初中数学专题练习-一元二次方程及解法(一)直接开平方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程及解法(一)

直接开平方法

引入

1、求直线y=2x 与双曲线y=6/x 的交点。

2、设计一座2m 高的人体雕像,使上部(腰以上)与下部高度比 等于下部与全部高度比问下部设计有多高?

1. 一元二次方程的概念:只含有一个未知数(一元),并且未知数的最高

次数是2(2次)的整式方程,叫做一元二次方程.

例1:判断下列各式哪些是一元二次方程.

①21x x ++;②2960x x -=;③2102

y =;④215402x x -+=; ⑤2230x xy y +-=;⑥232y =;⑦2(1)(1)x x x +-=.

2.一元二次方程的一般形式:

一般地,任何一个关于x 的一元二次方程,都能化成形如

20(0)ax bx c a ++=≠,这种形式叫做一元二次方程的一般形式.其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项. 注意:一元二次方程0a ≠,b 、c 可以为0

例2: 是关于x 的一元二次方程的条件是( ) A. a, b, c 为任意实数 B. a, b 不同时为零

C. a 不为零

D. b, c 不同时为零

例3:将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项 系数和常数项:

(1)2352x x =-;

(2)(1)(1)2a x x x +-=-.

3、一元二次方程的解

例4:方程 x 2-2x-2=0的两个根为( )

2

0ax

bx c ++=

A. 121,2x x ==-

B.121,2x x =-=

C.1213,13x x =+=-

练习:

1.(1)关于x 的方程

是一元二次方程, 则m ;

关于x 的方程

是一元一次方程, 则m ;

(2)关于x 的方程

是一元二次方程,则 m ;

类似:()|m|210m x mx -+-=是一元二次方程,则m= ;

(3)关于x 的方程

的一次项系数是-1, 则a ;

2.(1)x=1是的根,则a= .

(2)已知关于x 的一元二次方程 22(1)210m x x m -++-=有一个根是

0, 求m 的值.

3. 解方程:(1)232700x -=;(2)240y =;(3)240x +=.

2(4)2(27)128x -= (5)20x m -= (6)22(2)4(31)x x -=+

形如2()(0)mx n p p +=≥的一元二次方程,采取整体直接开平方的方法求

根.

相关文档
最新文档