1 + 3´ 3´1.5 = 0
FN1 = -13.5kN
FAx A
FAy FN1
B
s1
=
FN 1 A1
=
-13.5 ´103 850 ´10-6
=
-15.88MPa
材料力学轴向拉压题目+答案详解
2-4. 图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。
设两根横梁皆为刚体。
解:(1)以整体为研究对象,易见A 处的水平约束反力为零; (2)以AB 为研究对象由平衡方程知0===A B B R Y X(3)以杆BD 为研究对象由平衡方程求得KNN N NY KNN N mC20010 01001101 021211==--===⨯-⨯=∑∑(4)杆内的应力为MPa A N MPa A N 7.63204102012710410102322223111=⨯⨯⨯===⨯⨯⨯==πσπσ2-19. 在图示结构中,设AB 和CD 为刚杆,重量不计。
铝杆EF 的l 1=1m ,A 1=500mm 2,E 1=70GPa 。
钢杆AC 的l 2=,A 2=300mm 2,E 2=200GPa 。
若载荷作用点G 的垂直位移不得超过。
试求P 的数值。
解:(1)由平衡条件求出EF 和AC 杆的内力P N N N P N N AC EF AC4332 2112=====(2)求G 处的位移22221111212243)ΔΔ23(21)ΔΔ(21Δ21ΔA E l N A E l N l l l l l l A C G +=+=+== (3)由题意kNP P P A E Pl A E Pl mml G 1125.2300102001500500107010009212143435.233222111≤∴≤⨯⨯⨯+⨯⨯⨯⨯=⨯⨯+⨯⨯≤ 2-27. 在图示简单杆系中,设AB 和AC 分别是直径 为20mm 和24mm的圆截面杆,E=200GPa ,P=5kN ,试求A 点的垂直位移。
解:(1)以铰A 为研究对象,计算杆AB 和杆AC 的受力kN N kN N AC AB 66.3 48.4==(2)两杆的变形为()伸长mm πEA l N l ABAB AB AB201.04201020045cos 20001048.42303=⨯⨯⨯⨯⨯==Δ ()缩短mm πEA l N l ACAC AC AC 0934.04241020030cos 20001066.32303=⨯⨯⨯⨯⨯==Δ (3)如图,A 点受力后将位移至A ’,所以A 点的垂直位移为AA ’’mmctg A A l A A AA A A mmA A ctg A A ctg A A A mm AA AA AA AA A A A A l l AB A AB AC 249.00355.0284.0 4545sin /Δ 035.0 4530A 0972.030sin /45sin /AΔΔAA ΔAA 00330043010243434321=-='''-=''-=''=∴='''∴'''+'''==-=-='==δ 又中在图中2-36. 在图示结构中,设AC 梁为刚杆,杆件1、2、3的横截面面积相等,材料相同。
材料力学第二章 轴 向拉压习题及答案
第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。
4.材料经过冷作硬化后,其( D)。
A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。
从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。
A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。
A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。
7.铸铁试件压缩破坏(B)。
A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。
8.为使材料有一定的强度储备,安全系数取值应( A )。
A .大于1; B. 等于1; C.小于1; D. 都有可能。
9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。
A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。
《材料力学》第2章轴向拉(压)变形习题解答
其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊
材料力学 拉伸压缩 习题及参考答案
轴向拉伸和压缩 第二次 作业1. 低碳钢轴向拉伸的整个过程可分为 弹性阶段 、 屈服阶段 、 强化阶段 、 局部变形阶段 四个阶段。
2. 工作段长度100 mm l =,直径10 mm d =的Q235钢拉伸试样,在常温静载下的拉伸图如图所示。
当荷载F = 10kN 时,工作段的伸长∆l = 0.0607mm ,直径的缩小∆d = 0.0017mm 。
则材料弹性模量E = 210 GPa ,强度极限σb = 382 MPa ,泊松比μ = 0.28 ,断后伸长率δ = 25% ,该材料为 塑性 材料。
∆l / mmO0.0607253. 一木柱受力如图所示。
柱的横截面为边长20mm 的正方形,材料的弹性模量E =10GPa 。
不计自重,试求 (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱端A 的位移。
100kN260kN解:(1)轴力图如图所示 (2)AC 段 310010250MPa 2020NAC AC AC F A σ-⨯===-⨯ CB 段 326010650MPa 2020NCB CB CB F A σ-⨯===-⨯ (3)AC 段 69250100.0251010NAC AC AC AC F EA E σε-⨯====-⨯ CB 段 69650100.0651010NCB CB CBCB F EA E σε-⨯====-⨯ (4)AC 段 0.025150037.5mm NAC ACAC AC AC ACF l l l EA ε∆===-⨯=- CB 段 0.065150097.5mm NCB CBCB CB CB CBF l l l EA ε∆===-⨯=- 柱端A 的位移 37.597.5135mm A AC CB l l ∆=∆+∆=--=-(向下)4. 简易起重设备的计算简图如图所示。
已知斜杆AB 用两根63×40×4不等边角钢组成,63×40×4不等边角钢的截面面积为A = 4.058cm 2,钢的许用应力[σ] = 170 MPa 。
《材料力学》第2章 轴向拉压变形 习题解
第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。
(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。
(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
材料力学 中国建筑工业出版社第二章 轴向拉压习题答案
2-1a 求图示各杆指截面的轴力,并作轴力图。
(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。
列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。
方法二:简便方法。
(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。
故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。
2-2b 作图示杆的轴力图。
(c)图:(b)图:(3)杆的轴力图如图(d )所示。
2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。
试计算两柱上、中、下三段的应力。
(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。
将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。
列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。
(2)作柱的轴力图,如(e)、(f)所示。
(3)求柱各段的应力。
解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。
材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩
习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。
α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
轴向拉伸与压缩习题及解答
轴向拉伸与压缩习题及解答轴向拉伸与压缩习题及解答⼀、判断改错1、构件内⼒的⼤⼩不但与外⼒⼤⼩有关,还与材料的截⾯形状有关。
答:错。
静定构件内⼒的⼤⼩之与外⼒的⼤⼩有关,与材料的截⾯⽆关。
2、杆件的某横截⾯上,若各点的正应⼒均为零,则该截⾯上的轴⼒为零。
答:对。
3、两根材料、长度都相同的等直柱⼦,⼀根的横截⾯积为1A ,另⼀根为2A ,且21A A >。
如图所⽰。
两杆都受⾃重作⽤。
则两杆最⼤压应⼒相等,最⼤压缩量也相等。
答:对。
⾃重作⽤时,最⼤压应⼒在两杆底端,即max max N All A Aνσν=== 也就是说,最⼤应⼒与⾯积⽆关,只与杆长有关。
所以两者的最⼤压应⼒相等。
最⼤压缩量为 2max max22N Al l l l A EA Eνν??===即最⼤压缩量与⾯积⽆关,只与杆长有关。
所以两杆的最⼤压缩量也相等。
4、受集中⼒轴向拉伸的等直杆,在变形中任意两个横截⾯⼀定保持平⾏。
所以宗乡纤维的伸长量都相等,从⽽在横截⾯上的内⼒是均匀分布的。
答:错。
在变形中,离开荷载作⽤处较远的两个横截⾯才保持平⾏,在荷载作⽤处,横截⾯不再保持平⾯,纵向纤维伸长不相等,应⼒分布复杂,不是均匀分布的。
5、若受⼒物体内某电测得x 和y ⽅向都有线应变x ε和y ε,则x 和y ⽅向肯定有正应⼒x σ和y σ。
答:错,不⼀定。
由于横向效应作⽤,轴在x ⽅向受拉(压),则有x σ;y ⽅向不受⼒,但横向效应使y ⽅向产⽣线应变,y x εενε'==-。
A 1(a) (b)⼆、填空题1、轴向拉伸的等直杆,杆内的任⼀点处最⼤剪应⼒的⽅向与轴线成(45o)2、受轴向拉伸的等直杆,在变形后其体积将(增⼤)3、低碳钢经过冷做硬化处理后,它的(⽐例)极限得到了明显的提⾼。
4、⼯程上通常把延伸率δ>(5%)的材料成为塑性材料。
5、⼀空⼼圆截⾯直杆,其内、外径之⽐为0.8,两端承受⼒⼒作⽤,如将内外径增加⼀倍,则其抗拉刚度将是原来的(4)倍。
材料力学第二章轴向拉伸与压缩习题答案
解:为一次超静定问题。
静力平衡条件:
: ①
变形协调方程:
即:
即: ②
由①②解得:
由于内压的作用,油缸盖与缸体将有分开的趋势,依靠六个螺栓将它们固定在一起。
油缸盖受到的压力为
由于6个螺栓均匀分布,每个螺栓承受的轴向力为
由螺栓的强度条件
≤
可得螺栓的直径应为
≥
3-3图示铰接结构由杆AB和AC组成,杆AC的长度为杆AB长度的两倍,横截面面积均为 。两杆的材料相同,许用应力 。试求结构的许用载荷 。
第二章
2-1试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。
2-2图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。
解:
1.轴力
由截面法可求得,杆各横截面上的轴力为
2.应力
MPa MPa
MPa MPa
2-3图示桅杆起重机,起重杆AB的横截面是外径为 、内径为 的圆环,钢丝绳BC的横截面面积为 。试求起重杆AB和钢丝绳BC横截面上的应力。
解:
由几何关系,有
取AC杆为研究对象
:
由此可知:当 时,
由 ≤
可得
≥
3-9图示联接销钉。已知 ,销钉的直径 ,材料的许用切应力 。试校核销钉的剪切强度,若强度不够,应改用多大直径的销钉。
解:
1.校核销钉的剪切强度
MPa MPa
∴销钉的剪切强度不够。
2.设计销钉的直径
由剪切强度条件 ≤ ,可得
轴向拉伸和压缩习题附标准答案
第四章轴向拉伸和压缩、填空题1、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相_________ .2、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面_____________ .4、杆件轴向拉伸或压缩时,其横截面上的正应力是___________ 分布的.7、在轴向拉,压斜截面上,有正应力也有剪应力,在正应力为最大的截面上剪应力为________ .8杆件轴向拉伸或压缩时,其斜截面上剪应力随截面方位不同而不同,而剪应力的最大值发生在与轴线间的夹角为________ 的斜截面上.矚慫润厲钐瘗睞枥庑赖。
9、杆件轴向拉伸或压缩时,在平行于杆件轴线的纵向截面上,其应力值为_______ .10、胡克定律的应力适用范围若更精确地讲则就是应力不超过材料的________ 极限.11、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能力,这说明杆件材料的弹性模量E值越大,其变形就越 ________ 聞創沟燴鐺險爱氇谴净。
12、在国际单位制中,弹性模量E的单位为________ .13、在应力不超过材料比例极限的范围内,若杆的抗拉(或抗压)刚度越_________ ,则变形就越小.15、低碳钢试样据拉伸时,在初始阶段应力和应变成___________ 关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为__________ 极限的时候.残骛楼諍锩瀨濟溆塹籟。
16、在低碳钢的应力一应变图上,开始的一段直线与横坐标夹角为a,由此可知其正切tg a在数值上相当于低碳钢的值.酽锕极額閉镇桧猪訣锥。
17、金属拉伸试样在屈服时会表现出明显的__________ 变形,如果金属零件有了这种变形就必然会影响机器正常工作.彈贸摄尔霁毙攬砖卤庑。
18、金属拉伸试样在进入屈服阶段后,其光滑表面将出现与轴线成_______ 角的系统条纹,此条纹称为__________ .謀养抟箧飆鐸怼类蒋薔。
轴向拉伸与压缩习题及解答
轴向拉伸与压缩习题及解答计算题1:利用截面法,求图2.1所示简支梁m — m 面的力分量。
解:〔1〕将外力F 分解为两个分量,垂直于梁轴线的分量F sin θ,沿梁轴线的分量F cos θ. (2)求支座A 的约束反力:xF∑=0,AxF∑=cos F θB M ∑=0, Ay F L=sin 3L F θAy F =sin 3Fθ (3)切开m — m ,抛去右半局部,右半局部对左半局部的作用力N F ,S F 合力偶M 代替 〔图1.12 〕。
图 2.1 图2.1(a) 以左半段为研究对象,由平衡条件可以得到xF∑=0, N F =—Ax F =—cos F θ〔负号表示与假设方向相反〕y F ∑=0, s F =Ay F =sin 3Fθ 左半段所有力对截面m-m 德形心C 的合力距为零sin θC M ∑=0, M=AyF 2L =6FL sin θ 讨论 对平面问题,杆件截面上的力分量只有三个:和截面外法线重合的力称为轴力,矢量与外法线垂直的力偶距称为弯矩。
这些力分量根据截面法很容易求得。
在材料力学课程中主要讨论平面问题。
计算题2:试求题2-2图所示的各杆1-1和2-2横截面上的轴力,并作轴力图。
解 〔a 〕如图〔a 〕所示,解除约束,代之以约束反力,作受力图,如题2-2图〔1a 〕所示。
利用静力学平衡条件,确定约束反力的大小和方向,并标示在题2-2图〔1a 〕中。
作杆左端面的外法线n ,将受力图中各力标以正负号,凡与外法线指向一致的力标以正号,反之标以负号,轴力图是平行于杆轴线的直线。
轴力图在有轴力作用处,要发生突变,突变量等与该处轴力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,如题2-2图〔2a 〕所示,截面1和截面2上的轴力分别为1N F =F 和2N F =—F 。
(b)解题步骤与题2-2〔a 〕一样,杆受力图和轴力图如题2-2〔1b 〕、〔2b 〕所示。
材料力学作业及答案
【A】
【B】
【C】
【D】 解:正确答案为【D】; 【A】 分离体上不能带有支座,因为支座处的支反力要影响分离体的平衡(如下图所示),
因此必须将支座去除,用相应的支反力取而代之; 【B】 用截面法计算轴力时,不要在集中力作用点上取截面,因为此处的受力比较复杂,
为了保险起见,建议大家用 的公式来计算线应变。从这个公式可以看出,当材料相同的时, E
线应变的变化规律与正应力的变化规律相同,正应力发生变化的截面上,线应变也将发生变化。
三、图示立柱由横截面面积分别为 A 和 2A 的 AB 和 BC 段组成,已知材料的容重为 ,弹性模量为 E,则
解:正确答案为【A】。 [B]问题出在分子上的 3,在用胡克定律计算变形时分子上要用轴力,而不能用杆件上作用的外力。 [C]这是一个常见的错误,很多同学会仿照对变形进行分段累加的算法来计算线应变,要注意变形有累 加意义,即一段杆件的总的变形量等于每个分段变形量的代数和;但是线应变指的是在一个很小的范围 内杆件的变形程度,可以简单地将线应变理解成是属于某个截面的。当一段杆件受力均匀时,这段杆件 各个横截面上的线应变都是相等的,你可以笼统地说这段杆件的线应变是多少,但是当两段杆件的轴力 不同时,只能说两段杆件的线应变个各是多少,而不能把两段杆件的线应变加起来。不要说是两段杆件 的线应变,即便是把两个截面不同的线应变加起来都没有任何力学意义。就像汽车在公路上行驶,在第 一段上是一个速度,在第二段上是另一个速度,显然把这两个速度加起来是没有什么意义的。 [D]当两段杆件的变形程度不同时,不能像本选项那样将两段杆件连在一起,一次性计算线应变,必须 是各算各的。
在材料力学中采用“突变”的形式来处理。在这种处理方式下,这个截面上的轴力 是不确定的,在材料力学中绘制出来的集中力作用截面附近的轴力图,如下图所示, 此时只需要求出集中力作用截面左右两条线代表的轴力值即可,因此,应该在集中 力作用截面的左右两侧取计算截面。,而不要把计算截面取在集中力的作用截面上。
轴向拉伸与压缩习题答案
轴向拉伸与压缩习题答案轴向拉伸与压缩习题答案在学习力学的过程中,轴向拉伸与压缩是一个重要的概念。
它涉及到材料在受力作用下的变形与应力分布。
为了帮助大家更好地理解和掌握这个概念,下面将给出一些轴向拉伸与压缩的习题答案,希望对大家的学习有所帮助。
1. 一根长度为L的均匀杆,两端受到相等大小的拉力F,求杆的伸长量。
解析:根据胡克定律,杆的伸长量与拉力成正比,与杆的长度成反比。
因此,杆的伸长量可以表示为ΔL = (F/A) * L,其中A为杆的截面积。
2. 一根长度为L的均匀杆,两端受到相等大小的压力P,求杆的压缩量。
解析:与问题1类似,杆的压缩量也可以表示为ΔL = (P/A) * L。
3. 一根长度为L的均匀杆,在一端受到拉力F,在另一端受到压力P,求杆的伸长量。
解析:根据力的叠加原理,杆的伸长量可以表示为ΔL = [(F - P)/A] * L。
4. 一根长度为L的均匀杆,在一端受到拉力F,在另一端受到压力P,求杆的应力分布。
解析:根据胡克定律,杆的应力分布可以表示为σ = (F/A) - (P/A)。
5. 一根长度为L的均匀杆,在一端受到拉力F,在另一端受到压力P,如果杆的截面积不均匀,如何求杆的伸长量?解析:如果杆的截面积不均匀,可以将杆分成若干小段,每一小段的截面积近似看成常数。
然后分别计算每一小段的伸长量,再将其相加得到整个杆的伸长量。
6. 一根长度为L的均匀杆,在一端受到拉力F,在另一端受到压力P,如果杆的截面积不均匀,如何求杆的应力分布?解析:如果杆的截面积不均匀,可以将杆分成若干小段,每一小段的截面积近似看成常数。
然后分别计算每一小段的应力,再将其绘制成应力分布曲线。
通过以上习题的解析,我们可以看到轴向拉伸与压缩的问题都可以通过胡克定律来求解。
胡克定律是力学中的基本定律之一,它描述了弹性材料在小应变条件下的应力与应变之间的线性关系。
在轴向拉伸与压缩的情况下,胡克定律可以表示为σ = Eε,其中σ为应力,E为杨氏模量,ε为应变。
2020年10月自考《工程力学》2020第四章轴向拉伸与压缩习题答案及答案
第四章轴向拉伸与压缩习题答案1. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)分段计算轴力杆件分为2段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=F(拉);F N2=-F(压)(2)画轴力图。
根据所求轴力画出轴力图如图所示。
2. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)分段计算轴力杆件分为3段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=F(拉);F N2=0;F N3=2F(拉)(2)画轴力图。
根据所求轴力画出轴力图如图所示。
3. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)计算A端支座反力。
由整体受力图建立平衡方程:∑F x=0,2kN-4kN+6kN-F A=0F A=4kN(←)(2)分段计算轴力杆件分为3段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=-2kN(压);F N2=2kN(拉);F N3=-4kN(压)(3)画轴力图。
根据所求轴力画出轴力图如图所示。
4. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)分段计算轴力杆件分为3段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=-5kN(压); F N2=10kN(拉); F N3=-10kN (压)(2)画轴力图。
根据所求轴力画出轴力图如图所示。
5. 圆截面钢杆长l=3m,直径d=25mm,两端受到F=100kN的轴向拉力作用时伸长Δl=2.5mm。
试计算钢杆横截面上的正应力σ和纵向线应变ε。
解:6. 阶梯状直杆受力如图所示。
已知AD段横截面面积A AD=1000mm2,DB段横截面面积A DB=500mm2,材料的弹性模量E=200GPa。
求该杆的总变形量Δl AB。
解:由截面法可以计算出AC,CB段轴力F NAC=-50kN(压),F NCB=30kN(拉)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 轴向拉伸和压缩主要知识点:(1)轴向拉伸(压缩)时杆的内力和应力;(2)轴向拉伸(压缩)时杆的变形;(3)材料在轴向拉伸和压缩时的力学性能; (4)轴向拉压杆的强度计算; (5)简单拉压超静定问题。
轴向拉伸(压缩)时杆的变形4. 一钢制阶梯杆如图所示。
已知沿轴线方向外力F 1=50kN ,F 2=20kN ,各段杆长l 1=100mm ,l 2=l 3=80mm ,横截面面积A 1=A 2=400mm 2,A 3=250mm 2,钢的弹性模量E=200GP a ,试求各段杆的纵向变形、杆的总变形量及各段杆的线应变。
解:(1)首先作出轴力图如图4-11所示, 由图知kN F N 301-=,kN F F N N 2032==。
(2)计算各段杆的纵向变形m m EA l F l N 5693311111075.31040010200101001030---⨯-=⨯⨯⨯⨯⨯⨯-==∆ m m EA l F l N 569332222100.2104001020010801020---⨯=⨯⨯⨯⨯⨯⨯==∆ (3)杆的总变形量m l l l l 53211045.1-⨯=∆+∆+∆=∆。
(4)计算各段杆的线应变451111075.310.01075.3--⨯-=⨯-=∆=l l ε45222105.208.0100.2--⨯=⨯=∆=l l ε45333100.408.0102.3--⨯=⨯=∆=l l ε材料在轴向拉伸和压缩时的力学性能5. 试述低碳钢拉伸试验中的四个阶段,其应力—应变图上四个特征点的物理意义是什么答:低碳钢拉伸试验中的四个阶段为弹性阶段、屈服阶段、强化阶段和颈缩阶段。
在弹性阶段,当应力小于比例极限σp 时,材料服从虎克定律;当应力小于弹性极限σe 时,材料的变形仍是弹性变形。
屈服阶段的最低点对应的应力称为屈服极限,以σs 表示。
强化阶段最高点所对应的应力称为材料的强度极限,以σb 表示,它是材料所能承受的最大应力。
mm EA l F l N 569333333102.3102501020010801020---⨯=⨯⨯⨯⨯⨯⨯==∆轴向拉压杆的强度计算 6. 如图所示三角架,杆AB 及BC 均为圆截面钢制杆,杆AB 的直径为d 1=20mm ,杆BC 的直径为d 2=40mm ,设重物的重量为G=20k N ,钢材料的[]=160MPa ,问此三角架是否安全解:(1)求各杆的轴力假定AB 、CB 两杆均受拉力,对B 点作用力分别为F 1、F 2。
取节点B 为研究对象,作出其受力图如右图所示, 由平衡方程 030cos ,0211=︒--=∑=F F F ni ix(a )030sin ,021=︒--=∑=F G F ni iy(b )G=20kN 为已知,由(b)式可解得kN F 402-=,代入(a)式解得kN F 6.341=。
故圆截面钢制杆AB 受到kN F N 6.341=的拉力,BC 杆受到kN F N 402=的压力。
(2)两杆横截面上的应力分别为a N N d F A F MP =⨯⨯=⨯==1104020.0106.34423211111ππσ(拉应力)a N N d F A F MP =⨯⨯=⨯==8.314040.01040423222222ππσ(压应力) 由于][],[21σσσσ<<,故此三角架结构的强度足够。
7. 如图所示三角形构架ABC ,由等长的两杆AC 及BC 组成,在点C 受到载荷G=350kN 的作用。
已知杆AC 由两根槽钢构成,[]AC =160MPa ,杆BC 由一根工字钢构成[]BC =100MPa ,试选择两杆的截面。
解:由于已知[]AC =160MPa 、[]BC =100MPa ,故只要求出AC 杆和BC 杆的轴力F AC 和F BC ,即可由ACC AC F ][σA ≥A ,BC BC BC F][σ≥A求解,确定两杆的截面。
(1) 求两杆的轴力取节点C 研究,受力分析如图4-13b , 由030cos 30cos ,01=︒-︒-=∑=BC AC ni ix F F F 得:BC AC F F -= (a ) 由030sin 30sin ,01=-︒-︒=∑=G F F F BC AC n i iy 得:G F F BC AC 2=- (b )联立(a)、(b )二式得到F AC =G=350kN(拉)、F BC = F AC = 350kN(压)。
故AC 杆受拉、BC 杆受压,轴力大小为kN F F NBC NAC 350==。
(2)设计截面,确定槽钢、工字钢号数。
分别求得两杆的横截面面积为2242639.21109.211016010350][cm m m F AC NAC AC=⨯=⨯⨯=≥A -σ 2242633510351010010350][cm m m F BC NBC BC=⨯=⨯⨯=≥A -σ (3)AC 由两根槽钢构成,故每根槽钢横截面面积为21121cm AC ≥A ,查表后确定选用10号热轧槽钢。
杆BC 由一根工字钢构成,故横截面面积为235cm BC ≥A ,查表后确定选用20a 号工字钢。
8. 刚性杆AB 由圆截面钢杆CD 拉住,如图所示,设CD 杆直径为d=20mm ,许用应力[]=160MP a ,求作用于点B 处的许用载荷F 。
解:(1)先求出DC 杆的轴力F N 与许用载荷F 的关系, 设DC 杆对刚性杆AB 拉力为F DC ,如右图所示, 将研究刚性杆AB 对A 点列平衡方程05.21sin =⨯-⨯F F DC α, 75.0tan =α故F F F DC 17.4sin /5.2==α。
DC 杆对刚性杆AB 的拉力为F DC ,在数值上等于DC 杆的轴力F N , 即 F F N 17.4= (a ) (2)求许可的最大载荷F 将kN N A F DC N 2.5010160020.0414.3][62=⨯⨯⨯=≤σ,代入(a)式得到许可的最大载荷kN F F N 1217.4/==。
9. 如图所示结构中,梁AB 可视为刚体,其弯曲变形可忽略不计。
杆1为钢质圆杆,直径d 1=20mm ,其弹性模量E 1=200GPa ,杆2为铜杆,其直径d 2=25mm ,弹性模量E 2=100GPa ,不计刚梁AB 的自重,试求:(1) 载荷F 加在何处,才能使刚梁AB 受力后保持水平 (2) 若此时F =30kN ,求两杆内横截面上的正应力。
解:(1)为了使刚梁AB 受力后保持水平,要求杆1的变形11111A E l F l N =∆等于杆2的变形22222A E l F l N =∆,即: =⨯⨯⨯⨯291020.0414.3102005.1N F 292025.0414.3101001⨯⨯⨯⨯N F 整理得到杆1、2轴力之间的关系为: 21853.0N N F F = (a) 设杆1、2对刚梁AB 的拉力为21F F 、,如图5-9所示。
21F F 、、F 构成平行力系,有独立的平衡方程:⎩⎨⎧⨯==+)(2)(221c F Fx b F F F拉力21F F 、分别与21N N F F 、在数值上相等,由式(a )、(b )、(c )得到:m x 08.1=,F F F F F F N N 540.0461.02211====,(2) 当kN F 30=时,两杆内横截面上的正应力。
a a N MP P d Fd F 9.43020.0414.31030461.04461.0423212111=⨯⨯⨯===ππσ a a N MP P d F d F 0.33025.0414.31030540.04540.0414.323222222=⨯⨯⨯==⨯=πσ简单拉压超静定问题10.横截面面积为A =10cm 2的钢杆,其两端固定,杆件轴向所受外力如图所示。
试求钢杆各段内的应力。
解:假设A 、B 处的约束反力如图5-10所示, 据此列出平衡方程:0150100=+--B A F kN kN F (a )由于上式中含有两个未知量,不能解出,还需列 一个补充方程。
由于约束的限制,杆件各段变形后总长度保持不变,故变形谐调条件为0=∆+∆+∆DB CD AC l l l ,由此,根据胡克定律,得到变形的几何方程为04.0)150100(3.0)100(5.0=⨯--+⨯-+⨯EAkN kN F EA kN F EA F A A A 整理后得01302.1=-kN F A ,即kN F A 3.108=,代入(a )式得到kN F B 7.141=。
钢杆各段内的应力a a A NAC ACMP P A F A F 3.1081010103.10843=⨯⨯===-σa a A NCD CDMP P A F A F 38101010100103108101004333..=⨯⨯-⨯=⨯-==-σA NDB DBAF A F 103108101501010033.⨯=⨯-⨯-==σ。