4-2 两个同方向同频率简谐运动的合成

合集下载

谐振动分析(三)两个同方向同频率简谐运动的合成

谐振动分析(三)两个同方向同频率简谐运动的合成

o
o
A1
A2
A
T
t
A A1 A2
x (A A )cos(t )
1
2
2 1 2k π
3
物理学
第五版
谐运动分析(三)
(2)相位差 (2k 1) π(k 0,1, )
2
1
x
x
A1
2 o
o
Tt
A
A2
A A1 A2
x (A2 A1)cos(t )
2
1
(2k
1)π
4
物理学
第五版
小结
(1)相位差
2
1
2k
π
A A1 A2
谐运动分析(三)
(k 0,1, ) 加强
(2)相位差
2
1
(2k 1) π
(k 0,1, )
A A A
1
2
减弱
(3)一般情况
A1 A2 A A1 A2
5
物理学
第五版
谐运动分析(三)
二 两个相互垂直的同频率的简谐
运动的合成 x A1 cos(t 1)
x 阻尼振动位移时间曲线
A
Ae t
Aet cost
O
T A
t
( 0)
21
物理学
第五版
三种阻尼的比较
谐运动分析(三)
(a)欠阻尼
2 0
2
(b)过阻尼
2 0
2
(c)临界阻尼
2 0
2
x
b
oc
t
a
22
物理学
第五版
谐运动分析(三)
例 有一单摆在空气(室温为 20C)中来 回摆动. 摆线长l 1.0 m,摆锤是半径r 5.0103 m 的铅球.求(1)摆动周期;(2)振幅减小 10%所需的时间;(3)能量减小10%所需 的时间;(4)从以上所得结果说明空气的 粘性对单摆周期、振幅和能量的影响.

第4章 习题解答

第4章 习题解答

第4章 习题与答案4-1作简谐振动的物体,每次通过同一位置时,不一定相同的量是 [ ] (A) 位移 ; (B) 速度 ; (C) 加速度; (D) 能量。

[答案:B ]4-2 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为 [ ](A) π; (B) π/2; (C) 0; (D) θ [答案:C ]4-3 谐振动的振动曲线如题4-3图所示,则有[ ] (A )A 超前π/2; (B )A 落后π/2; (C )A 超前π; (D )A 落后π。

[答案:A ]4-4 一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A /2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为题4-4图 中哪一个? [ ][答案:B ]4-5 两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点恰在最大负位移处。

则第二个质点的振动方程为 [ ] (A) )π21cos(2++=αωt A x ; (B) )π21cos(2-+=αωt A x ; (C) )π23cos(2-+=αωt A x ; (D) )cos(2π++=αωt A x 。

[答案:A ]4-6 已知某简谐振动的振动曲线如题4-6图所示。

则此简谐振动的振动方程(SI )为 [ ](A) 题4-4图题4-3图(A )220.02cos()33x t =π+π;(B )220.02cos()33x t =π-π;(C )420.02cos()33x t =π+π;(D )420.02cos()33x t =π-π。

[答案:C ]4-7 弹簧振子作简谐振动,先后以相同的速度依次通过A 、B 两点,历时1秒,质点通过B 点后再经过1秒又第二次通过B 点,在这2秒内质点通过的总路程为12cm ,则质点的振动周期和振幅分别为 [ ](A )3s 、12cm ; (B )4s 、6cm ; (C )4s 、9cm ; (D )2s 、8cm 。

简谐运动的合成

简谐运动的合成
x = ( 2 A1 cos 2 π
ν 2 −ν 1
2
t ) cos 2 π
ν 2 +ν1
2
t
振幅部分 振动频率 ν = (ν 1 + ν 2 ) 2 振幅 A = 2 A1 cos 2 π
合振动频率
ν 2 −ν 1
2
振 动
Amax = 2A1
t
Amin = 0
15
第九章
物理学
第五版
9-5
简谐运动的合成
y
ϕ (1) 2 −ϕ1 = 0或 2 π ) A2 y= x A1
A2
A1
o
x
ϕ (2) 2 − ϕ1 = π ) A2 y=− x A1
第九章 振 动
y
A2
A1
o
x
7
物理学
第五版
9-5
简谐运动的合成
x 2 y 2 2 xy 讨 + 2− cos(ϕ 2 − ϕ1 ) = sin 2 (ϕ 2 − ϕ1 ) 论 A12 A2 A1 A2
A
ϕ1
ϕ
A 1
O
x2
x1
xx
两个同方向同频率简谐运动合成后仍 两个同方向同频率简谐运动合成后仍 合成 频率的简谐 简谐运动 为同频率的简谐运动
第九章 振 动
2
物理学
第五版
9-5
简谐运动的合成
(1)相位差 ∆ϕ = ϕ 2 − ϕ1 = 2k π (k = 0,1,2,⋯ ) ± ± )
x
ϕ
A2
x
o
y = A2 cos(ωt + ϕ 2 )
椭圆方程) 质点运动轨迹 (椭圆方程)
x 2 y 2 2 xy + 2− cos(ϕ 2 − ϕ1 ) = sin 2 (ϕ 2 − ϕ1 ) 2 A1 A2 A1 A2

第4章-振动合成

第4章-振动合成

两个频率比为1:2的简谐运动的合成
x1 A1 cos( t 1 )
x x1 x2 A1 ( t 1 ) A2 cos(2 t 2 )
x
x1
2T
x2
T
x
t
谐振分析*
x = 4A (sinω t
x
T
A
π
t
+
1 3sin3ω t
+
1 5 sin5ω
t)
x
合成后
x
A2 x y= A1
合振动振幅为 合振动为谐振动
A = A1 + A
2
2 2
r
A A cos t
2 1 2 2
2. 2 1 或 2k 1 2 2 x A1 cos( t 1 )
y
y A2 cos( t 2 ) A2 sin( t 1 )
2
F0 k , 2 , f 0 m m m
d x dx 2 2 0 x f 0 cos t dt dt 2
方程的解:
2
2 x A0 e t cos 0 2 t 0 A cost


稳定后的振动表达式:
x A cost
A
C
N

A AN
R
2
A1

A2
A3
N A 2 R sin 2 a 2 R sin 2 N a sin 2 A
sin
( N 1)


2

N 1 2
x A cos(t )
例1 . 两个同方向的简谐振动曲线(如图所示) 1、求合振动的振幅。 x x (t ) 2、求合振动的振动方程。 A1 1 解: A

振动、波动部分答案(新)

振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。

*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。

练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。

若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。

2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。

3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。

已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。

第四章振动下

第四章振动下

结论: 结论:
振子在振动过程中, (1) 振子在振动过程中,动能和势能分别随时间 变化,但任一时刻总机械能保持不变。 变化,但任一时刻总机械能保持不变。 (2) 动能和势能的变化频率是弹簧振子振动频 率的两倍。 频率一定时, (3)频率一定时,谐振动的总能量与振幅的平方 成正比。(适合于任何谐振系统) 。(适合于任何谐振系统 成正比。(适合于任何谐振系统) 弹性势能
小结:
描述简谐振动的三种方法: 描述简谐振动的三种方法: 运动方程,振动曲线,旋转矢量。 运动方程,振动曲线,旋转矢量。
的简谐振动, 例1:一物体沿 轴作振 幅为 A 的简谐振动,若初始时该球的 :一物体沿x轴作振 状态为( ) ;(2)在平衡位置且向X轴正方向运动 轴正方向运动; 状态为(1)X0= -A;( )在平衡位置且向 轴正方向运动; ;( 处向X轴负方向运动;(4) 轴负方向运动;( (3)在 X0=1/2 A 处向 轴负方向运动;( )在 ) / 方向运动。试用旋转矢量法确定相应的初相位。 处向正 方向运动。试用旋转矢量法确定相应的初相位。 3π r ϕ = ϕ =π
k = m

X
g b
mg
b, v 0 = 0
g t+π) b
A =b, φ = π
[ 例2] 一谐振动的振动曲线如图所示。 一谐振动的振动曲线如图所示。
ω 以及振动方程。 求: ϕ 0 以及振动方程。

π
x
x
A 2
3r
A
1.0
0
解:
t
r A
A
π
2
x
π
3
t=
A x0 = = A cos ϕ 0 2 0时 v 0 = − ω A sin ϕ 0 > 0

4《振动》选择题解答与分析

4《振动》选择题解答与分析

4振动4.1旋转矢量1. 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为答案:(B)参考解答:简谐振动可以用一个旋转矢量的投影来表示。

这一描述简谐振动的几何方法称为旋转矢量法。

以坐标原点o 为始端作一矢量A,该矢量以角速度ω绕o 点逆时针匀速转动。

0=t 时,旋转矢量与x 轴正向的夹角等于ϕ,则在转动过程中的任意时刻t ,矢量A与x 轴正向的夹角为)(ϕω+t ,其端点M 在坐标轴上的投影P 的坐标为)cos(ϕω+=t A x ,P 所代表的运动正是简谐振动。

本题(B)图中,旋转矢量端点在坐标轴上投影点的坐标与运动方向符合题设的要求,即为答案。

对所有选择,均给出参考解答,直接进入下一题。

2. 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 (A) T /12. (B) T /8. (C) T /6. (D) T /4. 答案:(C) 参考解答:根据旋转矢量法,以坐标原点o 为始端作一矢量A ,该矢量以角速度ω绕o 点逆时针匀速转动。

0=t 时,旋转矢量与x 轴正向的夹角等于ϕ,则在转动过程中的任意时刻t ,矢量A与x 轴正向的夹角为)(ϕω+t ,其端点在坐标轴上的投影的坐标为)cos(ϕω+=t A x 所代表的运动正是简谐振动。

本题按题意画旋转矢量图,由,3πωθ==t πω2=T 两式联立,解出.6Tt =对所有选择,均给出参考解答,直接进入下一题。

4.2振动曲线、初相1. 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) π/6. (B) 5π/6. (C) -5π/6.(D) -π/6. (E) -2π/3.答案:(C)参考解答:令简谐振动的表达式:)cos(ϕω+=t A x ,)(ϕω+t 称为振动系统在t 时刻的位相。

大物习题答案第4章 机械振动

大物习题答案第4章 机械振动

第4章 机械振动基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。

简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。

3.周期T 作简谐振动的物体完成一次全振动所需的时间。

4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。

弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。

9.受迫振动 系统在周期性外力作用下的振动。

周期性外力称为驱动力。

10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。

基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。

谐振动分析(三)两个同方向同频率简谐运动的合成共36页文档

谐振动分析(三)两个同方向同频率简谐运动的合成共36页文档

1
0
















26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子
谐振动分析(三)两个同方向同频率简 谐运动的合成
6






,天Βιβλιοθήκη 高风景澈

7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
36

简谐运动的合成与分解

简谐运动的合成与分解

五、谐振分析和频谱 (自学)
在自然界和工程技术中,我们所遇到的振 动大多不是简谐振动,而是复杂的振动,处 理这类问题,往往把复杂振动看成由一系列 不同频率的间谐振动组合而成,也就是把复 杂振动分解为一系列不同频率的间谐振动, 这样分解在数学上的依据是傅立叶级数和傅 立叶积分的理论,因此这种方法称为傅立叶 分析。
如果分振动不止两个,而且它们的振动频率是基频 地整数倍(倍频)则它们的合振动仍然是周期运动, 其频 率等于倍频。按规律: x ( t ) A(cost cos 3t 3 1 1 cos5t cos 7t ) 5 7
如果增加合成的项数,就 可以得到方波形的振动:
既然一系列倍频简谐振动的合成是频率等于基频的周 期运动,那么,与之相反,任意周期性振动都可以分 解为一系列简谐振动,各个分振动的频率都是原振动 频率的整数倍,其中与原振动频率一致的分振动称为 基频振动,其它的分振动则依照各自的频率相对于基 频的倍数而相应的称为二次、三次、……谐频振动。 这种把一个复杂的周期振动分解为一系列简谐振动之 和的方法,称为谐振分析。
t0
t0 T
x( t ) cos ntdt
x ( t ) si ntdt
t0
2 2 an bn
n
an arctan bn
为了显示实际振动中所包含的各个简谐振动的振动情 况(振幅、相位),常用图线把它表示出来。若用横坐 标表示各谐频振动 的频率,纵坐标表示相应的振幅, 就得到谐频振动的振幅分布图,称为振动的频谱。不同 的周期运动,具有不同的频谱,周期运动的各谐振成分 的频率都是基频的整数倍, 所以它的频谱是分立谱。
2
A
若1= 2 ,则 不变; 若1 2 ,则 变;

大学物理(9.3.2)--简谐运动的合成

大学物理(9.3.2)--简谐运动的合成




A2
2
o
1 A1
x
多个同方向同频率简谐运动合成仍为简谐
运动
东北大学 理学院 物理系
大学物理 第九单元 振动
第三讲 简谐运动的合成
* 四、两个同方向不同频率简谐运动的合成
x1

t
x2 t
x t
拍 合振动振幅 随时间周期性加强与减弱的现
两 个 频 率 较 大 且 相 差 极 小 的象同 方 向 谐 振 动 合 成 形 成
东北大学 理学院 物理系
大学物理 第九单元 振动
第三讲 简谐运动的合成
3. 两种特殊情况
A
A2 1

A2 2

2 A1 A2
cos( 2
1 )
(1) 若两分振动同相
2 1=2k
(k=0,1,2,…)
则 A=A1+A2 , 两分振动相互加强
(2) 若两分振动反相
2 1=(2k+1)
第三讲 简谐运动的合成
* 三、多个同方向同频率简谐运动的合成
x1 A1 cos(t 1 ) x2 A2 cos(t 2 )

xn An cos(t n )
x x1 x2 xn
x A cos(t )

A
A3
3
A1 sin1 A2 sin2 Asin
A A12 A22 2 A1A2 cos(2 1)
tan

A1 sin1 A1 cos1

A2 A2
sin 2 cos2
x Acos cost Asin sint Acos( t )

大学物理230道判断题

大学物理230道判断题

1、 闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(× )2、 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们温度,压强都相同。

(√)3、 角速度的方向一定与外力矩的方向相同。

( × )4、 一物质系统从外界吸收一定热量,则系统的内能一定增加。

(×)5、 一质点作直线运动,速率为1232-=t ν(SI 制)则加速度大小=a t 6。

( √ )6、 质点系总动量的改变与内力无关。

( √ )7、 电势在某一区域内为常量,则电场强度在该区域内必定为零。

(√)8、 质点系总动能的改变与内力无关。

( × )9、 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零。

(√)10、 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则铜环中有感应电流,木环中无感应电流。

(√)11、 质点系总动量的改变与内力无关。

( √ )12、 质点系总动能的改变与内力无关。

( × )13、 作用力和反作用力对同一轴的力矩之和必为零。

( √ )14、质点速度大,加速度就一定大。

(×) 15、 在一个具体问题中,一个物体能否成为质点关键不在于物体的大小而在于物理问题与物体的大小形状是否有关。

(√)16、不同的参考系中,物体的运动情况都相同。

(×) 17、在直线运动中,质点的位移大小和路程相等。

(×) 18、 当物体的加速度大于0时,表示运动方向与参考方向相同,当加速度小于0时,表示运动方向与参考方向相反。

(×)19、质点速度大,加速度就一定大。

(×) 20、物体的运动可以看成是几个各自独立的运动的叠加。

(√) 21、两个动能相同的物体,质量大的动量小。

(×) 22、质点速度大,加速度就一定大。

(×) 23、 在一个具体问题中,一个物体能否成为质点关键不在于物体的大小而在于物理问题与物体的大小形状是否有关。

高二物理竞赛两个同方向同频率简谐运动的合成PPT(课件)

高二物理竞赛两个同方向同频率简谐运动的合成PPT(课件)
x1 5 cos(20 t 2) cm
x2 5 cos(20 t ) cm
由旋转矢量法
4 -5 振动合成
A2 4
AOx
A A12 A22 5 2 cm
A1
5
4
x 5 2 cos (20 t 5 ) cm
4
11
物理学
第五版
4 -5 振动合成
两个简谐运动方向相同,频率相同,振
3
x A co t s ( ) n n 当木块位于平衡位置下方时,x>0
一 两个同方向同频率简谐运动的合成
n
A 例2 已知两谐振动的曲线(如图),它们是同频率的谐振动,求它们的合振动方程。
1、图示,木块上放置一质量为 m 的砝码,木块沿竖直方向作简谐运动,问砝码脱离木块的可能位置将发生在
2
x x x x 1 2 (b)在平衡位置上方(向上运动)(向下运动)
两振动步调反0 向,
1
12
2
(2)若另有一简谐运动
xAco t s() 多个同方向同频率简谐运动合成仍为简谐运动
例3、两个同方向、同频率简谐运动方程分别为
当 一
N两≥个0同时方,向砝同码2 频不率脱简离谐木运块动2 的合成
2
合位移 xx1x2
(SI)求:合成谐振动方程
(b)在平衡位置上方(向上运动)(向下运动)
0.4 (4)推广到 多个同方向同频率简谐运动的合成
(2)若另有一简谐运动
则合振幅为
则合振幅为
6
A2
x
0.12 x 0 .5 co 3 t s0 .1 ( 2 )
3
14
物理学
x 第五版 1
0.4cos3t()
3

第4章习题解答讲解

第4章习题解答讲解

第4章 习题与答案4-1作简谐振动的物体,每次通过同一位置时,不一定相同的量是 [ ] (A) 位移 ; (B) 速度 ; (C) 加速度; (D) 能量。

[答案:B ]4-2 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为 [ ](A) π; (B) π/2; (C) 0; (D) θ [答案:C ]4-3 谐振动的振动曲线如题4-3图所示,则有[ ] (A )A 超前π/2; (B )A 落后π/2; (C )A 超前π; (D )A 落后π。

[答案:A ]4-4 一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A /2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为题4-4图 中哪一个? [ ][答案:B ]4-5 两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点恰在最大负位移处。

则第二个质点的振动方程为 [ ] (A) )π21cos(2++=αωt A x ; (B) )π21cos(2-+=αωt A x ; (C) )π23cos(2-+=αωt A x ; (D) )cos(2π++=αωt A x 。

[答案:A ]4-6 已知某简谐振动的振动曲线如题4-6图所示。

则此简谐振动的振动方程(SI )为 [ ](A) 题4-4图题4-3图(A )220.02cos()33x t =π+π;(B )220.02cos()33x t =π-π;(C )420.02cos()33x t =π+π;(D )420.02cos()33x t =π-π。

[答案:C ]4-7 弹簧振子作简谐振动,先后以相同的速度依次通过A 、B 两点,历时1秒,质点通过B 点后再经过1秒又第二次通过B 点,在这2秒内质点通过的总路程为12cm ,则质点的振动周期和振幅分别为 [ ](A )3s 、12cm ; (B )4s 、6cm ; (C )4s 、9cm ; (D )2s 、8cm 。

简谐运动的合成

简谐运动的合成

(2)若另有一振动x3 0.07cos10t 0 ,问0为何值时,
x1 x3的振幅为最大;问0为何值时,x2 x3的振幅为最小。
解:根据题意,画出旋转矢量图
A A12 A22
0.052 0.062
A1
0.078(m)
0 10 0
0 =10
3 4
时,x1
x3的振幅最大
A
A2
tan
A1 sin 1 A1 cos1
A2 A2
sin 2 cos2
讨论 A A12 A22 2 A1A2 cos(2 1)
0,1, 2,)
合振幅最大
A A1 A2
xx
oo
A1 A2
t
A
A A12 A22 2 A1 A2 cos(2 1)
2、两个分振动的相位反相:
相位差 2 1 (2k 1)π (k 0,1,)
合振幅最小 A A1 A2
x
x
A1
2
o
o
t
A
A2
例题 有两个同方向、同频率的简谐振动,它们 的振动表式(SI制)为:
x1
0.05
cos
10t
3 4
x2
0.06 cos 10t
1 4
(1)求它们合成振动的振幅。
简谐运动的合成
一、同方向、同频率两个简谐运动的合成
x1 A1 cos( t 1 )
A2
Q
A
x2 A2 cos( t 2 )
用旋转矢量法求合运动
2 1
P A1
O x2
x1 x
X
合振动位移为: x x1 x2 两个同方向同频率简谐运
x A cos( t ) 动合成后仍为简谐运动

《大学物理》振动与波动选择判断题库

《大学物理》振动与波动选择判断题库

振动与波动一、选择题1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是(A) abx F = (B) abx F -=(C) b ax F +-= (D) a bx F /-=2. 当用正弦函数或余弦函数形式表示同一个简谐振动时, 振动方程中不同的量是(A) 振幅 (B) 角频率(C) 初相位 (D) 振幅、圆频率和初相位3. 下列作用在质点上的力F 与质点位移x 的关系中,哪个意味着质点做简谐振动?(A )x F 5-= (B )2400x F -=(C )x F 10=(D )33x F =4. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为(A) π (B) π32 (C) π34 (D) π54 5. 在简谐振动的速度和加速度表达式中,都有一个负号, 这是意味着(A) 速度和加速度总是负值(B) 速度的相位比位移的相位超前π21, 加速度的相位与位移的相位相差π (C) 速度和加速度的方向总是相同(D) 速度和加速度的方向总是相反6. 一质点作简谐振动, 振动方程为)cos(ϕω+=t A x . 则在2T t =(T 为振动周期) 时, 质点的速度为:(A) ϕωsin A - (B) ϕωsin A (C) ϕωcos A - (D) ϕωcos A 7.一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . 8.一物体作简谐振动,振动方程为1cos()4x A t ωπ=+.在/2t T =(T 为周期)时刻,物体的加速度为(A) 22A ω-. (B) 22A ω. (C) 2ω. (D) 2A ω. 9一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8. (C) T /6. (D) T /4.10.在一个沿x 轴做简谐运动的弹簧振子,振幅为A ,周期为T 。

大学物理(工科) 4—1 简谐运动、旋转矢量简谐运动的合成

大学物理(工科) 4—1 简谐运动、旋转矢量简谐运动的合成

2
tan1( v0 ) 注意: 确定 的象限 x0
二、简谐运动的描述
x Acos(t )
1.解析法(由振动表达式)
A, T, , x, v, a
2.曲线法(由振动曲线)
x
x Acos(t )
A
►确定振幅A;
o
►确定周期T,ω;
►确定φ
-A
T
t
•根据图像判断速度的正负用斜率 •利用初始条件确定几个φ,再利用速度正负判断保留φ
3、掌握描述简谐波的各物理量及各量间的关系;
4、理解机械波产生的条件. 掌握由已知质点的简谐 运动方程得出平面简谐波的波函数的方法. 理解波函 数的物理意义. 了解波的能量传播特征及能流、能流密 度概念.
匀速直线运动
直线运动
匀变速直线运动

变速直线运动
过 的
变加速直线运动

动 形
平抛运动

抛体运动
例4.2: 已知一简谐振动的曲线如图所示,写出振动方程。
x (cm)5
6
2
3
p
O 1
t(s)
解: 已知振动方程表达式为:x Acos(t ),v Asin(t )
► 定振幅: A=0.06m
►定初相
x0 0.06cos 0.03
cos 0.5
利用斜率判断0时刻速度方向 0 0
晶格点阵
§4—1 简谐运动、旋转矢量、简谐运动的能量
一、简谐运动动力学 1.模型
2.定义 ►受力:F=-kx
►动力学微分方程:
d2 dt
x
2
2
x
0
令 2 k
m
►运动方程: x(t)=Acos( t + )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


A2 2
A
1
A1
X
10


2
6
例 求两个同方向同频率的简谐振动的合振幅
电 子 工 程 学 院 杨 小
π π π 2 1 ( ) 3 6 2 2 A A12 A2 2 A1 A2 cos( 2 1 ) A2
x1 (3 10 m) cos(t π 6) 2 x2 (4 10 m) cos(t π 3)
A 2 A1
A A1 A2 合振幅最大。 A1 A2 时,
2 1 (2k 1) k 0,1,2, 电讨论二: A 子 A | A1 A2 | 合振幅最小。 工 A0 当 A1 A2时, 程 学 A2 k 讨论三: 一般情况为 2 1 院
两个同方向同频 率简谐运动合成 后仍为简谐运动
A1 sin 1 A2 sin 2 tan 杨 A1 cos 1 A2 cos 2
3
2 A A12 A2 2 A1 A2 cos( 2 1 )
讨论一: 2 1 2k

k 0,1,2,
2
( SI)
电 子 工 程 学 院 杨 小

A2
Hale Waihona Puke A1X5
例 两个同方向同频率的简谐振动,其合振动的振幅 为 20cm,与第一个简谐振动的相位差为 1 / 6 若第一个简谐振动的振幅为 10 3cm 17.3cm ,则第 二个简谐振动的振幅为______________ cm ,第一、二 两个简谐振动的相位差 1 2 为____________. 电 子 工 程 学 院 杨 小
杨 小
A A2 A1 A2 A1 A
| A1 A2 | A | A1 A2 |
A1
4
例 一个质点同时参与两个在同一直线上的简谐振动, 其表达式分别为
/6 . 则其合成振动的振幅为_______ 110 ,初相为________
2
x1 4 10 cos2t / 6 2 x2 3 10 cos2t 5 / 6
x(t ) x1 (t ) x2 (t ) ( A1 cos1 A2 cos 2 ) cost ( A1 sin1 A2 sin 2 ) sint
结论:
的 简 谐 振 动 。 仍 然 是 同 频 率
2
A1 sin1 A2 sin 2 arctg A1 cos1 A2 cos 2
2
A
A A
2 1
2 2
5 10 m
2
0
2
A
x
7
1
A 1

两个同方向同频率简谐运动的合成
代数方法
电 子 工 程 学 院 杨 小
几何方法
1
设两个振动具有相同频率,同一直线上运动, 有不同的振幅和初相位
x1 (t ) A1 cos( t 1 ) x2 (t ) A2 cos(t 2 )
电 子 A cos cos t A sin sin t 工 A cos( t ) 程 学 2 2 院式中: A A1 A2 2 A1 A2 cos( 2 1 ) 杨 小
几何方法
x1 A1 cos(t 1 ) x2 A2 cos(t 2 )
电 子 工 程 学 院 小
A2
2
0

A
x
x
x x1 x2
x A cos(t )
A
2 1 2 2
x2
1

x1
A1
A A 2 A1 A2 cos( 2 1 )
相关文档
最新文档