第2章缩聚和逐步聚合反应
2 缩聚和逐步聚合高分子分解

2
2.2 缩聚反应
缩聚反应是通过官能团相互作用而形成聚合物的过 程,单体常带有各种官能团:
-COOH、-OH、-COOR、-COCl、-NH2等
1. 单体的官能度:单体分子所含的参与聚合反应的功 能基或反应点的数目叫单体的官能度(f)。对于不同 的官能度体系,其产物结构不同:
1-n官能度体系 一种单体的官能度为 1,另一种单体的官能度大
p N0 -N 1- N
N0
N0
当体系中所有的单体都两两反应生成二聚体时,单体
转化率为100%,但却只有一半的功能基已反应,反应
程度只有0.5。在逐步聚合反应过程中,绝大部分单体在
很短时间内就相互反应生成低聚体,因而单体转化率在
短时间迅速达到某一极限值,但反应程度则随反应时间
逐渐增大。
9
反应程度与平均聚合度的关系: 聚合度 是指高分子中含有的结构单元的数目
于等于1 ,即 1-1、1-2、1-3、1-4等体系,只 能得到低分子化合物,属缩合反应。
3
2-2官能度体系 每个单体都有两个相同的官能团,可得到线形聚合物, 例如:
n HOOC(CH2)4COOH + n HOCH2CH2OH
HO CO(CH2)4COOCH2CH2O n H + (2n-1) H2O
环的稳定性越大,反应中越易成环。环的稳定性如下:
5, 6 > 7 > 8 ~ 11 > 3, 4
五元环、六元环最稳定,故易形成,如:
2 HOCH2COOH H2O HOCH2COOCH2COOH
低浓度有利于成环, 高浓度有利于线形缩聚。
H2O
CH2 O
OC
CO
O CH2
高分子化学-第二章 缩聚和逐步聚合

N0
N0
反应程度与转化率的区别
转化率:参加反应的单体量占起始单体量的分数,是指已 经参加反应的单体的数目
反应程度:则是指已经反应的官能团的数目
例如: 一种缩聚反应,单体间双双反应很快全部变成二聚体,就 单体转化率而言,转化率达100%;而官能团的反应程度 仅50%
反应程度与平均聚合度的关系
聚合度是指高分子中含有的结构单元的数目
聚加成:形式上是加成反应,但反应机理是逐步反应。 如聚氨酯的合成(p17)。
开环反应:部分开环反应为逐步反应,如水、酸引发的己内 酰胺的开环反应。
氧化-偶合:单体与氧气的缩合反应, 如 2,6-二甲基苯酚和氧 气形成聚苯撑氧,也称聚苯醚。
2 逐步聚合反应的特点
官能团间的反应,无特定的活性中心;无所谓的引发、 增长、终止等基元反应;反应逐步进行,每一步的反 应速率和活化能大致相同;
[ H + ][ A- ] KHA =
[ HA ]
[ HA ] [ H + ] [ A- ] = KHA
代入式
-d [ COOH ] = k1k3[ COOH ][OH ][ H+]
dt
k 2KHA
催化用酸HA:可以是二元酸本身,但反应较慢,也可以是 外加酸,如H2SO4,大大加速
自催化缩聚反应
无外加酸,二元酸单体催化剂,[HA] = [COOH]
Flory对此进行了解释:
官能团等活性理论是近似的,不是绝对的,这一理论大大简化了研 究处理,可用同一平衡常数表示,整个缩聚过程可以用两种官 能团之间的反应来表征
COOH + HO
k1
OCO
k1
2. 线型缩聚动力学
不可逆条件下的缩聚动力学
第二章 缩聚及其他逐步聚合反应

第二章缩聚及其他逐步聚合反应一、学习要求1、了解线形缩聚的单体种类及类型,掌握官能团及官能度的概念,等物质的量的概念。
2、熟悉线形缩聚的机理和特点,熟悉在密闭体系与开放体系中聚合度与平衡常数和残留小分子的关系,熟悉线形缩聚中出现的副反应。
3、掌握官能团等活性概念,了解线形缩聚动力学,自催化聚酯化动力学及外加酸聚酯化动力学,平衡缩聚动力学。
4、掌握线形缩聚产物聚合度的影响因素及控制方法,了解反应程度和平衡常数对聚合度的影响;了解等物质的量对聚合度的影响;掌握摩尔系数的计算,聚合度与反应程度、摩尔系数的关系,了解线形缩聚物的分子量分布。
5、掌握体型缩聚的形成条件,凝胶化现象与凝胶点,Carothers方程的理论基础及方程式,等物质的量及非等物质的量条件下的体系平均官能度的计算,了解Flory统计法估算体系凝胶点的方法。
6、掌握缩聚反应的实施方法,了解聚酯、聚酰胺的制备原理及过程,了解酚醛树脂、尿醛树脂及三聚氰胺甲醛树脂的制备原理及过程。
二、学时学时聚合反应从机理上可分为逐步聚合反应和连锁聚合反应两大类型。
在高分子化学和高分子合成工业中,逐步聚合反应占有重要地位。
其中包括人们熟知的涤纶、尼龙、酚醛树脂及脲醛树脂等高分子材料。
近年来,逐步聚合反应的研究在理论上和实际应用上都有了新的发展,一些高强度、高模量、耐老化及抗高温等综合性能优异的高分子材料不断问世。
逐步聚合反应中最重要是缩合聚合,简称缩聚。
本章着重讨论缩聚反应,并介绍其他常用的逐步聚合反应。
2.1 聚合反应类型及特点逐步聚合反应包括缩聚反应、逐步加成聚合,一些环状化合物的开环聚合、Diels—Alder 加成反应(狄尔斯-阿尔德反应是一种有机反应(具体而言是一种环加成反应)。
共轭双烯与取代烯烃(一般称为亲双烯体)反应生成取代环己烯。
即使新形成的环之中的一些原子不是碳原子,这个反应也可以继续进行。
一些狄尔斯-阿尔德反应是可逆的,这样的环分解反应叫做逆狄尔斯-阿尔德反应(retro-Diels–Alder)。
高分子化学第二章-缩聚及逐步聚合

l 按反应热力学的特征分类 平衡缩聚反应 指平衡常数小于 103 的缩聚反应 不平衡缩聚反应 平衡常数大于 103
l按生成聚合物的结构分类 线型缩聚 体型缩聚
2.2.3 特点
缩聚反应是缩合聚合反应的简称,是缩合反应多 次重复结果形成缩聚物的过程。 1、典型缩合反应——形成低分子化合物
3 、反应程度与数均聚合度的关系
数均聚合度是指高分子中含有的结构单元的数目。
Xn
起始单体数目
=
达到平衡时同系物数目(大分子数)
N0 N
代入反应程度关系式
P = N0-N = 1- N
N0
N0
P = 1- 1 Xn
1 Xn = 1-P
一般 Xn 100~200 P提高到
0.99~0.995
300 250 200
a. 密闭体系中,nw=P
Xn
1 P
K=
1 nw
K
当M n 104 , P 1, X n
K nw
平衡缩聚中数均聚合度与平衡常数
及小分子副产物浓度三者关系
Xn只与温度有关,与其他无关。(因为nw平衡时为定值)
b. 敞开体系,水排出,则 nw为体系中剩余的。
说明:X
的影响因素
n
密闭体系,只与T有关 敞开体系,与排出的水有关
3、缩聚中的副反应 副反应
消去反应 化学降解 链交换反应
消去反应
HOOC(CH2)nCOOH
HOOC(CH2)nH + CO2
二元酸脱羧温度(℃)
己二酸 300~320 庚二酸 290~310 辛二酸 340~360 壬二酸 320~340 癸二酸 350~370
高分子化学第二章缩聚及逐步聚合

说明:Xn的影响因素 密闭体系,只与T有关 敞开体系,与排出的水有关
水排出多,则nw ,K / nw ,则Xn
K小时,可通过排水提高Xn
2.4.4 影响缩聚平衡的因素 1、温度的影响
lnK2 K1
RHT11
1 T2
对于吸热反响,△H>0,假设T2>T1,那么K2>K1 ,即温度升高,平衡常数增大。
n HO-R-COOH H2O
H-(ORCO)n-OH + (n-1)
2、体形缩聚反应(K值通常大于103的缩聚反应)
n a-A-a + n b-B-b b
~A-B-A~
A
A~
~A-B-A-B-A-B-A-B-A-B-A~
A
A
A
~A-B-A-B-A-B-A-B-A-B-A~
A~
A~
参加聚合反响的单体至少有一个含有两个
1、线型逐步聚合反响〔K值通常小于103的缩聚反响〕
参与反响的单体只含两个官能团〔即双官能团 单体〕,聚合物分子链只会向两个方向增长,分子 量逐步增大,体系的粘度逐渐上升,获得的是可溶 可熔的线型高分子。
双官能团单体类型:
a. 两官能团一样并可相互反响
b. 如二元醇聚合生成聚醚
c. n HO-R-OH
与醛缩合,官能度为 3
单体官能度的影响
• 单官能度只发生缩合反响而不能发生缩聚反响。 • 多官能度〔f = 2〕形成线型构造的缩聚物。 • 多官能度〔f > 2〕形成体型构造的缩聚物。 •
2 、双官能度体系的成环反响
在生成线型缩聚物的同时,常伴随有 成环反响
• 成环是副反响,与环的大小密切相关 • 环的稳定性如下:
高分子化学第二章 缩聚和逐步聚合

O=
C
H2C─C O H2C─CH2
H2C O
H2C CH2 CH2
20
• HO–(CH2)n–COOH缩聚
n=1,2HOCH2COOH HOCH2COOCH2COOH O=C-CH2O-C=O + H2O OCH2
21
• n=2
HO(CH2)2COOH
CH2=CH-COOH+H2O
• n=3 HO(CH2)3COOH
CH2-C=O CH2-CH2-O + H2O
22
• n=4 HO(CH2)4COOH
CH2-CH2-C=O CH2-CH2-O + H2O
• n>=5,成链,形成线形聚合物。
23
• 成环倾向大小,主要取决于单体的结构, 受反应条件的影响较小。
• 环上取代基或环上元素改变时,环的稳定 性也相应变化。
• 在工业上:锦纶大量用来制造轮胎帘子 布、工业用布、缆绳、传送带、帐篷、 鱼网等,还可用作降落伞。
64
• 还可用于制造轴承、齿轮、滚子、 滑轮、辊轴、风扇叶片、涡轮、垫 片等。
65
全芳聚酰胺
• 是20世纪60年代由美国的杜邦公司首先开 发成功的。
13
自由基聚合
线型缩聚
③只有链增长才使聚 ③任何物种间都能反应, 合度增加,从一聚体 使分子量逐步增加。反应 增长到高聚物,时间 可以停留在中等聚合度阶 极短,中途不能暂停。段,只在聚合后期,才能 聚合一开始,就有高 获得高分子量产物。 聚物存在。
④在聚合过程中,单 ④聚合初期,单体几乎全
体逐渐减少,转化率 部缩聚成低聚物,以后再
(2—23式)
• 水部分排出时:
-dC/d t =k1 [ (1-P)2-P•nW/ K]
第二章 缩聚和逐步聚合

§2-3 缩聚反应的机理和动力学
§2.3.1 缩聚反应的基本过程 (1 ) 大分子的生长反应
a ABb + a A B + ab a A B + ab
aAa + b B b a A B m
n
m +n
特点:大分子之间可以互相反应产生更大的分子。
17
(2)大分子生长过程的停止
a. 热力学平衡的限制---缩聚反应的逆反应解缩聚
+ HO
O C R' COOH H OROCOR' CO m OH
( ( )
(
HCOORR' CO
OROCOR' CO n OH
)
)
2 H 2N CH 2 n NH2
( )
2 C CH 2 n1
)
NH
+ 2NH 3 + NH 3
H 2N CH 2 n NH CH 2 n NH2
+
21
§2.3.1
线性缩聚反应动力学
13
●单体中官能团的空间分布对产物结构与性能的影响
nH2N- -NH2 + nClOC- -COCl
H-NH-
-NHOC-
-CO-Cl + (2n-1)HCl
n
聚对苯二甲酰对苯二胺
结晶性高聚物,能溶于浓硫酸中,不溶解于有机溶剂
nH2N NH2 H-NH NHOC
聚间苯二酰间苯二胺
+ nClOC COCl + (2n-1)HCl CO- Cl n
脲醛缩聚反应 聚烷基化反应 聚硅醚化反应
脲醛树脂 聚烷烃 有பைடு நூலகம்硅树脂
6
n [CH2]
-Si-O-
02 缩聚和逐步聚合

HO CH2 CH2 OH
+
HOOC
COOH
O H2N R N H2
O R' C OH
+
HO
C
CH3 HO
O OH
C
CH3
+
Cl
C Cl
OH
H
OH
H
+
H C H2O
OH
+
OH
H
C H2
CH2
H
CH3
O OH
n HO
C
CH3
+ (n+2) ClCH2
C CH2 H
3、氧化偶联聚合反应 通过氧化偶联反应生成聚合物的反应。 例如:苯的氧化偶联聚合生成聚苯;酚的氧化偶联 聚合生成聚苯醚。 4、逐步加成聚合反应 通过加成反应逐步生成聚合物的反应。 例如:聚氨酯的合成、D-A聚合等,反应式见p17 表2-1。
一、线形缩聚与成环倾向 1、反应倾向 一般来说,5、6元环比较稳定,因此如果形成的是5、6元 环,则易发生成环反应; 否则,主要发生线形缩聚反应。
2、影响因素 单体浓度,影响着成环反应与线形缩聚的竞争。 成环反应是单分子反应,缩聚则是双分子反应, 因此,低浓度有利于成环反应,高浓度有利于缩聚反应。
有特殊官能团单体 有特殊的活性中心
线形缩聚
烯烃 无特殊的活性中心
有基元反应,各步Ea 无基元反应,各步Ea 不同 相同 分子量随时间不变, 转化率随时间增加 单体 +大分子+微量引 发剂 C% 分子量随时间增加, 转化率随时间不变 聚合度不等的同系物 P
单体及引发剂浓度、 平衡常数、单体比例、 温度、阻聚剂、分子 温度、…… 量调节剂、……
chap2 缩聚和逐步聚合

二级反应
30
dC = k 'C 2 dt
二级反应
= k 'C 0t + 1
积分并引入 p,得 : 1
1 p
Xn = k 'C0t+1
1/(1-p)或 Xn 与时间 t 成动力学
聚酯化反应K值较小,小分子副产物若不及时 排除,逆反应不能忽视。 分别考虑水不排除和部分不排除(残留水的浓度 为 nw )两种情况: COOH + OH C0 t时(水未排除) C t时(水部分排除) C
2
一、引言
按聚合机理或动力学分类: 连锁聚合(chain polymerization) 活性中心(active center)引发单体,迅速连锁增长 自由基聚合 活性中心不同 阳离子聚合 阴离子聚合 逐步聚合(stepwise polymerization) 无活性中心,单体所带的不同官能团间相互反 应而逐步增长 大部分缩聚属逐步机理, 大多数烯类加聚属连锁机理。
第二章 缩聚和逐步聚合
(stepwise polymerization)
1
本章内容
一、引言 二、缩聚反应 (polycondensation) 三、线形缩聚(linear polycondensation) 四、线形缩聚动力学 五、影响线形缩聚物聚合度的因素及控制方法 六、分子量分布(MWD) 七、 逐步聚合的实施方法
K = k1 / k 1
0.5 = 0.75 p=1 2
2 1 = =4 Xn= 0.5 1 0.75
20
1 Xn= 1 p
符合此式须满足官能团数 等当量的条件。 聚合度将随反应程度而增 加
p=0.9
第2章缩聚和逐步聚合

19
1. 缩聚反应单体体系
官能度的概念
是指一个单体分子中能够参加反应的官能团的数目。 单体的官能度一般容易判断。 个别单体,反应条件不同,官能度不同,如
OH
进行酰化反应,官能度为 1
与醛缩合,官能度为 3
20
对于不同的官能度体系,其产物结构不同
如二元醇聚合生成聚醚:源自n HO-R-OHH-(OR)n-OH + (n-1) H2O
b. 两功能基相同, 但相互不能反应,聚合反应只能在 不同单体间进行。
如二元胺和二元羧酸聚合生成聚酰胺:
n H2N-R-NH2 + n HOOC-R’-COOH H-(HNRNH-OCR’CO)n-OH + (2n-1) H2O
聚醚化反应:二元醇与二元醇反应,
n HO-R-OH + n HO-R’-OH H-(OR-OR’)n-OH + (2n-1) H2O
10
聚酰胺反应:二元胺与二元羧酸、二元酯、二元酰 氯等反应。
n H2N-R-NH2 + n ClOC-R’-COCl H-(HNRNH-OCR’CO)n-Cl + (2n-1) HCl
高分子化学部分
第2章 缩聚与逐步聚合
(Step-growth polymerization) (Polycondensation)
1
逐步聚合反应最基本的特征 在低分子单体转变成高分子的过程中反应 是逐步进行的。 逐步聚合反应范围广泛 在高分子工业中占有重要地位 合成了大量有工业价值的聚合物
2
2.1 引言
缩聚反应是最常见的逐步聚合反应。聚酰胺、聚酯、 聚碳酸酯、酚醛树脂、脲醛树脂、醇酸树脂等均为重要的 缩聚产物。
第2章缩聚及其他逐步聚合反应

高分子化学
第2章 缩聚及其他逐步聚合反应
2.1-2.3
2.2.1.2 缩聚反应的类型 按参加反应的单体种类分类 (1)均缩聚:只有一种单体参加的缩聚反应,其重复单元 只含有一种结构单元。单体本身含有能发生缩合反应的两种 官能团。 如由氨基酸单体合成聚酰胺:
(2)混缩聚:由两种单体参与、但所得聚合物只有一种重 复结构单元的缩聚反应,其起始单体通常为对称性双功能基 单体,如aRa和bR ′ b,聚合反应通过X和Y功能基的相互反 应进行。
2.1-2.3
(1)实验依据d: (2)理论分析: 官能团的活性取决于官能团的碰撞频率,而不是大分子的扩散 速率。 碰撞频率:单位时间内一个官能团与其他官能团碰撞的次数。 大分子的整体扩散速率很低,大分子链末端的官能团的活动性 要比整个大分子大很多。
(3)“等活性”理论需满足的条件
缩聚反应体系必须是真溶液、均相体系。 官能团所处的环境——邻近基团效应和空间阻碍在反应过程中 不变。 聚合物的相对分子质量不能太高,反应速率不能太大,体系粘 度不能太高。 第2章 缩聚及其他逐步聚合反应 2.1-2.3 高分子化学
第2章 缩聚及其他逐步聚合反应
2.1 聚合反应类型及特点
在高分子工业中具有重要地位:
1.大多数杂链聚合物都是由逐步聚合而成:聚酯、聚酰胺、聚 氨酯、酚醛树脂、环氧树脂等。
2.许多带芳环的耐高温聚合物如聚酰亚胺由逐步聚合而成。
3.逐步聚合可以合成很多功能高分子,如离子交换树脂。
4.许多天然生物高分子通过逐步聚合而得:蛋白质,多糖等。
n HOOC-R-COOH + n HO-R'-OH
高分子化学
O O HO ( C R C OR'O ) H + (2n-1) H2O n
2缩聚和逐步聚合

2.3.1 线形缩聚与成环倾向
当n=2时,β-羟基失水,可能形成丙烯 酸:
HOCH2 CH2COOH→CH2 =CH2 COOH
2.3.1 线形缩聚与成环倾向
当n=3、4时,分子内缩合成稳定的五、 六元内酯:
2.3.1 线形缩聚与成环倾向
当n≥5时,主要形成线形缩聚。 单体浓度对成环或线性缩聚倾向也有影 响。成环是单分子反应,缩聚则是双分子 反应,因此低浓度有利于成环,高浓度有 利于线性缩聚。
缩聚型逐步聚合——有小分子生成的逐 步聚合反应。例:
HOOC-R-COOH+HO-R,-OH → HO-[R,-OOC-R-CO]n-OH+(2n+1)H2O
2.2缩聚反应
缩聚反应是缩合聚合反应的简称,是缩 合反应多次重复,结果形成聚合物的过程。 缩合和缩聚都是基团间(羟基和羧基,或 者胺基和羧基)的反应。两种基团可以分 属于两个单体分子,如乙二醇和对苯酸; 也可以两种基团在同一种单体分子,如羟 基酸或氨基酸。缩聚反应的特点是由小分 子生成。
2缩聚和逐步聚合
第二章 逐步聚合
2.1引言 按单体—聚合物组成结构的变化将聚合
反应范围缩聚、加聚、开环聚合三大类类。 按聚合机理又将聚合反应分为逐步聚合
和连锁聚合两大类。 在缩聚反应中,聚酯、聚酰胺、聚碳酸
酯、酚醛树脂、脲醛树脂、醇酸树脂等杂 链聚合物(见表1-2)都由缩聚反应合成的, 例如:
缩聚反应 实例
2.1 引言
绝大部分缩聚反应属于逐步机理, 也有非缩聚型或加聚型的逐步聚合, 见表2-1。(P17)
如聚氨酯、聚砜、聚苯醚、聚酰胺 -6、聚苯等。
2.1 引言
逐步聚合有两种: 加聚型逐步聚合—无小分子生成的逐步 聚合反应。例:
(完整版)第二章缩聚和逐步聚合

第二章缩聚和逐步聚合思考题2.1简述逐步聚合和缩聚、缩合和缩聚、线形缩聚和体形缩聚、自缩聚和共缩聚的关系和区别。
解(1)逐步聚合和缩聚逐步聚合反应中无活性中心,通过单体中不同官能团之间相互反应而逐步增长,每步反应的速率和活化能大致相同。
缩聚是指带有两个或两个以上官能团的单体间连续、重复进行的缩合反应,缩聚物为主产物,同时还有低分子副产物产生,缩聚物和单体的元素组成并不相同。
逐步聚合和缩聚归属于不同的分类。
按单体—聚合物组成结构变化来看,聚合反应可以分为缩聚、加聚和开环三大类。
按聚合机理,聚合反应可以分成逐步聚合和连锁聚合两类。
大部分缩聚属于逐步聚合机理,但两者不是同义词。
(2)缩合和缩聚缩合反应是指两个或两个以上有机分子相互作用后以共价键结合成一个分子,并常伴有失去小分子(如水、氯化氢、醇等)的反应。
缩聚反应是缩合聚合的简称,是指带有两个或两个以上官能团的单体间连续、重复进行的缩合反应,主产物为大分子,同时还有低分子副产物产生。
l-1、1-2、1-3等体系都有一种原料是单官能度,只能进行缩合反应,不能进行缩聚反应,缩合的结果,只能形成低分子化合物。
醋酸与乙醇的酯化是典型的缩合反应,2-2、2-3等体系能进行缩聚反应,生成高分子。
(3)线形缩聚和体形缩聚根据生成的聚合物的结构进行分类,可以将缩聚反应分为线形缩聚和体形缩聚。
线形缩聚是指参加反应的单体含有两个官能团,形成的大分子向两个方向增长,得到线形缩聚物的反应,如涤纶聚酯、尼龙等。
线形缩聚的首要条件是需要2-2或2官能度体系作原料。
体形缩聚是指参加反应的单体至少有一种含两个以上官能团,并且体系的平均官能度大于2,在一定条件下能够生成三维交联结构聚合物的缩聚反应。
如采用2-3官能度体系(邻苯二甲酸酐和甘油)或2-4官能度体系(邻苯二甲酸酐和季戊四醇)聚合,除了按线形方向缩聚外,侧基也能缩聚,先形成支链,进一步形成体形结构。
(4)自缩聚和共缩聚根据参加反应的单体种类进行分类,可以将缩聚反应分为自缩聚、混缩聚和共缩聚。
高分子化学2 缩聚和逐步聚合

第二章 缩聚和逐步聚合
2.2 缩聚反应
若参与反应的物质均为二官能度的,则缩合反应转化 为缩聚反应。
以二元羧酸与二元醇的聚合反应为例。当一分子二元 酸与一分子二元醇反应时,形成一端为羟基,一端为羧基 的二聚物;二聚物可再与二元酸或二元醇反应,得到两端 均为羟基或均为羧基的三聚体,也可与二聚体反应,得到 四聚体;三聚体既可与单体反应,也可与二聚体或另一种 三聚体反应,如此不断进行,得到高分子量的聚酯。
CH2 O CO
CH2 CH2
HO(CH2)4COOH
CH2
CH2 CH2
O CO
CH2
22
第二章 缩聚和逐步聚合
3.2 线形缩聚机理
线形缩聚反应有两个显著的特征:逐步与可逆平衡。 1)聚合过程的逐步性
以二元酸和二元醇的缩聚为例。在缩聚反应中,含羟 基的任何聚体与含羧基的任何聚体之间都可以相互缩合。 随着反应的进行,分子量逐步增大,达到高分子量聚酯。 通式如下:
13
第二章 缩聚和逐步聚合
HOOC-R-COOH + HO-R'-OH
HOOC-R-COO-R'-OH + H2O 二聚体
HOOC-R-COO-R'-OH +
HOOC-R-COOH HO-R'-OH
HOOC-R-COO-R'-OOC-R-COOH + H2O 三聚体
HO-R'-OOC-R-COO-R'-OH + H2O
如光气法制备聚碳酸酯,合成聚砜等。
逐步特性是所有缩聚反应共有的,可逆平衡的 程度则各类缩聚反应有明显差别。
28
第二章 缩聚和逐步聚合
3.3 缩聚过程中的副反应
高分子化学导论第2章线性缩聚和逐步聚合

2.7 体形缩聚和凝胶化作用
一. 体形缩聚 1. 定义
在缩聚反应中,参加反应的单体只要有一种单体具有 两个以上官能团( f >2),缩聚反应将向三个方向发展, 生成支化或交联结构的体形大分子,称为体形缩聚。 体形缩聚的最终产物称为体形缩聚物。
r
=
Na
Na+2Nc
2表示1个分子Cb中的1个基 团b相当于一个过量的bBb 分子双官能团的作用
q=
Nc Na
=
2Nc Na
2
推导过程同上
r
=
1
q+1
1+r
q+2
Xn = 1+r-2rP = q+2( 1-P )
和前一种情况相同,只是 r 和 q 表达式不同
3)aRb 加少量单官能团物质Cb(分子数为Nc) 基团数比和分子过量分率如下:
Polymer Chemistry
高分子化学
缩聚和逐步聚合
2.1 发展历史
按聚合机理或动力学分类:
• 逐步聚合(stepwise polymerization) 无活性中心,单体官能团间相互反应而逐步增长
• 连锁聚合(chain polymerization) 活性中心(active center)引发单体,迅速连锁增长
( Na+Nb ) / 2
1+r
q+2
Xn = ( Na+Nb-2NaP ) / 2 = 1+r-2rP = q+2( 1-P )
( Na+Nb ) / 2
1+r
q+2
Xn = ( Na+Nb-2NaP ) / 2 = 1+r-2rP = q+2( 1-P )
若q很小
第二章缩聚和逐步聚合反应

O C OH + HA k1
k2
OH
-
C OH + A
+
K,= k1 = [ C +( OH )2 ][ A- ] k 2 [ COOH ][ HA ]
[ C+( OH
)2 ]
=
k1[ COOH ][ k 2[ A- ]
HA ]
代入式
-d [ COOH dt
k2
OH
C
+
OH
+
HO
O
k5
CO
OH
-
C OH + A
质+子化羧基
k3 慢
OH
k4
C OH
OH
+
+ H2O + H+
聚酯反应速率可以用羧基消失速率来表示:
Rp =-d [ COOH ] = k3[ C+( OH )2 ][OH ] dt
32
Rp =-d [ COOH ] = k3[ C+( OH )2 ][OH ] dt
缩聚特点: 缩聚物有特征结构官能团; 有低分子副产物(byproduct); 缩聚物和单体分子量不成整数倍。
官能度(f):一分子中能参加反应的官能团数。
1-1、1-2、1-3体系;低分子缩合反应; 2-2或2体系:线形缩聚; 2-3、2-4等多官能度体系:体形缩聚。
23
复习回顾:
线形缩聚单体
条件:1)必须是2-2、2官能度体系; 2)反应单体要不易成环; 3)少副反应,保证一定的分子量 ;
A.羧酸不电离Rpd[COOH ] dt
k[COOH ][OH ][H
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大部分缩聚属于逐步聚合,缩聚也占了逐步聚 合的大部分。有时候换用,但不是一个概念。 逐步聚合的概念: 逐步聚合反应指随着反应时间的延长,相对分 子质量逐步增大的聚合反应。 聚合初期,单体通过官能团反应变为低聚物, 然后由低聚物转化为高聚物。 单体、低聚物和高聚物之间任何两个分子都可 以反应,相对分子质量逐步增大,聚合物链逐 渐增长。 反应的中间物可以分离出来,并能再进一步反 应。
也称A-A型缩聚,如:
② 混缩聚(或称为杂缩聚) mixing polycondensation 由两种具有不同官能 团(功能基)的单体参加的缩聚反应,这两 种单体自身都不能进行均缩聚。通式为:
如二元酸和二元胺,二元酸和二元醇的缩 聚反应(2-2官能度体系)。
③ 共缩聚 (co-condensation polymerization) 在均缩聚中加入第二种单体进行缩聚, 或在混缩聚中加入第三种甚至第四种单 体进行的缩聚反应。通式分别为:
线形缩聚产物相对分子质量或聚合度与反 应程度之间有怎样的关系?
聚合度:进入大分子链中的平均总单体数 (或结构单元数)。
式(2-3)同样适用于“a-A-a + b-B-b”型(2/2官能度 体系) 缩聚反应。如等量的二元酸和二元醇之间的 反应。
如果设 为平均相对结构单元质量,则 线型缩聚产物的数均相对分子质量为:
如果羧基数和羟基数相等,令其起始浓 度C0=1,时间t的浓度为C,
C= C0*(1-P)=1-P。则酯的浓度为 1-C=P,水全未排除时,水的浓度也是P 。 如果一部分水排出,残留水的浓度为nw
上式表明:总反应速率与反应程度P、低分子副产物含 量nw、平衡常数K有关
2.5 线型缩聚物的聚合度
逐步聚合反应的分类: 缩聚反应、逐步加成聚合反应
缩聚反应由一种或几种含有两个或两个以上相 同或不同官能团的单体,通过分子间的相互缩 合而生成高分子化合物。在聚合反应过程中有 小分子化合物(如水、醇等)产生。 缩聚反应是最典型、最重要的逐步聚合反应, 是本章讨论的重点。产品有聚酯、聚酰胺等。 逐步加成聚合:单体分子通过反复加成使分子 间形成共价键,逐步生成高相对分子质量的聚 合物的过程。特点:聚合物生成的同时没有小 分子析出。如聚氨酯的合成等。
一种聚合物的性能及加工与其相对分子质 量及相对分子质量分布关系密切。根据聚 合物不同用途和控制相对分子质量的目的, 分两种情况: 使相对分子质量达到或接近预期数值;
使相对分子质量尽可能高。
影响缩聚物聚合物度的因素有反应程度、 平衡常数和基团比,基团比是控制因素。
2.5.1 反应程度和平衡常数对聚合度的影响 2-2体系,两种基团比相等时,
2.4.1官能团的等活性概念
线型缩聚反应的每一步都可以独立存在,并且可逆。
官能团的等活性equal reactivity of functional groups:当官能团化合物的分 子链达到一定长度后,官能团的化学反 应活性与所在的分子链长无关。 各步正、逆反应速率常数相等,即
所有的平衡常数相等,即
������
逐步聚合反应的重要性:
逐步聚合反应可合成: 大多数杂链聚合物; 许多带芳环的耐高温聚合物, 如聚酰亚胺以及梯形聚合物; 许多功能高分子以及许多天然生物高分子; 无机聚合物几乎都是由此法合成
2.2 缩聚反应
2.2.1 缩合与缩聚 官能度(f,functionality):一个分子中能 参加反应的官能团数, 或是指单体在缩合 反应中能形成新键的数目。
正确吗??? 见教材P23 表2-4 原因有二: 1)在碳链增长后,诱导、共轭效应等对官能团 的活性作用减弱,因而官能团活性相近。 2)官能团的活性与基团的碰撞频率有关,不决 定于整个大分子的扩散速率。
2.4.2 线型缩聚动力学
以二元酸和二元醇的聚酯化反应为例
2.4.2.1 不可逆条件下的线型缩聚反应动力学
只有当反应程度P 很大,缩聚物的相对分子质 量 才会足够大。
由上表可见: 1) 缩聚反应后期才能得到高相对分子质量 的聚合物; 2) 聚合度随着反应程度P的增加急剧上 升; 3) 缩聚产物的相对分子质量一般不超过几 万这一数量级。
(2)可逆平衡
聚酯化和低分子酯化反应相似,都是可逆平 衡反应,正反应是酯化,逆反应是水解
图2-2 己二酸自催化与四种二元醇得缩聚反应动力学曲线 1)癸二醇,202°C;2)癸二醇,191°C; 3)癸二醇,161°C; 4)二缩乙.2 .2平衡缩聚反应动力学
若酯化反应在密闭系统中进行,或水的 排除不及时,则逆反应不容忽视,与正 反应构成可逆平衡。
如1-1, 2-2(官能度)体系。
缩合反应:
缩聚反应:
总结:
1-1 、1-2、 1-3 官能度体系缩合将形成低 分子物; 2-2或2官能度体系将形成线型缩聚物; 2-3、2-4、或3-3官能度体系将形成体型 缩聚物 本章讨论内容:
1 线型缩聚机理:聚合速率、分子量控制 2 体型缩聚机理:聚合速率、凝胶点的控制 3 重要的缩聚物和逐步聚合物
解决方法:
提高单体浓度。成环为单分子反应,缩 聚为双分子分子反应,低浓度有利于成 环,高浓度有利于线形缩聚。 降低温度。环化反应活化能一般高于线 型聚合反应。
2.3.2 线型缩聚机理
线型缩聚机理的特征有二: 逐步和可逆 (1)逐步特征
链增长主要依赖官能团之间的缩合反应来实 现,是逐步的平衡反应,无链引发阶段。 反应初期,体系中单体很快转化成低聚物, 单体浓度下降很快,转化率几乎与时间无关。 在缩聚反应中,转化率无实际意义;以反应 程度来描述反应的进度。 不同大小的分子的官能团都有相同的反应活 性,发生分子间反应形成大分子。 相对分子质量随反应时间增加而逐步增大, 很少超过几万,但分布较窄。
平衡常数表达式为:
缩聚反应的可逆程度可由平衡常数来衡量。根据其 大小,可将线型缩聚粗分为以下三类: ①平衡常数小,如酯化反应,K≈ 4,低分子副产物水 的存在限制了分子量的提高,须在高度减压下脱出。 ② 平衡常数中等,如聚酰胺化反应,K=300~400,水 对分子量有所影响,聚合早期,可在水介质中进行; 只是后期,需在一定的减压条件下脱水,提高反应 程度。 ③平衡常数大, K> 1000,可以看作不可逆,如合成 聚砜一类的逐步聚合。 缩聚的共有特性——逐步,但可逆平衡程度随反应 不同差别较大
2.3.3 缩聚中的副反应
缩聚反应温度较高,往往伴有消去、化 学降解、链交换等副反应。 (1)基团消去反应 二元羧酸受热发生脱羧反应引起原料基 团数目比的变化,影响产物相对分子质 量的变化。
羧酸酯比较稳定,可用来代替羧酸。
二元胺可能进行分子内或分子间脱氨反 应, 并进一步导致支链或交联。
(2)化学降解
C、Co 分别为时间t和t=0时羧基或羟基 浓度。 将式 代入式(2-15)得:
结论: 无外加酸的自缩聚基本符合三级反应规 律,但在低转化率和高转化率都会有一 些偏差。 与t 成线性关系,说明聚合度随反 应时间延长而缓慢增加。 自催化反应速率常数k″ 比有外加酸催化 的速率常数k′ 要小2个数量级。
1 P
2
Pnw 0 K
解得:
表示聚合度与平衡常数的平方根成正比,与水含 量的平方根成反比。如P28 图2-4、2-5所示。在实 际反应中,往往根据所要求的合格相对分子质量 以及反应平衡常数K来控制体系中的nw 。 平衡常数小的,如聚酯化,K≈4,要求聚合度为 100时,由公式(2-8)得: nw= 4×10-4。������ 必须除 去低分子物质,体系压力较低。 平衡常数中等,如聚酰胺化,K≈400,要求聚合 度为100时,需使nw<4×10-2,低分子物质含量可 高些。 对于K值很大(103 )时,且对聚合度要求不高(几到 几十)时,例如,某些可溶性预聚物,可以在水介 质中进行。
聚酯化是可逆反应,如果不将副产物水排除, 正拟反应将构成平衡,总速率等于零,反应程 度将受到限制。对于封闭体系,基团比相等时 得:
1 P
2
P 0 K
2
解得:
即反应达到平衡时P与聚合度完全由K决定,与其它条 件无关。 若聚酯化反应K=4 ,在密闭系统内,最高,P=2/3,聚 合度为3。 因此,需在高度减压的条件下及时排除副产物水。
图2-1 对甲苯磺酸催化己二酸与二元醇缩聚反应动力学曲线
(2)无外加酸的自催化聚酯化动力学
任何酯化反应都要酸作催化剂; 若无外加酸作催化剂,则反应物羧酸本身提供 的H+起自催化作用。则[H+]=[-COOH]。 假设羧基与羟基浓度相等,以C(mol/L)表示, 则:
将上式分离变量,经积分得到:
第二章 缩聚和逐步聚合反应
1. 引 言 2. 缩聚反应 3. 线型缩聚反应的机理 4. 线型缩聚动力学 5. 线型缩聚物的聚合度 6. 线型缩聚物的分子量分布 7. 体形缩聚和凝胶化作用 8. 缩聚和逐步聚合的实施方法 9. 重要缩聚物和其他逐步聚合物
2.1 引言
按单体-聚合物组成结构变化,聚合反应 可分为缩聚、加聚、开环聚合三大类。 按聚合机理聚合反应可分为 (1) 逐步(增长)聚合(反应) step (growth) polymerization (2) 连(链)锁聚合(反应) [或称为链式聚合反 应或链(增长)聚合反应] chain (growth) polymerization
(1)外加酸催化聚酯化动力学
加入强酸以加速反应。反应过程中催化剂浓度 保持不变,[H+]为常数,设 如果参加反应得官能团是等物质的量配比,浓 度为C(mol/L), 即
C=[-COOH]=[-OH], 则:
引入反应程度P, 将式(2-11)代入式(2-10),得:
结论: (1)外加酸催化的聚酯反应基本符合二级 反应规律,聚合度与单体起始浓度和反 应时间t是线性关系,即随反应时间增加 而线性增长,由直线的斜率可以求k′→k (2)有实验数据证明当P(或聚合度)在 一定范围内, 1/(1-P)—t的线性关系 良好,这也证明了官能团等活性的假定 是正确的。