线性代数方程组的解法(中)

合集下载

计算方法(3)第三章 线性代数方程组的解法

计算方法(3)第三章 线性代数方程组的解法

“回代”解得

xn

bn ann


xk

1 akk
[bk

n
akj x j ]
j k 1

其中aii 0 (i 1,2,......, n)
(k n 1, n 2, ,1)
返回变量
函数名
function X=backsub(A,b) 参数表
%Input—A is an n×n upper- triangular nonsingullar matrix % ---b is an n×1 matrix
x1

xi

b1 / a11
i 1
(bi aik
k 1
xk ) / aii
(i

2,3,
, n)
如上解三角形方程组的方法称为回代法.
二. 高斯消元法(Gaussian Elimination)
高斯消元法的求解过程,可大致分为两个阶段:首先, 把原方程组化为上三角形方程组,称之为“消元”过 程;然后,用逆次序逐一求出上三角方程组(原方程组的 等价方程组)的解,称之为“回代”过程.
符号约定:
1. (λEi )(Ei ): 第i个方程乘以非零常数λ。 2. (Ei +λEj )(Ei ): 第j个方程乘以非零常数λ
加到第i个方程。
3.(Ei )(Ej ): 交换第i个方程与第j个方程。
a11 x1 a12 x2 ... a1n xn b1
a21
x1 4 x4 x2 4 1 2 1
故解为(x1,x2 ,x3 ,x4 )T (1,2,0,1)T
A=[1 1 0 1;0 -1 -1 -5;0 0 3 13;0 0 0 -13] b=[4;-7;13;-13] X=backsub(A,b)

线性方程组的解法

线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,它可以用于描述多个未知数之间的关系。

解决线性方程组的问题是求解未知数的具体取值,从而得到方程组的解。

本文将介绍几种常见的解线性方程组的方法。

一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。

它通过矩阵变换的方式,将线性方程组转化为一个三角矩阵,从而简化求解过程。

以下是高斯消元法的步骤:1. 将线性方程组写成增广矩阵的形式,其中最后一列为常数项。

2. 选取一个非零元素作为主元,在当前列中将主元素所在的行作为第一行,然后通过初等行变换将其他行的主元素变为0。

3. 重复第2步,直到所有的主元素都变成1,并且每个主元素所在的列的其他元素都变为0。

4. 反向代入,从最后一行开始,依次回代求解未知数的值。

二、矩阵的逆矩阵法矩阵的逆矩阵法是利用矩阵的逆矩阵来求解线性方程组。

以下是逆矩阵法的步骤:1. 对于线性方程组Ax=b,如果矩阵A可逆,将方程组两边同时左乘A的逆矩阵AI,得到x=A^(-1)b。

2. 通过求解矩阵A的逆矩阵来得到未知数向量x的值。

3. 如果矩阵A不可逆,那么线性方程组没有唯一解,可能有无穷多解或者无解。

三、克拉默法则克拉默法则是另一种解决线性方程组的方法,它利用行列式的性质来求解未知数的值。

以下是克拉默法则的步骤:1. 对于线性方程组Ax=b,令|A|=D,其中D表示矩阵A的行列式。

2. 分别计算将矩阵A的第i列替换为常数列b所得到的行列式|A_i|。

3. 未知数向量x的第i个分量可以通过x_i = |A_i|/D来得到。

克拉默法则的优点是简单直观,但是当方程组的规模很大时,计算行列式将变得非常复杂。

四、矩阵的广义逆法矩阵的广义逆法是一种应对方程组无解或者有无穷多解的情况的方法。

对于线性方程组Ax=b,如果矩阵A不可逆,我们可以通过求解广义逆矩阵A^+来得到一个特解x_0。

1. 分别计算A^+ = (A^T·A)^(-1)·A^T和x_0 = A^+·b。

线性代数方程组的解法

线性代数方程组的解法

2 3 2 n O( n ) 3
mult a(i , j ) a( j, j ); for k j 1 : n a(i , k ) a(i , k ) mult * a( j , k ); end b(i ) b(i ) mult * b( j ); end
end
LU分解
求A的LU分解(L是下三角矩阵,U是上三角矩阵)
1 1 1 1 3 4 3 4
LU分解
性质1 设向量
, xn ) 且 xk 0 T 则存在唯一的下三角阵 Lk I lk ek ,满足 x ( x1 , x2 ,
T
Lk x ( x1 ,
第三章 线性方程组的直接解法
/*Direct Method for Solving Linear Systems*/
求解 A x b, A R
Cramer法则:
nn
det( A) 0
Di xi D
i 1, 2,
,n
所需乘除法的运算量大约为(n+1)!+n
n=20时,每秒1亿次运算速度的计算机要算30多万年!
Gauss消去法的消元过程算法
for for
j 1: n 1
i j 1: n
2 3 2 n O( n ) 3
mult a(i , j ) a( j, j ); for k j 1 : n a(i , k ) a(i , k ) mult * a( j , k ); end b(i ) b(i ) mult * b( j ); end
方程组可化为下面两个易求解的三角方程组
Ly b Ux y
二、 高斯消去法

线性代数线性代数方程组的解

线性代数线性代数方程组的解

βk+1,⋯, βm 中至少有一个不等于零 .
不妨设 βk+1 ≠ 0 .
α11 α12
⋯α1n
β1

此时第 k+1 个方程变成 0x1 + 0x2 +⋯+ 0xn = βk+1 ≠ 0
这是不可能的.
.........................
αk1 αk 2
⋯αkn βk

a11 a12 ⋯a1n

系数矩阵
A
=
a21 a22 ⋯a2n .....................

am1 am2 ⋯amn
增广矩阵:

a11
a12
⋯ a1n
b1

A
=
a21 a22 ⋯a2n .....................
b2
+
1 5
t2

x2
=
t1

x3
=

3 10
t2
x4 =
t2

x1

−2
1/5



x2

x3

=
t1


1 0

+
t2

0 −3 /10

x4 0 1
通解表达式中包含两个任意常数 t1 , t2 . 令
(3) 当 k = 3 时,方程组成为
3x1 + x2 + x3 = 5
3x1
+ 2x2 x2 +

07线性代数方程组的解法

07线性代数方程组的解法

总计∑ n (k2k) n(n21)
k1
3
除法
n1
k

n(n1)
k1
2
回 代 总 计 算 量 n(n1) 2
总 乘 除 法 共 n 3 3 n 2 1 3 n (n 3 0 ,为 9 8 9 0 )
21
三、Gauss消去法的矩阵表示
每一步消去过程相当于左乘初等变换矩阵Lk
a x a x a x a b 得

(1)


解 (1)


程 (1)A(3组 )x=b(1() 3)
(1)
11 1
12 2
13 3
1n
1

a x a x (2) (2)
22 2
23 3
a x(3) 33 3
a b (2) (2)
2n
2
a b (3) (3)


11 1
12 2
1n n
1

b x 22 2
b2nxn g 2

称 消 元 过 程 。 逐 次 计 算 b出 nn x xn n, x gn 1 n,, x 1 称 回 代 过 1程 0 。
一、Gauss 消去法计算过程
a a b b 统一记 → 号 (1) : , →(1)
(2) ,
2
(3)
(2)
2
1

0
1
L m 0 2
32
1

0 mn2 0


m a a
(2) (2)

i2
i2
22
i 3,4, ,n

线性代数方程组的解法

线性代数方程组的解法

说明:线性方程组的初等变换是可逆的。 即,方程组(1)经初等变换化为一个新方 程组,那么新方程组也可以经过初等变换还 原为原方程组(1)。因而,方程组(1)与 它经过若干此初等变换之后得到的新方程组 是同解的。
⎧ a11 x1 + a12 x 2 + L + a1n x n = b1 ⎪ a x + a x + L+ a x = b ⎪ 21 1 22 2 2n n 2 ⎨ ⎪ LLLLLLLLLLLL ⎪a m 1 x1 + a m 2 x 2 + L + a mn x n = bm ⎩
L a1n ⎞ ⎟ L a2 n ⎟ L L⎟ ⎟ L amn ⎟ ⎠
矩阵A的 (m , n)元
这m × n个数称为 A的元素 , 简称为元素 (元 ).
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵.
例如
⎛ 1 0 3 5⎞ ⎟ 是一个 2 × 4 实矩阵, ⎜ ⎝ − 9 6 4 3⎠ ⎛ 1⎞ ⎜ ⎟ ⎜ 2⎟ ⎜ 4⎟ ⎝ ⎠
问题:是否每个矩阵都可以经过初等行变换化 为梯矩阵呢? 定理1 任意m × n矩阵A总可以经初等行变换化为梯
矩阵及最简形。
证明 Step1 若A的元全为0, A已经是一个阶梯矩阵。
Step2 设非零矩阵A的第 j1 列是自左而右的第 一个非零列,设 a1 j ≠ 0 (否则,若 a ij1 非零,作 行变换 r1 ↔ ri ,总可使第j1列的第一个元非零), 矩阵A的各行分别作行变换:

同理可得
−2 −2 1 1 −2 1 0 1 − 3 = −10, −1
D1 = 1 0
1
1 1
− 3 = −5, D2 = 2 −1 −1 1 = −5, 0

线性方程组的解法

线性方程组的解法

线性方程组的解法一、引言线性方程组是数学中的重要概念,广泛应用于各个领域,包括物理学、经济学、工程学等。

解决线性方程组有多种方法,本文将介绍常见的三种解法:高斯消元法、矩阵法和克拉默法。

二、高斯消元法高斯消元法是一种基于矩阵变换的解法,可以将线性方程组转化为简化行阶梯形矩阵,从而快速求解解向量。

具体步骤如下:1. 将线性方程组写成增广矩阵形式;2. 选择一个非零首元,在该列中其余元素乘以某个系数并相减,使得除首元外该列其他元素变为零;3. 重复第二步,直至将矩阵转化为简化行阶梯形矩阵;4. 从简化行阶梯形矩阵中读出解。

三、矩阵法矩阵法是一种基于矩阵运算的解法,将线性方程组转化为矩阵形式,并求解矩阵的逆矩阵,从而得到解向量。

具体步骤如下:1. 将线性方程组写成矩阵形式;2. 求解矩阵的逆矩阵;3. 用逆矩阵乘以等号右边的向量,得到解向量。

四、克拉默法克拉默法是一种利用行列式性质求解线性方程组的方法,适用于方程组个数与未知数个数相等的情况。

具体步骤如下:1. 将线性方程组写成矩阵形式;2. 计算行列式的值;3. 分别用等号右边的向量替换矩阵中对应的列,再求解行列式的值;4. 将第三步得到的值除以第二步得到的值,得到解向量。

五、比较与应用场景1. 高斯消元法在实际计算中具有高效性和稳定性,适用于任意线性方程组求解;2. 矩阵法需要先求解矩阵的逆矩阵,计算过程相对复杂,适用于方程组个数与未知数个数相等的情况;3. 克拉默法计算过程较为复杂,不适用于大规模方程组的求解,但对于小规模方程组求解比较便捷。

六、总结线性方程组的解法有多种,本文介绍了高斯消元法、矩阵法和克拉默法三种常见方法。

应根据具体情况选择合适的方法来求解线性方程组,以达到高效、准确的目的。

对于大规模方程组的计算,高斯消元法更具优势;对于方程组个数与未知数个数相等的情况,矩阵法和克拉默法更适用。

随着数学计算方法的不断发展,越来越多的解法将出现,为解决复杂的线性方程组提供更多选择。

线性方程组的解法与矩阵的特征值与特征向量

线性方程组的解法与矩阵的特征值与特征向量

线性方程组的解法与矩阵的特征值与特征向量线性方程组是数学中的重要概念,它描述了线性关系的一种形式。

解决线性方程组可以帮助我们理解和解决各种实际问题,并且在数学和工程等领域有着广泛的应用。

而矩阵的特征值与特征向量则是矩阵理论中的重要内容,它们与线性方程组之间有着密切的联系。

本文将介绍线性方程组的解法以及矩阵的特征值与特征向量的相关知识。

一、线性方程组的解法1.1. 高斯消元法高斯消元法是解决线性方程组的基本方法之一。

它通过消元操作将线性方程组化为最简形式,从而求出方程组的解。

具体步骤如下:步骤一:写出线性方程组的增广矩阵。

步骤二:利用初等行变换将增广矩阵化为阶梯形式。

步骤三:从最后一个非零行开始,利用回代法求解方程组的解。

1.2. 矩阵的逆另一种解决线性方程组的方法是使用矩阵的逆。

如果矩阵A可逆,那么我们可以通过左乘矩阵A的逆来求解线性方程组Ax=b,即x=A^(-1)b。

1.3. 克拉默法则克拉默法则是解决线性方程组的另一种方法。

它利用矩阵的行列式来求解方程组的解。

具体步骤如下:步骤一:计算系数矩阵A的行列式D。

步骤二:计算替换掉系数矩阵A的第i列为常数向量b后的行列式D_i。

步骤三:方程组的解为x_i=D_i/D。

二、矩阵的特征值与特征向量2.1. 特征值与特征向量的定义给定n阶矩阵A,如果存在非零向量x使得Ax=λx,其中λ为常数,那么向量x称为矩阵A的特征向量,常数λ称为矩阵A的特征值。

2.2. 特征值与特征向量的计算要计算矩阵A的特征值与特征向量,可以通过以下步骤进行:步骤一:求解矩阵A-λI的零空间,其中I为单位矩阵。

步骤二:将零空间中的向量标准化,得到单位特征向量。

步骤三:通过将特征向量代入矩阵A-λI的定义式,计算对应的特征值。

2.3. 特征值与特征向量的应用特征值与特征向量在矩阵理论中有着广泛的应用。

例如,它们可以用于矩阵的对角化,从而简化矩阵的计算;它们还可以用于解决微分方程和差分方程等应用问题。

线性代数线性方程组求解

线性代数线性方程组求解

线性代数线性方程组求解线性代数中,线性方程组求解是一个重要的问题。

在实际应用中,求解线性方程组是解决很多问题的基础。

本文将介绍线性代数中线性方程组的求解方法,包括高斯消元法、矩阵的逆和行列式等方法。

1. 高斯消元法高斯消元法是求解线性方程组的一种常见方法。

它基于矩阵变换的原理,通过对增广矩阵进行一系列的变换,将线性方程组转化为简化的阶梯形矩阵,从而求解方程组的解。

首先,将线性方程组写成增广矩阵的形式,例如:[[a11, a12, a13, ..., a1n, b1],[a21, a22, a23, ..., a2n, b2],...[an1, an2, an3, ..., ann, bn]]其中,a11到ann是系数矩阵的元素,b1到bn是常数矩阵的元素。

然后,通过一系列的行变换,将增广矩阵转化为阶梯形矩阵。

具体的行变换包括交换两行、某一行乘以非零常数、某一行加上另一行的若干倍等。

接着,从底部开始,依次回代求解未知数的值。

由于阶梯形矩阵的特点,可以从最后一行开始,将已求解的未知数代入到上一行的方程中,以此类推,最终求解出所有未知数的值。

2. 矩阵的逆和行列式除了高斯消元法外,还可以通过矩阵的逆和行列式来求解线性方程组。

当系数矩阵存在逆矩阵时,可以直接通过逆矩阵求解线性方程组。

假设系数矩阵为A,未知数向量为X,常数向量为B,那么可以使用以下公式求解线性方程组:X = A^(-1) * B其中,A^(-1)表示A的逆矩阵。

当系数矩阵不可逆时,可以通过行列式来判断是否有唯一解。

如果系数矩阵的行列式为非零,说明线性方程组存在唯一解;如果行列式为零,说明线性方程组没有解或者有无穷多个解。

3. MATLAB求解线性方程组除了手动求解线性方程组外,还可以借助计算工具如MATLAB进行求解。

MATLAB提供了函数例如“linsolve”、“inv”等,可以方便地求解线性方程组。

使用MATLAB求解线性方程组通常先定义系数矩阵A和常数向量B,然后通过相关函数求解。

1线性代数 3.3线性方程组的解

1线性代数 3.3线性方程组的解

x1 x2 x3 x4 0,
例4
求解方程组
x1 x2 x3 3 x4 1,
x1 x2 2 x3 3 x4 1 2.
解 对增广矩阵B施行初等行变换:
1 1 1 1 0 B 1 1 1 3 1
1 1 2 3 1 2
~
1 0
1 0
0 1
1 2
1 2 1 2,
c1
br
1
r1 1
br
2
r2 0
n
br ,n 0
r
cr
r1
0
1
0
r
2
0
0
1 n
由于与都是方程Ax 0的解,而Ax 0又等价于
方程组
x1 b11 xr1 b1,nr xn
x
r
br1 xr1
br ,nr xn
3 x3 3 x3
5 x4 2 x4
5x5 0 x5 0
3 x1 x2 5 x3 6 x4 7 x5 0
解 对系数矩阵施 行初等行变换
1 1 1 4 3
A
2 1
1 1
3 3
5 2
5 1
3 1 5 6 7
1 1 1 4 3 1 1 1 4 3
~
0 0
1 2
1 2
若至少有一个bi 0(i 1, 2, , m), 则称方程组(3.3)为非齐次线性方程组;
能使每个方程变为恒等式的n个数 x1, x2 , xn 称为
方程组的解.
至少有一个解的方程组称为相容的. 如果方程组没有解,就称这个方程组不相容.
具有惟一解的方程组称为确定方程组. 具有多于一个解的方程组称为不定方程组.

线性代数-线性方程组的解

线性代数-线性方程组的解
1 1 1 1 B ~ 0 0 0 0
0 0 0 0
R(A) = R(B) < 3,方程组有无穷多解 .
其通解为
x1 x2
=1− = x2
x2

x3
x3 = x3
(x2 , x3为任意实数 ).
(2) 当λ ≠ 1时,
1 1 λ
λ2
B ~ 0 1 −1 −λ
0
0
2+λ
(1
+
λ
)2
=
−2
x3

4 3
x4
,
( x3 , x4 可任意取值).
令 x3 = c1, x4 = c2,把它写成通常的参数 形式
x1
x2 x3
=
= =
2c2
+
5 3
c2
,
−2c2

4 3
c2
c1 ,
,
x4 = c2,

x1 x2 x3 x4
=
c1
2 −2 1 0
+
c2
由于原方程组等价于方程组
x2 x3
− −
x3 x4
= a2 = a3
由此得通解:
x4 − x5 = a4
x1 = a1 + a2 + a3 + a4 + x5
x2 = a2 + a3 + a4 + x5 x3 = a3 + a4 + x5
x4 = a4 + x5
(x5为任意实数 ).
例5 设有线性方程组
1 1 2 3 1 1 1 2 3 1
B
~
0 0 0

线性方程组的几种求解方法

线性方程组的几种求解方法

线性方程组的几种解法线性方程组形式如下:常记为矩阵形式其中一、高斯消元法高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x向量。

现举例说明如下:(一)消元过程第一步:将(1)/3使x1的系数化为1 得再将(2)、(3)式中x1的系数都化为零,即由(2)-2×(1)(1)得由(3)-4×(1)(1)得)1(32)2(......3432=+xx)1(321)1(......23132=++xxx第二步:将(2)(1)除以2/3,使x 2系数化为1,得再将(3)(1)式中x 2系数化为零,即 由(3)(1)-(-14/3)*(2)(2),得第三步:将(3)(2)除以18/3,使x 3系数化为1,得经消元后,得到如下三角代数方程组:(二)回代过程由(3)(3)得 x 3=1, 将x 3代入(2)(2)得x 2=-2, 将x 2 、x 3代入(1)(1)得x 2=1 所以,本题解为[x]=[1,2,-1]T(三)、用矩阵演示进行消元过程第一步: 先将方程写成增广矩阵的形式第二步:然后对矩阵进行初等行变换初等行变换包含如下操作(1) 将某行同乘或同除一个非零实数(2) 将某行加入到另一行 (3) 将任意两行互换第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形)3(3)3(......1-=x )2(3)3( (63)18-=x )2(32)2(......02=+x x )1(32)3( (63)10314-=--x x示例:(四)高斯消元的公式综合以上讨论,不难看出,高斯消元法解方程组的公式为1.消元(1)令a ij(1) = a ij , (i,j=1,2,3,…,n)b i(1) =b i , (i=1,2,3,…,n)(2)对k=1到n-1,若a kk(k)≠0,进行l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n)a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n)b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n)2.回代若a nn(n) ≠0x n = b n(n) / a nn(n)x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n )(五)高斯消元法的条件消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。

解线性方程组的解法_图文

解线性方程组的解法_图文
第三章
线性方程组是线性代数中最重要最基本的内容之 一,是解决很多实际问题的的有力工具,在科学技术 和经济管理的许多领域(如物理、化学、网络理论、 最优化方法和投入产出模型等)中都有广泛应用. 第一章介绍的克莱姆法则只适用于求解方程个数 与未知量个数相同,且系数行列式非零的线性方程组. 本章研究一般线性方程组,主要讨论线性方程组解的 判定、解法及解的结构等问题,还要讨论与此密切相 关的向量线性相关性等. 其主要知识结构如下:
为方程组(3.1)的增广矩阵(augmented matrix). 因为 一个线性方程组由它的系数和常数项完全确定,所以 线性方程组与它的增广矩阵是一一对应的. 如果 x1 c1 , x2 c2 ,, xn cn 可以使(3.1)中的每个等式都 T x ( c , c , , c ) 成立,则称 为线性方程组(3.1)的一个 1 2 n 解(solution). 线性方程组(3.1)的解的全体称为它的解
集(solution set). 若两个线性方程组的解集相等,则称 它们同解(same solution). 若线性方程组(3.1)的解存 在,则称它有解或相容的. 否则称它无解或矛盾的. 解 线性方程组实际上先要判断它是否有解,在有解时求 出它的全部解.
例1 解线性方程组
2 x1 x2 3 x3 1 2 x3 6 2 x1 4 x 2 x 5 x 4 2 3 1
( 2 ) (1)
x2 x3
1 6
显然原方程组与最后的方程组(叫阶梯形方程组) 同解,所以原方程组有唯一解 x1 9, x2 1, x3 6
由此不难发现,在求解线性方程组的过程中,可 以对方程组反复施行以下三种变换: 1. 交换两个方程的位置; 2. 用一个非零数乘某个方程的两边; 3. 把一个方程的倍数加到另一个方程上. 称它们为线性方程组的初等变换. 显然:线性方程组的初等变换不改变线性方程组 的同解性. 在例1的求解过程中,我们只对方程组的系数和 常数项进行了运算,对线性方程组施行一次初等变 换,就相当于对它的增广矩阵施行一次相应的初等行 变换,用方程组的初等变换化简线性方程组就相当于 用矩阵的初等行变换化简它的增广矩阵. 下面我们将 例1的求解过程写成矩阵形式:

线性代数方程组的解法

线性代数方程组的解法

xi( k ) xi 若对 i 1, 2,, n 有 lim k
则称向量序列 { x ( k ) } 收敛于向量 x ( x1 , , xn )T
命题: 当 k 时 (k ) (k ) lim x x x x
k
(k ) x x 这是因为

0
(k ) (k ) max | x1 x1 |, ,| xn xn |



从而当 k 时, x ( k ) x 与 x ( k ) x
湘潭大学数学与计算科学学院 上一页
0 等价
8
下一页
定理 5.2
设 为 Rn 中的任一种范数,则序
列{x ( k ) }收敛于 x R n 的充分必要条件为
x( k ) x 0,
k 时.
利用向量范数的等价性及向量范数的连续性, 容易 得到定理5.2的证明
A B A B , A 、B R nn
定理5.3中的性质 1), 2) 和 3)是一般范数所满 足的基本性质,性质 4)、5) 被称为相容性条件, 一般矩阵范数并不一定满足该条件.
湘潭大学数学与计算科学学院 上一页 下一页 11
三种从属范数计算:
(1)矩阵的1-范数(列和范数):
5 几种特殊矩阵
定义 5.5 若矩阵 A 满足条件
a
j 1 ji
n
ij
aii
, i 1,2, , n
且至少有一 i 个使不等式严格成立,则称矩阵 A 为按行对角占优矩阵。若 i 1, 2,, n 严格不等 式均成立,则称 A 为按行严格对角占优矩阵.
类似地,可以给出矩阵 A 为按列(严格)对角
A 1 max | aij |

第三章-线性方程组的解

第三章-线性方程组的解

线性代数——第 3章
所以方程组的通解为
x1 1 0 1 2 x2 = c 1 + c 0 + 0 . x3 2 0 4 2 1 2 其中c2 ,c4 任意. 0 1 0 x4
可写成矩阵方程:
Ax b
B ( A, b)
线性代数——第 3章

1 2 2 1 1 0 2 4 8 2 设A , b 3 2 4 2 3 3 6 0 6 4
求矩阵A及矩阵B ( A b)的秩.
线性代数——第 3章
定理1 (1) (2) (3)
n元线性方程组Ax=b
无解的充分必要条件是R(A)<R(A,b); 有唯一解的充分必要条件是R(A)=R(A,b)=n; 有无穷多个解的充分必要条件是R(A)=R(A,b)<n;
线性代数——第 3章
1 0 0 ~ B0 0 0 x1
5 x1 2c2 3 c2 , x 2c 4 c , 2 2 3 2 x c , 3 1 x4 c 2 ,
线性代数——第 3章
2、非齐次线性方程组 增广矩阵化成行阶梯形矩阵,便可判断其是否有 解.若有解,化成行最简形矩阵,便可写出其通解. 例2 求解非齐次线性方程组
线性代数——第 3章

对系数矩阵 A 施行初等行变换:
1 2 2 1 1 2 2 1 r2 2r1 A 2 1 2 2 0 3 6 4 1 1 4 3 r3 r1 0 3 6 4
d d

第三章线性代数方程组解法

第三章线性代数方程组解法
(k (k akk ) akn ) (k (k ank ) ann)
中,选取绝对值最大的元素作为主元素,如果它位于第r 行第s列,则通过交换k,r两行及交换k,s两列,使主元素位 (k a kk ) 的位置,然后进行消元计算。由于作列的交换 于 改变了方程中未知量的次序,因此回代过程要按未知量 调换后的编号顺序求解。
- x1 - 0.5x2 + 2x3 = 5 5x1 - 4x2 + 0.5x3 = 9
解 [A,b] =
0.01
2
- 0.5 2 0.5 9
-5 5 9 5 (3) 0 (1) (3)
5
-4
0.5 2
9 5
- 1 - 0.5 5 -4 0.5 2.10
-1 - 0.5 0.01 -4 2
- 0.5 – 5 0.5 9
(i, j=k+1, …, n)
回代过程:
( (n xn bnn ) / ann) ; n
xi (bi(i )
j i 1
a
(i ) ij
( x j ) / aiii )
(i =n-1,…,2,1)
四、顺序高斯消去法计算量分析
用计算机作四则运算时,加减操作所花的机器时间比乘除操 作少得多, 所以我们仅统计乘除次数。 1. 消元过程(共需n-1次消元) 第k次消元时需除:n-k 第k次消元时需乘:(n-k)(n-k+1) 共需乘除次数: [(n-1)+(n-1)n]+[(n-2)+(n-2)(n-1)]+…+[1+1×2] = n3/3+n2 /2-5n/6 2. 回代过程 需除:n 需乘:1+2+…+(n-1)= (n-1)n/2 共需乘除次数:n+ (n-1)n/2= n2/2+n/2 所以总共需乘除次数: n3/3+n2 /2-5n/6+n2/2+n/2 = n3/3+n2 -n/3 。 n3/3+n2 -n/3<<(n+1) n! (n-1)+n(克莱姆法则需的乘除次数),因此 顺序高斯消去法从计算量上考虑是可行的。

线性代数线性方程组的解结构及解法

线性代数线性方程组的解结构及解法

(3) 得
令 xr 1 c1,xr 2 c2 , ,xn cnr ,
b11c1 b12 c2 x1 br1c1 br 2 c2 xr 得通解为: c1 xr 1 c2 x n cn r
b11 b12 br1 br 2 于是基础解系为: 1 1 , 2 0 , 0 1 0 0
b11 b12 br1 br 2 c1 1 c2 0 0 1 0 0
18 返回
法二: 先求通解,再从中找出基础解系.
x1 b11 xr 1 x2 b21 xr 1 由 xr br1 xr 1
b1,n r xn b2, n r xn br ,n r xn
b1, n r cn r br , n r cn r 19 返回
22 返回
二、非齐次线性方程组的解的结构
非齐次线性方程组 Ax b (5)
1、非齐次线性方程组解的性质
性质3:
设 x 1 与 x 2 都是方程(5)的解,
则 x 1 2是对应的齐次方程组Ax 0的解.
性质4: 设 x 是(5)的解,x 是 Ax 0 的解,
16 返回
xr 1 1 x 0 r 2 取 依次为 , 0 xn
x1 x2 则 依次为 xr b11 b21 , br1

中考重点线性方程组的解法

中考重点线性方程组的解法

中考重点线性方程组的解法线性方程组是中学数学中的重要内容,也是中考数学考试的重点内容之一。

解线性方程组需要灵活运用数学知识和方法,下面将介绍一些中考常见的线性方程组的解法。

一、消元法消元法是解线性方程组最常用的方法之一,它通过消去未知数的系数,将方程组化简为更简单的形式。

例1:求解线性方程组2x + 3y = 83x - 2y = -1解:通过消元法,可以将方程组化简为:2x + 3y = 8 --(1)3x - 2y = -1 --(2)由方程(1)可以得到 x 的表达式:x = (8 - 3y)/2将 x 的表达式代入方程(2)中,可以得到 y 的表达式:3(8 - 3y)/2 - 2y = -1解方程得到:y = 2将 y 的值代入 x 的表达式,可以得到 x 的值:x = (8 - 3(2))/2 = 1所以,该线性方程组的解为:x = 1,y = 2。

二、代入法代入法是解线性方程组常用的方法之一,它通过先解出一个方程,然后将其代入另一个方程,从而求得未知数的值。

例2:求解线性方程组2x - y = 33x + 4y = 10解:首先,可以从第一个方程中解出 x 的值:2x - y = 3解得:x = (3 + y)/2将 x 的值代入第二个方程中:3(3 + y)/2 + 4y = 10解方程得到:y = 1将 y 的值代入第一个方程中,可以得到 x 的值:2x - 1 = 3解得:x = 2所以,该线性方程组的解为:x = 2,y = 1。

三、图解法图解法是解线性方程组直观易懂的方法之一,它通过将方程组表示在笛卡尔坐标系中的直线上,找出方程组共同交点的坐标来求解。

例3:求解线性方程组3x - 2y = 8x + y = 3解:将方程组表示在坐标系中,得到两条直线,如下图所示:[图片]由图可知,两条直线在点 (2, 1) 处交于一点,所以该线性方程组的解为:x = 2,y = 1。

四、增广矩阵法增广矩阵法是解线性方程组常用的线性代数方法之一,在中考中也有可能出现。

线性代数方程组的解法

线性代数方程组的解法

线性代数方程组的解法关键词:线性代数方程组;高斯消元法;列主元消元法;三角分解法;杜立特尔分解法;迭代法;雅可比迭代法;高斯-赛德尔迭代法1引言目前,解线性代数方程组在计算机上常用的的方法大致把它分为两类:“直接法”与“迭代法”.在线性代数中曾指出阶线性代数方程组有唯一的解,并且可以用克拉默法则求方程组的解,初次看来问题已经解决,但从使用效果看并不是这样的.因为求阶线性代数方程组,如果用克拉默法则,需要计算个阶行列式,每个阶行列式为项之和,每项又是个元素的乘积,所以计算中仅乘法次数就高达次,当较大时,它的计算量是非常惊人的.因为现在所碰到的很多问题都需要很大的计算量,故需要好用的算法来求解.先来回顾一下回代过程和迭代过程.(1)是一个三角形方程组,当有唯一解时,可以用反推的方式求解,也就是先从第个方程解得, (2)然后代入第个方程,可得到, (3)如此继续下去,假设已得到,, , ,代进第个方程即得的计算, (4)上述求解的过程叫做回代过程.定义1[1] (向量的范数) 若向量的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对,总是有.那么上向量的范数(或模)就是 .下面给几个最常遇到的向量范数.向量的“1”范数:(5)向量的“2”范数:(6)向量的范数:(7)例1设求 , , .解由式(5),(6)及(7)知.定义2若矩阵的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对总有;1.矩阵的乘法不等式,即对总有,那么称为上矩阵的范数(或模).表 1是矩阵几个常用算子范数的定义与算式.表 1范数名称记号定义计算公式“1”范数(又名列模)“2”范数(又名谱模)“”范数(又名行模)的极限就是方程组的解向量,这时候在给定允许的误差内,只要适当的大,就可以作为方程组在满足精度要求条件下的近似解.这种求近似解的方法就是解线性方程组的一类基本的迭代解法,其中称为迭代矩阵,公式(9)称迭代公式(或迭代过程),由迭代公式得到的序列叫做迭代序列.如果迭代的序列是收敛的,则称为迭代法收敛;如果迭代的序列是不收敛,则称它是迭代法发散.定理3设 .如果约化主元素,则可以利用高斯消元的方法把方程组约化成三角形方程组来求解,其计算公式如下:(1)消元计算:对依次计算(2)回代计算:3用高斯消元法与列主元消元法解线性代数方程组(重点)!3.1 高斯消元法解方程组用高斯消元的方法求线性代数方程组的解的整个计算过程可分为两个环节,也就是利用按照次序消去未知数的方法,把原来的方程组转化成跟它同解的三角形方程组(这个转化的过程叫消元过程),再通过回代过程求三角形方程组的解,最终得到原来方程组的解.其中按照方程的顺进行消元的高斯消元法,又叫顺序消元法.3.2列主元消元法解方程组列主元消元法实际上是一种行交换的消元法,它跟顺序消元法比较而言,主要特点是在进行第次消元前,不管的值是否等于零,都在子块的第一列中选择一个元,使,并将中的第行元与第行元互相变换(相当于交换同解方程组中的第个方程),然后再进行消元计算得到结果.注:列主元素法的精度虽然稍低于全主元素法[1],但它计算简单,相对比全主元素法它的工作的量大大减少,并且从计算经验和理论分析都可以表明,它与全主元素法同样拥有很好的值稳定性,列主元素法是求解中小型浓密型方程组的最好的方法之一.4用三角分解法解线性代数方程组4.1 矩阵的三角分解定义4把一个阶矩阵分解成两个三角矩阵相乘的形式称为矩阵的三角分解.常见的矩阵三角分解是其中是下三角形的矩阵,是上三角形的矩阵.定理5[1](矩阵三角分解基本定理)设 .若的顺序主子式,那么存在唯一的杜利特尔分解其中是单位下三角形矩阵,为非奇异的上三角形矩阵.如果是单位下三角形的矩阵,是上三角形的矩阵,那么把这种分解法称为杜利特尔分解法,其中杜利特尔分解法是这种三角分解的一种特例,下面主要介绍利用杜利特尔分解法来求方程组的解.4.2 用杜利特尔分解法解线性代数方程组用杜利特尔分解法解方程组的步骤可以把它归纳为(1)实现分解,也就是1.按算式(11)(12)依次计算的第一行元与的第一列元;1.对按算式(13)(14)依次计算的第行元与的第列元.(2)求解三角形方程组,即按算式依次计算 .(3)求解三角形方程组,即按算式依次计算.利用杜利特尔分解法解方程组与高斯消元法是相似的,它重要的优点是:在利用分解,解有相同的系数矩阵的方程组时,用杜利特尔分解法非常方便,只用两个式子就可以得到方程组的解.5用迭代法解线性代数方程组用迭代法求方程组的解,需要考虑迭代过程的收敛性,在下面的讨论中,都假设方程组的系数矩阵的对角阵是不为零的.5.1 用雅可比迭代法解方程组对于一般线性方程组,如果从第个方程解出,就可以把它转化成等价的方程组. (15)从而可以得到对应的迭代公式(16)这就是解一般方程组的分量形式的雅可比(Jacobi)迭代公式.如果把它改成(17)并把系数矩阵表示成(18)其中则可以看出式的左右两端分别是向量和的第个分量,故因为可逆,所以于是就可以得到是雅可比迭代的公式.其中(称为雅可比迭代矩阵), .5.2 用高斯-赛德尔迭代法解方程组高斯-赛德尔迭代法也是常用的迭代法,设线性代数方程组为,则高斯-赛德尔迭代法的迭代公式为(19)其中迭代法(19)就称为高斯-赛德尔迭代法.通过雅可比迭代法类似的途径,就可以得到矩阵的表达式其中(称为高斯-赛德尔迭代矩阵), .高斯-赛德尔迭代法与雅可比迭代法都有算式简单、容易在计算机上实现等优点,但是用计算机来计算时,雅可比迭代法需要两组工作单元用来寄存与的量,而高斯赛-德尔迭代法只需一组工作单元存放或的分量.对于给定的线性方程组,用这两种方法求解可能都收敛或者都不收敛,也可能一个收敛另一个不收敛,两种方法的收敛速度也不一样.5.3 迭代法的收敛条件与误差分析定义6[1]矩阵全部的特征值的模的最大值,叫做矩阵的谱半径,记作 ,即.定理7[1]对任意初始向量迭代过程收敛的充要条件是;当时,越小,那么其收敛的速度是越快的.由定理7可知,用雅可比迭代法求解时,其迭代的过程是收敛的,而用高斯-赛德尔迭代法来求解,其迭代的过程是发散的.在不同条件下,收敛的速度是不同的,对同一矩阵,一种方法是收敛的,一种方法发散.第 7 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档