解一元二次方程练习题(直接开平方法、配方法)

合集下载

(完整版)一元二次方程解法及其经典练习题

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题方法一:直接开平方法(依据平方根的定义)平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式一、 用直接开平方法解下列一元二次方程。

1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x方法二:配方法解一元二次方程1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2. 配方法解一元二次方程的步骤:(1) (2)(3) 4) (5)二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=- 39642=-x x 、4、0542=--x x5、01322=-+x x6、07232=-+x x方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0)解:二次项系数化为1,得 ,移项 ,得 ,配方, 得 ,方程左边写成平方式 ,∵a ≠0,∴4a 2 0,有以下三种情况:(1)当b 2-4ac>0时,=1x , =2x(2)当b 2-4ac=0时,==21x x 。

(3)b 2-4ac<0时,方程根的情况为 。

3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因(1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。

当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。

解一元二次方程练习题(直接开平方法、配方法)

解一元二次方程练习题(直接开平方法、配方法)

解一元二次方程(直接开平方法、配方法)1。

用直接开平方法解下列方程:(1)2225x =; (2)21440y -=. (3)2(1)9x -=;(4)2(21)3x +=; (5)2(61)250x --=. (6)281(2)16x -=.2。

用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=;(3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥3. 填空(1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a-+( )=(y - )2. 4. 用适当的数(式)填空:23x x -+ (x =- 2);2x px -+=(x - 2)23223(x x x +-=+ 2)+ . 5.将二次三项式2x 2-3x —5进行配方,其结果为_________.6.已知4x 2—ax+1可变为(2x-b)2的形式,则ab=_______.7.将一元二次方程x 2—2x —4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.8.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .—3C .±3D .以上都不对9.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a —2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2—110. 用配方法解下列方程1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02x x ---+=11。

方程22103x x -+=左边配成一个完全平方式,所得的方程是 .12。

用配方法解方程.23610x x --= 22540x x --=13。

关于x 的方程22291240x a ab b ---=的根1x = ,2x = .14。

《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题(一)1.用配方法解下列方程(1).210x x +-= (2).23610x x +-= (3).21(1)2(1)02x x ---+=2. 用适当的数(式)填空: 23x x -+(x =- 2); 2x px -+ =(x -2) 23223(x x x +-=+ 2)+ .3. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 4. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.5.(1)2(1)9x -=; (2)2(21)3x +=; (3)2(61)250x --=.6. 解方程281(2)16x -=.7. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=;(3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥.8. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 9. 用配方法解方程23610x x --=. 22310x x --=. 22540x x --=.10. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .关于x 的方程22220x ax b a +-+=的解为11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=. 13. 用配方法证明:(1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0.14. 解方程23270x +=,得该方程的根是( )A.3x =± B.3x = C.3x =- D.无实数根15. x 取何值时,2x -的值为2-?用配方法解一元二次方程练习题(二)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( )A .2B .-2±C .D .9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=011.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。

(完整版)配方法解一元二次方程练习题及答案

(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=01x2-x-4=0所以方程的根为?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

21、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。

1、.y2?6y?6?0、3x2?2?4x、x2?4x?964、x2?4x?5?05、2x2?3x?1?0 、3x2?2x?7?07、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。

32y、3y2?1?2y1、x2?2x?8?0 、4y?1?4、2x2?5x?1?0、?4x2?8x??16、2x2?3x?2?0四、用因式分解法解下列一元二次方程。

1、x2?2x 、2?2?0 、x2?6x?8?04、42?2525、x2?x?0、?2?0五、用适当的方法解下列一元二次方程。

九上数学每日一练:直接开平方法解一元二次方程练习题及答案_2020年计算题版

九上数学每日一练:直接开平方法解一元二次方程练习题及答案_2020年计算题版

九上数学每日一练:直接开平方法解一元二次方程练习题及答案_2020年计算题版答案解析答案解析答案解析答案解析答案解析答案解析2020年九上数学:方程与不等式_一元二次方程_直接开平方法解一元二次方程练习题1.(2020秦淮.九上期末) 解方程(1) x -6x -7=0;(2) (2x -1)=9.考点: 直接开平方法解一元二次方程;配方法解一元二次方程;2.(2020苏州.九上期末) 解方程:(1)(2)考点: 直接开平方法解一元二次方程;因式分解法解一元二次方程;3.(2020宜兴.九上期中) 解方程:(1) (x-1)=4(2) x -3x -2=0(3) x +6x =7(4) 2(x -x)-(x -1)(x +3)+1=0考点: 直接开平方法解一元二次方程;公式法解一元二次方程;因式分解法解一元二次方程;4.(2020沭阳.九上期中) 解方程:(1)(2) x +4x ﹣1=0考点: 直接开平方法解一元二次方程;公式法解一元二次方程;5.(2020无锡.九上期中) 用适当的方法解下列方程:(1) (x-1)﹣9=0;(2) 3(x+5)=(x+5);(3) x +6x -55=0;(4) 2x(x +3)-1=0.考点: 直接开平方法解一元二次方程;公式法解一元二次方程;因式分解法解一元二次方程;6.(2020覃塘.九上期末)(1) 计算:;(2) 解方程:.考点: 实数的运算;直接开平方法解一元二次方程;特殊角的三角函数值;7.(2019泰州.九上期末) 解下列方程22222222222答案解析答案解析答案解析答案解析(1) (x+1)=9(2) 2x -5x+1=0考点: 直接开平方法解一元二次方程;公式法解一元二次方程;8.(2019伍家岗.九上期末) 解方程:y ﹣4=0考点: 直接开平方法解一元二次方程;9.(2019新蔡.九上期末)(1) 解方程:(x+3)=(1﹣3x ).(2) 计算:(2﹣ )+ +2sin30°tan60°.考点: 二次根式的混合运算;直接开平方法解一元二次方程;特殊角的三角函数值;10.(2019东台.九上期中) 解一元二次方程(1) 2(x ﹣3)﹣18=0(2) x ﹣5x+3=0考点:直接开平方法解一元二次方程;公式法解一元二次方程;2020年九上数学:方程与不等式_一元二次方程_直接开平方法解一元二次方程练习题答案1.答案:2.答案:3.答案:222222224.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:。

《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题(一)1.用配方法解下列方程(1).210x x +-= (2).23610x x +-= (3).21(1)2(1)02x x ---+= 2. 用适当的数(式)填空: 23x x -+ (x =- 2); 2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ .3. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 4. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.5.(1)2(1)9x -=; (2)2(21)3x +=; (3)2(61)250x --=.6. 解方程281(2)16x -=.7. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=; (3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥.8. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 9. 用配方法解方程23610x x --=. 22310x x --=. 22540x x --=.10. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=. 13. 用配方法证明:(1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0.14. 解方程23270x +=,得该方程的根是( )A.3x =± B.3x =C.3x =- D.无实数根15. x 取何值时,2x -的值为2-?用配方法解一元二次方程练习题(二)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为()A.2±B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7C.可为任何实数D.可能为负数10.用配方法解下列方程:(1)3x2-5x=2.(2)x2+8x=91x2-x-4=0(3)x2+12x-15=0 (4)411.用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。

九年级数学上一元二次方程2.2一元二次方程的解法1配方法__直接开平方法习题湘教

九年级数学上一元二次方程2.2一元二次方程的解法1配方法__直接开平方法习题湘教
谢谢观赏
You made my day!
17.用直接开平方法解下列方程.
(1)3(2x-5)2-36=0;
解:移项,得 3(2x-5)2=36,
两边同时除以 3,得(2x-5)2=12.
开方,得 2x-5=±2 3,
∴2x-5=2 3或 2x-5=-2 3.
∴x1=5+22
3,x2=5-22
3 .
(2)4(2y-5)2=9(3y-1)2.
(2)若max{(x-1)2,x2}=9,求x的值. 解:∵max{(x-1)2,x2}=9, ∴当max{(x-1)2,x2}=x2时,(x-1)2<x2,x2=9, 解得x1=-3(不合题意,舍去),x2=3, 当max{(x-1)2,x2}=(x-1)2时,(x-1)2>x2,(x-1)2=9, ∴x-1=±3,∴x-1=-3或x-1=3, 解得x1=-2,x2=4(不合题意,舍去), 综上所述,x的值为3或-2.
16.将 4 个数 a,b,c,d 排成两行两列,两边各加一条竖直线 记成ac db,定义ac db=ad-bc,上述记号叫作二阶行列 式,若x2-1 x--31=7,则 x=__0_或__2___.
【点拨】根据题意得(x-1)2-2×(-3)=7,∴(x-1)2=1, 开方得,x-1=±1,∴x1=2,x2=0.
A.x1=x2=3 C.x1=x2=- 3
B.x1=x2= 3 D.x1= 3,x2=- 3
4.用直接开平方法解下列一元二次方程,其中无实数解
的方程为( C )
A.x2-5=0
B.3x2=0
C.3x2+10=0
D.-x2+8=0
5.【2020·扬州】方程(x+1)2=9的根是_x_1=__2_,__x_2_=__-__4_.

解一元二次方程练习题配方法

解一元二次方程练习题配方法

.. 解一元二次方程练习题(配方法)1.用适当的数填空:①、x2+6x+ =(x+ )2;②、x2-5x+ =(x-)2;③、x2+ x+ =(x+ )2;④、x2-9x+ =(x-)22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,•所以方程的根为_________.5.若x2+6x+m2是一个完全平方式,则m的值是()A.3 B.-3 C.±3 D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是()A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-17.把方程x+3=4x配方,得()A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=28.用配方法解方程x2+4x=10的根为()A.2B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7C.可为任何实数D.可能为负数10.用配方法解下列方程:(1)3x2-5x=2.(2)x2+8x=9(3)x2+12x-15=0 (4)41x2-x-4=011.用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

1、0142=-x2、2)3(2=-x..3、()512=-x 4、()162812=-x二、用配方法解下列一元二次方程。

1、.0662=--y y 2、x x 4232=-3、9642=-x x 4、0542=--x x5、01322=-+x x6、07232=-+x x7、01842=+--x x 8、0222=-+n mx x9、()00222>=--m m mx x三、用公式解法解下列方程。

一元二次方程直接开平方和配方法

一元二次方程直接开平方和配方法

一元二次方程的解法直接开平方法和配方法解一元二次方程一、选择题1. 解方程23270x+=,得该方程的根是( )A .3x =±B .3x =C .3x =-D .无实数根2. 用配方法解下列方程时,配方有错误的是()A .22990x x --=化为2(1)100x -= B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x += D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭3. 用配方法解下列方程时,配方错误的是()A .22350x x +-=化为2(1)36x += B .2740y y --=化为2765()24y -=C .2890x x ++=化为2(4)25x += D .23420x x --=化为2210()39x -=4. 用配方法解方程22103x x ++=,正确解法是( )A .21839x ⎛⎫+= ⎪⎝⎭,133x =-±.B .21839x ⎛⎫+=- ⎪⎝⎭,原方程无实数根.C .22539x ⎛⎫+= ⎪⎝⎭,x =. D .22539x ⎛⎫+=- ⎪⎝⎭,原方程无实数根.5. 用配方法解下列方程时,配方错误的是( )A .22800x x --=,化为2(1)81x -=. B .2530x x --=,化为253724x ⎛⎫-= ⎪⎝⎭.C .2890t t ++=,化为2(4)25t +=. D .23420t t +-=,化为221039t ⎛⎫+= ⎪⎝⎭.6. 用配方法将二次三项式245a a ++变形,结果是( ) A .2(2)1a -+ B .2(2)1a ++ C .2(2)1a -- D .2(2)1a +-7. 关于x 的方程22()(2)02a x a x +-+=的两根分别为( )A .12a x =,232a x =-. B .12a x =,22a x =-. C .13x a =,22a x =-. D .132a x =,232ax =-.8. 一元二次方程240x -=的解是( ) A .2x = B .2x =-C .12x =,22x =-D .1x =2x =二、填空题9. 用适当的数(式)填空:23x x -+(x =-2);10. 用适当的数(式)填空:2x px -+=(x -2)11. 用适当的数(式)填空:23223(x x x +-=+2)+.12. 方程22103x x -+=左边配成一个完全平方式,所得的方程是.13. 填空(1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a-+( )=(y - )2.14. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 15. 关于x 的方程22220x ax b a +-+=的解为16. 把方程22(21)0x m x m m -+++=化成2()x a b +=的形式是: . 17. 用配方法解一元二次方程的一般步骤是:化二次项系数为1,把方程化为2x mx n ++=的形式;把常数项移到方程右边即 方程两边同时加上24m ,整理得到24m n =-;当204m n -≥时,(2m x +=,当204m n -<时,原方程 .18. 若方程20x m -=有整数根,则m 的值可以是 (只填一个). 19. 用适当的数(式)填空:235x x -+(x =-2)20. 设实数x ,y 满足2242420x y x y ++-+=,则22y x +的值等于.21. 用适当的数(式)填空:2(b a x x a++)(a x =+2).22. 把方程2890x x --=的左边配成一个完全平方式得 . 23. 完成下列配方过程:2221[2x px x px ++=++( )]+( )=(x + )2+( )24. 解一元二次方程20ax c +=的步骤是:(1)把原方程变形为 ;(2)根据平方根意义,①当0a ≠,0c ≠且a ,c 异号时,方程的解是1x = ,2x = .②当0a ≠,0c =时,原方程的解是0x =,当0a ≠,0c ≠且a ,c 同号时,原方程 .25. 一个一元二次方程,只要左边能化成含未知数的 的形式,而右边是一个非负常数,就可以根据平方根的意义,用开平方法解. 26. 方程249810x -+=的解是 .27. 241(x x x ++=+ )2+ .28. 一元二次方程2220x x --=用配方法化成2()x a b +=的形式为 则此方程的根为 .三、证明题29. 用配方法证明:(1)21a a -+的值恒为正;(2)2982x x -+-的值恒小于0.30. 用配方法证明:代数式231x x --+的值不大于1312.。

人教版九年级数学上册第二十一章 一元二次方程 专题练习题(含答案,教师版)

人教版九年级数学上册第二十一章 一元二次方程 专题练习题(含答案,教师版)

人教版九年级数学上册第二十一章 一元二次方程 专题练习题专题1 一元二次方程的解法1.用直接开平方法解下列方程:(1)3x 2-27=0;解:3x 2=27,x 2=9,x =±3,∴x 1=3,x 2=-3.(2)2(3x -1)2=8.解:(3x -1)2=4,3x -1=±2,∴x 1=1,x 2=-13. 2.用配方法解下列方程:(1)x 2-2x +5=0;解:x 2-2x =-5,x 2-2x +1=-5+1,(x -1)2=-4<0,∴原方程无解.(2)14x 2-6x +3=0. 解:x 2-24x +12=0,(x -12)2=132,x-12=±233,∴x1=233+12,x2=-233+12.3.用因式分解法解下列方程:(1)x2-3x=0;解:x(x-3)=0,∴x=0或x-3=0.∴x1=0,x2=3.(2)(x-3)2-9=0;解:∵(x-3)2-32=0,∴(x-3+3)(x-3-3)=0,即x(x-6)=0.∴x=0或x-6=0.∴x1=0,x2=6.(3)2(t-1)2+8t=0;解:原方程可化为2t2+4t+2=0.∴t2+2t+1=0.∴(t+1)2=0.∴t1=t2=-1.(4)x2-3x=(2-x)(x-3);解:原方程可化为x(x-3)=(2-x)(x-3).移项,得x(x-3)-(2-x)(x-3)=0.∴(x-3)(2x-2)=0.∴x -3=0或2x -2=0.∴x 1=3,x 2=1.(5)x 2-4x -12=0.解:分解因式,得(x -6)(x +2)=0,∴x 1=6,x 2=-2.4.用公式法解下列方程:(1)3x 2-2x +1=0;解:∵a =3,b =-2,c =1,b 2-4ac =(-2)2-4×3×1=-8<0,∴原方程无实数根.(2)x 2-23x +2=0;解:∵a =1,b =-23,c =2,b 2-4ac =(-23)2-4×1×2=4,∴x =-(-23)±22×1=3±1. ∴x 1=3-1,x 2=3+1.(3)3x =2(x +1)(x -1). 解:将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(-2)=11>0,224∴x 1=6+224,x 2=6-224. 5.用合适的方法解下列方程:(1)4(x -3)2-25(x -2)2=0;解:原方程可化为[2(x -3)]2-[5(x -2)]2=0,即(2x -6)2-(5x -10)2=0.∴(2x -6+5x -10)(2x -6-5x +10)=0,即(7x -16)(-3x +4)=0.∴x 1=167,x 2=43. (2)5(x -3)2=x 2-9;解:5(x -3)2=(x +3)(x -3),移项,得5(x -3)2-(x +3)(x -3)=0.∴(x -3)[5(x -3)-(x +3)]=0,即(x -3)(4x -18)=0.∴x -3=0或4x -18=0.∴x 1=3,x 2=92. (3)t 2-22t +18=0. 解:方程两边都乘8,得8t 2-42t +1=0.∵a =8,b =-42,c =1, ∴b 2-4ac =(-42)2-4×8×1=0.2×84∴t 1=t 2=24. 6.阅读材料:为了解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,设x 2-1=y ,那么原方程可化为y 2-5y +4=0①,解得y 1=1,y 2=4.当y =1时,x 2-1=1,∴x 2=2.∴x =±2;当y =4时,x 2-1=4,∴x 2=5.∴x =± 5.故原方程的解为x 1=2,x 2=-2,x 3=5,x 4=- 5.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想;(2)请利用以上知识解方程:(x 2+x)2-5(x 2+x)+4=0;(3)请利用以上知识解方程:x 4-3x 2-4=0.解:(2)设y =x 2+x ,则y 2-5y +4=0.∴(y -1)(y -4)=0.解得y 1=1,y 2=4.①当x 2+x =1,即x 2+x -1=0时,解得x =-1±52; ②当x 2+x =4,即x 2+x -4=0时,解得x =-1±172. 综上所述,原方程的解为x 1=-1+52,x 2=-1-52,x 3=-1+172,x 4=-1-172.(3)设x 2=y ,则y 2=x 4,原方程化为y 2-3y -4=0,解此方程,得y 1=4,y 2=-1.∵y ≥0,∴y =4.当y =4时,x 2=4,解得x 1=2,x 2=-2.专题2 根的判别式及根与系数的关系的综合1.若关于x 的一元二次方程x 2+mx +m 2-3m +3=0的两根互为倒数,则m 的值等于(B)A .1B .2C .1或2D .02.已知关于x 的方程x 2-(2k 2-3)x +k +7=0有两个不相等的实数根x 1,x 2,且x 1=5-x 2,则k 的值为-2.3.已知关于x 的一元二次方程x 2+(2m +3)x +m 2=0有两个实数根α,β.(1)求m 的取值范围;(2)若1α+1β=-1,求m 的值. 解:(1)由题意知,(2m +3)2-4×1×m 2≥0,解得m ≥-34. (2)由根与系数的关系,得α+β=-(2m +3),αβ=m 2.∵1α+1β=-1,∴α+βαβ=-1. ∴-(2m +3)m 2=-1. 变形得m 2-2m -3=0,解得m 1=-1,m 2=3.经检验,m 1=-1和m 2=3是原分式方程的解.由(1)知m ≥-34,∴m 1=-1应舍去. ∴m 的值为3.4.已知关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若x 1,x 2满足3x 1=|x 2|+2,求m 的值.解:(1)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴Δ=(-6)2-4(m +4)=20-4m ≥0.解得m ≤5.(2)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴x 1+x 2=6①,x 1x 2=m +4②.∵3x 1=|x 2|+2,∴x 1>0.当x 2≥0时,有3x 1=x 2+2③,联立①③,解得x 1=2,x 2=4.∴8=m +4.∴m =4,满足m ≤5;当x 2<0时,有3x 1=-x 2+2④,联立①④,解得x 1=-2,x 2=8(不合题意,舍去).∴m 的值为4.5.已知x 1,x 2是关于x 的一元二次方程x 2-2(m +1)x +m 2+5=0的两个实数根.(1)若(x 1-1)(x 2-1)=19,求m 的值;(2)已知等腰△ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的边长,求这个三角形的周长.解:(1)根据题意,得x1+x2=2(m+1),x1x2=m2+5.(x1-1)(x2-1)=19整理,得x1x2-(x1+x2)+1=19.把x1+x2=2(m+1),x1x2=m2+5代入x1x2-(x1+x2)+1=19,得m2+5-2(m+1)+1=19.整理,得m2-2m-15=0.解得m1=-3,m2=5.∵由Δ=4(m+1)2-4(m2+5)≥0,得m≥2,∴m1=-3不合题意,应舍去.∴m的值为5.(2)若等腰△ABC的腰长为7,把x=7代入方程x2-2(m+1)x+m2+5=0,得49-14(m+1)+m2+5=0,解得m1=4,m2=10.若m=4,则原方程为x2-10x+21=0,解得x1=7,x2=3.△ABC三边为7,7,3(符合题意).若m=10,则原方程为x2-22x+105=0,解得x1=7,x2=15.△ABC三边为7,7,15(不合题意,舍去).若等腰△ABC的底边长为7,则Δ=[-2(m+1)]2-4(m2+5)=8m-16=0,解得m =2.原方程为x 2-6x +9=0.解得x 1=x 2=3.△ABC 三边为3,3,7(不合题意,舍去).综上可知:△ABC 三边为7,7,3,周长为7+7+3=17,即这个三角形的周长为17.专题3 一元二次方程的实际应用1.印度古算书中有这样一首诗:“一群猴子分两队,高高兴兴在游戏.八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮.告我总数共多少,两队猴子在一起.”你能解决这个问题吗?解:设有x 只猴子,由题意,得(18x)2+12=x , 整理,得x 2-64x +768=0,解得x 1=16,x 2=48.答:这群猴子的总数为16只或48只.2.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16 m ,宽(AB)9 m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD 平行,其余部分种草.要使草坪部分的总面积为112 m 2,则小路的宽应为多少?解:设小路的宽应为x m ,根据题意,得(16-2x)(9-x)=112.解得x 1=1,x 2=16.∵16>9,∴x =16不符合题意,舍去.∴x =1.答:小路的宽应为1 m.3.某农场去年种植了10亩地的南瓜,亩产量为2 000 kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为x.(1)则今年南瓜的种植面积为10(1+x)亩;(用含x 的代数式表示)(2)如果今年南瓜亩产量的增长率是种植面积的增长率的12,今年南瓜的总产量为60 000 kg ,求南瓜亩产量的增长率.解:根据题意,得10(1+x)×2 000(1+x 2)=60 000, 整理,得x 2+3x -4=0,解得x 1=1=100%,x 2=-4(不合题意,舍去).∴12x =50%. 答:南瓜亩产量的增长率为50%.4.某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万千克与3.6万千克,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万千克.如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x ,根据题意,得2.5(1+x)2=3.6.解得x =0.2,x =-2.2(不合题意舍去).答:该养殖场蛋鸡产蛋量的月平均增长率为20%.(2)设再增加y 个销售点,根据题意,得3.6+0.32y ≥3.6×(1+20%),解得y ≥94. 答:至少再增加3个销售点.5.如图,在直角墙角AOB(OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙,与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96 m 2.(1)求矩形地面的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?解:(1)设AC =x m ,则BC =(20-x)m ,由题意,得x(20-x)=96,整理,得x 2-20x +96=0,解得x 1=12,x 2=8.当AC =12时,BC =8;当AC =8时,BC =12.答:矩形地面的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖:120.8×80.8=15×10=150(块), 150×50=7 500(元);②若选用规格为1.00×1.00(单位:m)的地板砖:121×81=96(块), 96×80=7 680(元).∵7 500<7 680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.6.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元/台)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元/台,如果该公司想获得10 000万元的年利润,那么该设备的销售单价应是多少万元/台?解:(1)设年销售量y 与销售单价x 的函数关系式为y =kx +b(k ≠0),将(40,600),(45,550)代入y =kx +b ,得⎩⎪⎨⎪⎧40k +b =600,45k +b =550.解得⎩⎪⎨⎪⎧k =-10,b =1 000. ∴年销售量y 与销售单价x 的函数关系式为y =-10x +1 000.(2)根据题意,得(x -30)(-10x +1 000)=10 000,整理,得x 2-130x +4 000=0,解得x 1=50,x 2=80.∵此设备的销售单价不得高于70万元/台,∴x =50.答:该设备的销售单价应是50万元/台.7.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2 090元,则这种干果每千克应降价多少元?解:(1)设一次函数关系式为y =kx +b ,当x =2,y =120;当x =4,y =140.∴⎩⎪⎨⎪⎧2k +b =120,4k +b =140,解得⎩⎪⎨⎪⎧k =10,b =100.∴y 与x 之间的函数关系式为y =10x +100.(2)由题意,得(60-40-x)(10x +100)=2 090,解得x 1=1,x 2=9.∵让顾客得到更大的实惠,∴x =9.答:商贸公司要想获利2 090元,且让顾客得到更大的实惠,则这种干果每千克应降价9元.8.如图,在△ABC 中,∠C =90°,AC =16 cm ,BC =8 cm ,一动点P 从点C 出发沿着CB 边以2 cm/s 的速度运动,另一动点Q 从点A 出发沿着AC 边以4 cm/s 的速度运动,P ,Q 两点同时出发,运动时间为t s.(1)若△PCQ 的面积是△ABC 面积的14,求t 的值;(2)△PCQ 的面积能否与四边形ABPQ 面积相等?若能,求出t 的值;若不能,说明理由.解:(1)根据题意,得S △PCQ =12×2t(16-4t),S △ABC =12×8×16=64. ∵△PCQ 的面积是△ABC 面积的14, ∴12×2t(16-4t)=64×14. 整理,得t 2-4t +4=0,解得t =2.答:当t =2 s 时,△PCQ 的面积为△ABC 面积的14. (2)△PCQ 的面积不能与四边形ABPQ 面积相等.理由如下:当△PCQ 的面积与四边形ABPQ 面积相等时,则S △PCQ =12S △ABC ,即12×2t(16-4t)=64×12, 整理,得t 2-4t +8=0.∵Δ=(-4)2-4×1×8=-16<0,∴此方程没有实数根.∴△PCQ 的面积不能与四边形ABPQ 面积相等.。

21.2.1配方法解一元二次方程

21.2.1配方法解一元二次方程

1. 证明:代数式x2+4x+ 5的值不小于1.
2. 证明:代数式-2y2+2y-1的值不大于
1 2
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
1.一般地,对于形如x2=a(a≥0)的方程,
答:道路宽1米
课堂练习
3.若实数x、y满足(x+y+2)(x+y-1)=0,
则x+y的值为( D ).
(A)1
(B)-2
(C)2或-1 (D)-2或1
4.对于任意的实数x,代数式x2-5x+10的值
是一个( B )
(A)非负数 (B)正数
(C)整数 (D)不能确定的数
综合应用
例题3. 用配方法解决下列问题
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做直接开平方
法. 2.把一元二次方程的左边配成一个完全平方
式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
3.方程χ2=a(a≥0)的解为:χ= a
方程(χ-a)2=b(b≥0)的解为:χ= a b
小结中的两类方程为什么要加条件:a≥0,b≥0呢?
小练习
1.解方程:3x2+27=0得( ). (A)x=±3 (B)x=-3 (C)无实数 根 (D)方程的根有无数个 2.方程(x-1)2=4的根是( ). (A)3,-3 (B)3,-1 (C)2,-3 (D)3,-2

专题训练一:一元二次方程

专题训练一:一元二次方程
9.若 a,b,c 是△ABC 的三边长且满足 a2-6a+b2-8b+ c-5+25 =0,请根据已知条件判断其形状.
解:等式变形为 a2-6a+9+b2-8b+16+ c-5=0, 即(a-3)2+(b-4)2+ c-5=0,由非负性得(a-3)2=0,(b-4)2=0, c-5=0,∴a=3,b=4,c=5.∵32+42=52,即 a2+b2=c2, ∴△ABC 为直角三角形
解:(1)不符合.设小路宽度均为x m,根据题意得(16-2x)(12-2x) 1 = ×16×12,解得x1=2,x2=12,但x2=12不符合题意,应舍 2 去,∴x=2,故小芳的方案不符合条件,小路的宽度均为2 m
(2)答案不唯一,略
三、几何图形问题
6.如图,AO=OB=50 cm,OC是一条射线,OC⊥AB,一蚂蚁 由A以2 cm/s的速度向B爬行,同时另一蚂蚁由O点以3 cm/s的速度沿 OC方向爬行,问几秒钟后两蚂蚁与 O点组成的三角形面积等于 450 cm2?
三、几何图形问题 解:分两种情况讨论:(1)当由A 点出发的蚂蚁到达 O点之前,设 离开A点t s后,两蚂蚁与O点组成的三角形面积等于450 cm2,根据 题意得 (50 - 2t)·3t = 450 , 整理得 t2 - 25t + 150 = 0 , 解得 t1 = 15 , t2 = 10 ; (2) 当由 A 点出发的蚂蚁爬完 OA 这段距离用了= 25(s) 后 , 开 始由O向B爬行,设从O点开始x秒钟后,两蚂蚁与O点组成的三角形 面积等于450 cm2,根据题意得·2x·3(25+x)=450,整理得x2+25x -150=0,解得x1=5,x2=-30(不合题意,舍去),当x=5时,x+ 25=30,这只蚂蚁已由A点爬行了30 s.综上可知,分别在10 s,15 s,30 s时,两蚂蚁与O点组成的三角形面积等于450 cm2

(完整版)解一元二次方程练习题(配方法)(最新整理)

(完整版)解一元二次方程练习题(配方法)(最新整理)

(7) 5x 2 -3x+2 =0
(8) 7x 2 -4x-3 =0
(9) -x 2 -x+12 =0
(10) x 2 -6x+9 =0
韦达定理:对于一元二次方程 ax2 bx c 0(a 0) ,如果方程有两个实数根 x1, x2 ,那么
x1
x2
b a
,
x1x2
c a
说明:(1)定理成立的条件 0
2.已知 x1,x2 是方程 2x2-7x+4=0 的两根,则 x1+x2=
,x1·x2=

(x1-x2)2=
1
3.已知方程 2x2-3x+k=0 的两根之差为 2 ,则 k=
;
2
4.若方程 x2+(a2-2)x-3=0 的两根是 1 和-3,则 a=
;
5.若关于 x 的方程 x2+2(m-1)x+4m2=0 有两个实数根,且这两个根互为倒数,那么 m 的值为
(2)注意公式重
x1
x2
b a
的负号与
b
的符号的区别
根系关系的三大用处
(1)计算对称式的值
例 若 x1, x2 是方程 x2 2x 2007 0 的两个根,试求下列各式的值:
(1) x12 x22 ;
(2) 1 1 ; x1 x2
(3) (x1 5)(x2 5) ;
(4) | x1 x2 | .
25、 5x2 7x 1 0
26、 5x2 8x 1
27、 x2 2mx 3nx 3m2 mn 2n2 0
28、3x2+5(2x+1)=0
29、 (x 1)(x 1) 2 2x
30、 3x2 4x 1

解一元二次方程试题(配方法)

解一元二次方程试题(配方法)

解一元二次方程试题(配方法)————————————————————————————————作者:————————————————————————————————日期:解一元二次方程练习题(配方法)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( )A .2±10B .-2±14C .-2+10D .2-109.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=011.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

1、0142=-x2、2)3(2=-x3、()512=-x4、()162812=-x二、 用配方法解下列一元二次方程。

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法) 一元二次方程解法练题一、用直接开平方法解下列一元二次方程。

1、4x-1=2、(x-3)^2=2、2、(x-1)^2=5、81(x-2)=16二、用配方法解下列一元二次方程。

1、y^2-6y-6=0、3x^2-4x+2=02、x^2-4x-5=0、2x^2+3x-1=03、x^2-4x=9、3x^2+2x-7=04、x^2-4x-5=0、-4x^2-8x=165、2x^2+3x-1=0、(2-3x)^2=46、-4x^2+12x=0三、用公式解法解下列方程。

1、x^2-2x-8=0、4y^2-2y-1=02、2x^2-5x+1=0、-4x^2-8x=16、2x^2-3x-2=0四、用因式分解法解下列一元二次方程。

1、x^2=2x、(x+1)^2-(2x-3)^2=3、x^2-6x+8=02、4(x-3)^2=25(x-2)、(1+2)x^2-(1-2)x=6、(2-3x)^2+(3x-2)^2=1五、用适当的方法解下列一元二次方程。

1、3x/(x-1)=x/(x+5)、2x-3=5x、x-2y+6=22、x^2-7x+10=0、(x-3)(x+2)=6、4(x-3)+x(x-3)=23、(5x-1)^-2=8、3y^2-4y-9=0、x^2-7x-30=24、(y+2)(y-1)=4、x^2-4ax=b^2-4a^2、x^2+(531/36)x=05、4x(x-1)=3、3x^2-9x+2=0一元二次方程解法练题六、用直接开平方法解下列一元二次方程。

1.4x-1=2解:移项得4x=3,两边平方得16x^2=9,即x=±3/4.2.(x-3)^2=2解:展开得x^2-6x+7=0,两边平方得x-3=±√2,即x=3±√2.3.(x-1)^2=5解:展开得x^2-2x-4=0,两边平方得x-1=±√5,即x=1±√5.4.81(x-2)=162解:移项得(x-2)^2=2,两边开平方得x-2=±√2,即x=2±√2.七、用配方法解下列一元二次方程。

解一元二次方程(直接开方法配方法)练习题100道

解一元二次方程(直接开方法配方法)练习题100道

解一元二次方程(直接开方法配方法)练习题100道1.用适当的数填空:①、x2+6x+9=(x+3)2;②、x2-5x+4=(x-2)2;③、x2+2x+1=(x+1)2;④、x2-9x+81=(x-9)22.将一元二次方程x2-2x-4=0用配方法化成(x-1)2=5的形式为,所以方程的根为x=1±√5.3.若x2+6x+m2是一个完全平方式,则m的值是±3.4.把方程x2+3=4x配方,得(x-2)2=1.5.用配方法解方程x2+4x=10的根为x=-2±2√3.6.用配方法解下列方程:2)x2+8x-9=0,解为x=-4±√13;3)x2+12x-15=0,解为x=-6±√51;4)2x2+3x-1=0,解为x=1/2或x=-1.7.用直接开平方法解下列一元二次方程:1)4x2-1=0,解为x=±1/2;7)x2+4x-1=0,解为x=-2±√5.8.用配方法解下列一元二次方程:1)y-6y+9=0,解为y=3;2)3x2-2x-1=0,解为x=1/3或x=-1;4)2x2+3x-1=0,解为x=1/2或x=-1;5)3x2+2x-7=0,解为x=-1±√10;6)-4x2-8x+1=0,解为x=1/2或x=-1/4;7)x2-6x-6=0,解为x=3±√15.27.解方程x2-4x+3=0.28.解方程x2-6x-3=0.29.解方程2x2-8x+3=0.30.解方程3x2-4x+1=0.31.解方程x2-6x+1=0.32.解方程2x2-4x+1=0.33.解方程x2+5x-3=0.34.解方程x2+2x-4=0.35.解方程2x2-4x+1=0.37.化简方程5(x2+17)=6(x2+2x)。

38.解方程4x2-8x+1=0.39.解方程2x2+1=3x。

40.解方程x2+x-2=0.41.解方程x2-6x+1=0.42.解方程x2-8x+5=0.43.解方程x2+3x-4=0.44.解方程3x2+8x-3=0.45.解方程x2+8x=2.46.解方程x2+3x+1=0.47.解方程2x2-3x+1=0.48.解方程x2-4x-6=0.49.解方程x2-8x+1=0.50.解方程x2+4x+1=0.51.解方程x2-4x+1=0.52.解方程x2-6x-7=0.53.解方程x2-6x-5=0.54.解方程2x2+1=3x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档