三维问题有限元分析(包括轴对称问题)资料

合集下载

三维问题有限元分析(包括轴对称问题)

三维问题有限元分析(包括轴对称问题)
平衡方程
建立每个有限元的平衡方程,通过求解这些方程来得到近似解。
离散化
将连续的问题离散化,将整个求解域划分为有限个小的子域(称为有限元),每个子域上定义节点。
有限元方法的基本原理
解方程
通过求解整体矩阵的方程,得到各个节点的值,从整体矩阵,用于表示整个求解域上的问题。
详细描述
三维弹性力学问题的有限元分析
总结词
详细描述了三维热传导问题有限元分析的基本原理、方法和应用。
详细描述
三维热传导问题是有限元分析的另一个重要领域,主要研究热量在物体中的传递和分布。通过将连续的物体离散化为有限个小的单元,可以建立单元之间的热量传递关系,从而得到整个物体的温度分布。这种方法广泛应用于工程领域,如传热学、热能工程等。
边界条件处理
轴对称问题的有限元方法
轴对称问题有限元分析的实现流程
建立系统方程
根据有限元近似解法,将微分方程转化为离散化的系统方程。
划分网格
根据问题的几何形状和特点,将求解区域划分为一系列离散的网格单元。
建立数学模型
根据实际问题,建立相应的数学模型,包括物理方程、边界条件和初始条件。
求解系统方程
采用适当的数值方法(如直接法、迭代法等),求解离散化的系统方程,得到每个离散单元上的近似解。
轴对称问题具有旋转对称性,即其解在绕对称轴旋转时保持不变。
轴对称问题的定义和特性
特性
定义
将连续的物理问题离散化为有限个离散的单元,每个单元具有特定的形状和大小。
离散化
在每个离散单元上,使用近似函数来逼近真实解。常用的近似函数包括多项式、样条函数等。
近似解法
对于轴对称问题,边界条件通常与对称轴相关。需要对边界条件进行特殊处理,以确保离散化后的系统方程满足原始问题的约束。

三维问题有限元分析(包括轴对称问题)

三维问题有限元分析(包括轴对称问题)
2
空间问题简介
工程实际中的很多问题难于简化为平面问题,如受任意 空间载荷作用的任意形状几何体,受对称于轴线载荷作 用的回转体,这类问题经典弹性力学往往无能为力。在 FEM中,空间问题只要求0阶连续,因此构造单元方便
➢空间问题的主要困难: (1)离散化不直观;————(网格自动生成) (2)分割的单元数量多,未知量的数目剧增。— ——— (对某些问题简化)——— ——— (轴对称问题) ➢空间分析的优点
p
s
C
(6-16)
e 1
e 1
式中
F e ——单元上集中力等效结点载荷列向量;
p
F e ——单元上表面力等效结点载荷列向量;
S
F e ——单元上体积力等效结点载荷列向量;
F e
——单元结点载荷列向量。
C
等效结点力公式为 Fe NTF p
式中
Fe SSeNTpSds
Fe VeNTpvdV
如同平面等参单元一样,需要通过雅克比矩阵来实现,由偏导法则
N i N xi x N yi y N zi z
同理可得
N i , N i
写成矩阵
Ni
x
y
z
Ni x
Ni x
Ni
x
y
z
Ni y
J
Ni y
Ni
x
y
z
Ni z
ui vi wi
(6-18)
式中
xi、yi、zi——结点i的坐标; ui、vi、wi——结点i沿x、y、z方向的位移; Ni——对应于i结点的形状函数。
在自然坐标系(局部坐标系)中,各结点的形状函数可写成如
下形式, 对于8个顶角结点( i=1,2,……,8)

有限元分析及工程应用-2016第五章

有限元分析及工程应用-2016第五章

5.1 轴对称问题有限单元法
机械学院
(1)三角形截面环形单元 1)位移模式
qe ui wi u j wj uk wk T
与平面三角形单元相似,仍选取线 性位移模式,即:
u w

a1 a4

a2r a5r

aa36zz
u Niui N ju j Nkuk
,
A2

1 2 2(1 )
单元中除了剪应力外其 它应力分量也不是常量
在轴对称情况下,由虚功原理可推导出单元刚度矩阵
K e VBT DBddrdz 2 BT DBrdrdz
5.1 轴对称问题有限单元法
机械学院
(1)三角形截面环形单元
2)单元刚度矩阵
K e VBT DBddrdz
Loads>Apply>Structural>Displacement>Symmetry B.C.>On Lines,用鼠标在图形窗口上拾取编号为“1”和“3”的线段 ,单击[OK],就会在这两条线上显示一个“S”的标记,即 为对称约束条件。
(7)施加面力:Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Lines,用鼠标在图形 窗口上拾取编号为“4”,单击[OK] 在“VALUE Load PRES value”后面的输入框中输入“10”,然后单击[OK]即可
5.1 轴对称问题有限单元法
机械学院
(3)应用实例 (3)建立几何模型:
MainMenu>Preprocessor>Modeling>Create>Areas>Rectangle>By Dimension,在出现的对话框中分别输入:X1=5,X2=10,Y1=0, Y2=20,单击[OK]。

第4章 空间问题有限元分析-轴对称

第4章 空间问题有限元分析-轴对称

Re N T f p
FL e 2 r0 N T 62 f p 21
圆环 2 r0 Ni f pr Ni f pz N j f pr
N j f pz
Nm f pr
T
Nm f pz
r0 -- 集中力作用点的径向坐标。
2019/10/18
第4章 空间问题有限元分析 空间轴对称问题
曹国华
2019/10/18
空间有限元分析-轴对称
1
主要内容
§ 4.1位移模式 § 4.2几何方程 § 4.3单元刚度 § 4.4等效载荷
2019/10/18
空间有限元分析-轴对称
3
1、研究对象
当弹性体的几何形状,约束情况,以及所受的外力都 轴对称于某一轴,则这种弹性体的应力分析问题称为轴对 称应力分析问题,在工程中如 活塞,压力容器等 。
空间有限元分析-轴对称
12
几何方程与物理方程
PA线应变
0,(略去高阶小量).
PB线应变
εφ

PB PB PB

(u
φ
uφ φ
d φ)
u
ρdφ

1 uφ ; ρ φ
PA转角
α

DA

uφ ρ
d
ρ


,
PA d ρ ρ
2019/10/18
空间有限元分析-轴对称
空间有限元分析-轴对称
28
等效载荷
r Niri N j rj Nmrm
2、体积力移置
FFGee 2 [N] f rdrdz
若体积力为重,则单位体积 的力为

f
=-0

计算结构力学有限元方法_三维结构和轴对称

计算结构力学有限元方法_三维结构和轴对称
计算结构力学
三维问题的有限元方法
空间问题
单元的应变
根据弹性力学基本公式,有应变:

一维问题 二维问题
εx
=
∂u ∂x

ε
x
∂x
εy = 0γΒιβλιοθήκη xy∂∂y∂x
三维问题 ε x
0
0
∂ u
∂y
v

∂x
ε
y
εz
γ yz
γ
zx
=
0 0
γ xy
∂ ∂z
r, s = 1,2,3,4
四面体单元
∫∫∫ K
e rs
=
V BrT DBsdV ,
r, s = 1,2,3,4
Ke r,s
=
E(1− µ) 36(1+ µ)(1− 2µ)Ve
brbs + A2 (crcs + dr ds )
×
A1bscr + A2csbr
A1bsdr + A2dsbr
A1
=
µ 1- µ
四面体单元的
Pi = [Pix Piy Piz ]T , i = 1,2,3,4
节点载荷
∫ Pe = N T ρdx
单元节点载荷的计算公式,其中N 应为四面体单元的形函数

0 ∂ ∂y 0 ∂ ∂z 0 ∂
0
0
∂ ∂z ∂ ∂y
u
v
w

∂x
0
统一形式:ε = ∇u
∂y ∂x
三维问题的有限元方法
单元的应力
根据弹性力学基本公式,有应力:σ = Dε 三维问题
1 −µ −µ 0

空间与轴对称问题有限元分析课件

空间与轴对称问题有限元分析课件

02
CATALOGUE
有限元分析基础
有限元分析的基本概念
有限元分析是一种数值分析方法,通过将复杂 的物理系统离散化为有限个简单元(或称为元 素)的组合,以求解复杂系统的物理行为。
它基于变分原理和加权余量法,通过数学模型 将实际工程问题转化为数学问题,从而得到近 似的数值解。
有限元分析广泛应用于工程领域,如结构分析 、流体动力学、电磁场等。
求解线性方程组
通过求解线性方程组得到每个节 点的位移和应力等物理量。
有限元分析的常用软件
ANSYS
功能强大的有限元分析软件,适用于各种工 程领域。
COMSOL Multiphysics
多物理场有限元分析软件,适用于模拟复杂 的多物理场耦合问题。
ABAQUS
专业的有限元分析软件,广泛应用于结构分 析、流体动力学等领域。
空间与轴对称问题有限元分析的优缺点
01
数值误差
有限元分析依赖于离散化的网格 ,存在数值误差,可能影响结果 的精度。
建模难度
02
03
计算资源需求
对于复杂问题的建模,需要较高 的专业知识和技巧,建模难度较 大。
对于大规模问题,有限元分析需 要大量的计算资源,如内存和计 算时间。
未来发展方向与挑战
优化算法
建筑领域
建筑设计中的对称和均衡问题需要考虑空间对称 性,以提高建筑的美观性和稳定性。
机械工程领域
机械零件的形状和结构需要考虑轴对称性,以确 保零件的稳定性和可靠性。
空间与轴对称问题的解析方法
解析法
通过数学公式和定理推导出问题的解 ,适用于简单的问题和特定条件下的 求解。
有限元法
将问题分解为有限个小的单元,通过 求解每个单元的近似解来逼近原问题 的解,适用于复杂的问题和不规则区 域的处理。

三维问题与轴对称问题

三维问题与轴对称问题
ke ve BT DBdV dV 2 rdrdz
ke 2 Se BT DBrdrdz
四、等效节点载荷
节点载荷同样按作功相等的原则进行分配,
但应考虑沿 方向的圆周积分;边界条件
的设置与平面问题相似,一般有限 元软件大都以Y轴为对称轴。
§4 轴对称问题的三角形环形单元
一、形状函数
单元节点位移列阵
e ul wl um wm un wn T
u w
N
e
x
vn
n
vl (e) l ul
un vm
m
um
r
N Nl I NmI NnI 形状函数矩阵
Nl 0
0 Nl
Nm 0
0 Nm
Nn 0
0
Nn
Ni
1 6
ai
bir
ci z
(i k,l, m)
al rm zn rn zm
bl zm zn
cl rn rm
l, m, n循环
二、应变与应力
Be
应变矩阵
B Bl Bm Bn
bi
Bi
1 2
fi
ci
ci bi
fi
ai r
bi
ci z r
(i k,l, m)
D DBe
三、单元刚度矩阵
klk
kll
klm
kln
krs
33
Br T
D
Bs V e
kkmnkk
kml knl
kmm knm
kmn knn
r, s k,l,m,n
三、等效节点载荷
同样根据作功相等的原则进行载荷分配
QV e
N T Ve
q dV

第四章轴对称问题

第四章轴对称问题
第四章 轴对称问题的有限单元法
主要内容: 4-1轴对称问题有限单元法 4-2空间问题常应变四面体单元
轴对称结构体可以看成由任意
一个纵向剖面绕着纵轴旋转一周而 形成。此旋转轴即为对称轴,纵向 剖面称为子午面,如图4-1表示一 圆柱体的子午面abcd被分割为若干 个三角形单元,再经过绕对称轴旋 转,圆柱体被离散成若干个三棱圆 环单元,各单元之间用圆环形的铰 链相连接。对于轴对称问题,采用 圆柱坐标较为方便。以弹性体的对 称轴为z轴,其约束及外载荷也都 对称于z轴,因此弹性体内各点的 各项应力分量、应变分量和位移分 量都与环向坐标θ无关,
zi , z j , zm, ri , rj , rm 及结点位移ui , uj , um, wi , w j , wm代入式(4-4)中,可以 解出六个待定系数 1, 2, 。,再6 将这些待定系数回代到式 (4-4)中,就可以得到由结点位移和形函数所表示的单元内任 一点的位移表达式
u Ni ui N j u j Nmum w Ni wi N j w j Nmwm
bi A1 fi
Si
2 A3 A
A1
bi
A1bi A2ci
fi fi
A1ci
ci
i, j, m
A1ci A2bi
返回
其中
u A1 1 u

1 2u
A2 21 u

1 uE A3 41 u1 2u
从(4-14)式可知,只有剪应力在单元中是常数,而其他 三个正应力在单元中都不是常数,与坐标r和z有关。同样 采用形心坐标和来代替,每个单元近似地被当作常应力单 元,所求得的应力是单元形心处的应力近似值。
e1
e1
这就是求解结点位移的方程组,写成标准形式

[说明]有限元中对称与反对称问题总结

[说明]有限元中对称与反对称问题总结

对称与反对称问题总结一、什么是对称或者反对称约束?1、对称边界条件在结构分析中是指:不能发生对称面外(out-of-plane)的移动(translations)和对称面内(in-plane)的旋转(rotations)。

这句话可以理解为:在结构中施加对称条件为指向边界的位移和绕边界的转动被固定。

例如,若对称面的法向为X,如果你在对称面上的节点上施加了对称边界条件,那么:1)不能发生对称面外的移动导致节点处的UX(法向位移)为0。

2)不能发生对称面内的旋转导致ROTZ,ROTY(绕两个切线方向的转角)也为0。

2、反对称边界条件在结构分析中是指:不能发生对称面内(in-plane)的移动(translations)和对称面外(out-of-plane)的旋转(rotations)。

这句话可以理解为:在结构中施加反对称条件为平行边界的位移和绕垂直边界的转动被固定。

例如,若对称面的法向为X,如果你在对称面上的节点上施加了反对称边界条件,那么:1)不能发生对称面的移动导致节点处的UY,UZ(切向位移)为0。

2)不能发生对称面外的旋转导致RO TX(绕法线方向的转角)也为0。

建立对称约束的目的就是为了建模方便和减少计算量,这样就可以大大节省计算机的资源,从而更加细化网格,得到比研究整个模型更精确的结果!注意:模态分析的时候应用对称约束会漏掉对称模态!二、HM中的对称约束和反对称约束这个功能在ansys中对应的为Symmetry或者unsymmetry。

HM中不能施加对称约束,但是可以直接对对称面上的节点施加单点约束就行,施加面外位移约束和面内转动约束。

即对垂直于对称面的方向施加位移约束,另外两个方向施加转动约束。

对于对称,对称面的法向移动和对称面内的转动全约束。

比如对称面是yz平面,在HM中:dof1=0 dof5=0 dof6=0。

反对称和对称正好相反,其意思对于同一个对称面,反对称和对称所约束的自由度正好相反。

轴对称问题

轴对称问题

(i , j , m )

由上式可见,单元内应变 εr、εz、γrz都是常量,但φi, φj, φm与各单元中各点的位置(r, z)有关,环向应变εθ不是常量; 当结构包含对称轴(r = 0)在内时,φi , φj , φm是奇异的, 这将给数值计算带来困难。
汽车工程系
结构分析与CAE研究室
- 16 -
z j
wj uj wi ui
单元结点力向量:
wm um
i m
{ f }e
⎧ fi ⎫ ⎪ ⎪ = ⎨fj ⎬ ⎪ ⎪ ⎩ f m ⎭ 6×1
r
汽车工程系
结构分析与CAE研究室
- 11 -
4.2 三结点三角形轴对称单元
4.2.2 单元位移模式 由于有三个结点,在r方向和z方向上各有三个结点条件, 因此设它的单元位移模式为
u ( r , z ) = α1 + α 2 r + α 3 z ⎫ ⎬ w(r , z ) = α 4 + α 5 r + α 6 z ⎭
该位移模式与平面问题三结点三角形单元完全相同。同样, 将结点坐标和结点位移代入上式可得到单元内部位移
⎧ ui ⎫ ⎪w ⎪ ⎪ i⎪ 0 ⎤ ⎪uj ⎪ e ⎪ ⎪ ⎨ ⎬ = [ N (r , z )]{δ } Nm ⎥ ⎪ wj ⎪ ⎦ ⎪ um ⎪ ⎪ ⎪ ⎪ wm ⎪ ⎩ ⎭
-5-
4.1 基本概念
4.1.2 基本方程 ①平衡方程
∂σ r ∂τ zr σ r −σ θ + + + br = 0 ∂r ∂z r ∂σ z ∂τ rz τ rz + + + bz = 0 ∂z ∂r r ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭

空间与轴对称问题有限元分析

空间与轴对称问题有限元分析

划分网格
将连续的求解域离散化为有限个简单 元,形成网格。
建立刚度矩阵和载荷向量
根据每个简单元的特性,建立刚度矩 阵和载荷向量,以描述简单元之间的 力和力矩关系。
求解线性方程组
通过求解线性方程组,得到每个节点 的位移和应力分布。
有限元分析的优势与局限性
优势
有限元方法具有较高的灵活性和通用性,可以处理复杂的几何形状和边界条件, 适用于各种物理问题的求解。此外,有限元方法可以通过并行计算等技术提高 计算效率。
05
空间与轴对称问题有限元分析 的未来发展
新型有限元方法的研究与应用
混合有限元方法
结合不同类型有限元的优点,以更好地适应复 杂问题的需求。
自适应有限元方法
根据问题求解的实际情况,自动调整有限元的 尺寸和形状,以提高求解精度和效率。
非标准有限元方法
针对特定问题开发非标准的有限元,以获得更好的求解效果。
复杂空间与轴对称问题的挑战与解决方案
高维空间问题
01
随着问题维度的增加,有限元的构造和求解变得更加复杂,需
要发展更高效的算法和软件。
不规则区域问题
02
有限元的构造和处理在不规则区域上更具挑战性,需要研究新
的方法和技巧。
多物理场耦合问题
03
多物理场耦合的空间与轴对称问题需要发展能够同时处理多个
物理场的有限元方法。
误差估计
对称性有助于更准确地估计误差。
空间对称性问题的有限元模型建立
01
02
03
定义对称轴
明确对称轴的位置,以便 在建立模型时考虑对称性。
选取合适的有限元
根据对称性选择合适的有 限元类型,如四边形、六 面体等。
建立对称约束

东南大学 有限元分析课程 第三章 轴对称问题和空间问题有限元法

东南大学 有限元分析课程 第三章 轴对称问题和空间问题有限元法

B = Bi
Bj
Bm

0 0 ( s = i , j , m) cs bs
K e = 2π rc B T DB
单元刚度矩阵的分块矩阵近似表达式为:
K sp = 2π rc BsT DB p bs bp + f s f p + A1 (bs f p + f s bp ) + A2 cs c p = A1 (cs bp + cs f p ) + A2bs c p A1 (bs c p + f s c p ) + A2 cs bp cs c p + A2bs bp
式中: 式中:
A1 =
µ
1− µ
A2 =
1 − 2µ 2(1 − µ )
由于几何矩阵中的元素不是常量,单元刚度矩阵需要通过积分得到, 为简化计算可以用三角形单元形心位置的坐标 rc , z c 代替 B 矩阵中的变 量,将单元中的r和z近似地当作常量,并且分别等于 rc , z c 。
1 r ≈ rc = ( ri + rj + rm ) 3
K e = 2π ∫∫ B T DBrdrdz
单元刚度矩阵的分块矩阵为, 单元刚度矩阵的分块矩阵为,
K sp = 2π ∫∫ BsT DB p rdrdz ( s, p = i, j , m)
由于几何矩阵中的元素不是常量,单元刚度矩阵需要通过积分得到, 为简化计算可以用三角形单元形心位置的坐标 rc , z c 代替 B 矩阵中的变 量 r, z 。
1 rc = ( ri + r j + rm ) 3
1 z c = ( zi + z j + z m ) 3

lsdyna轴对称有限元模型

lsdyna轴对称有限元模型

lsdyna轴对称有限元模型1. 简介lsdyna是一种通用的有限元分析软件,广泛应用于工程、汽车和航空航天等领域。

轴对称有限元模型是lsdyna的重要分析工具之一,它在处理旋转对称结构的过程中具有独特的优势和应用价值。

本文将对lsdyna轴对称有限元模型进行详细介绍和分析。

2. 原理轴对称有限元模型是建立在圆柱坐标系下的有限元模型,它以z轴为旋转对称轴,将三维问题简化为二维问题。

在lsdyna中,通过设定特定的边界条件和约束条件,可以将三维结构的分析转化为轴对称的二维模型。

这样不仅可以大大减少计算量,提高计算效率,而且还能更准确地评估旋转对称结构的力学行为。

3. 建模在lsdyna中建立轴对称有限元模型,需要考虑以下几个关键步骤:- 坐标系转换:将三维坐标系转换为圆柱坐标系,并设定z轴为旋转对称轴。

- 材料定义:根据实际情况选择适当的材料参数,并进行材料定义。

- 几何建模:利用lsdyna自带的几何建模工具或导入CAD模型,建立轴对称有限元模型的几何形状。

- 网格划分:根据模型的特点和要求,进行合适的网格划分。

- 材料属性分配:为每个部件分配适当的材料属性,包括密度、弹性模量、屈服强度等。

- 节点约束:根据轴对称性,设定合适的节点约束条件,以保证模型在旋转对称轴上的平衡状态。

- 荷载施加:根据实际工程需求施加合适的载荷条件,进行模拟分析。

4. 分析通过lsdyna轴对称有限元模型,可以进行多种分析,包括但不限于以下几个方面:- 动力学分析:通过施加动态载荷,评估旋转对称结构在振动或冲击荷载下的响应。

- 热力学分析:考虑热荷载对旋转对称结构的影响,进行热力学分析。

- 疲劳分析:模拟旋转对称结构在循环加载下的疲劳性能,评估其寿命。

- 冲击分析:模拟旋转对称结构在冲击荷载下的响应,评估结构的稳定性和可靠性。

5. 应用lsdyna轴对称有限元模型在工程实践中具有广泛的应用价值,主要体现在以下几个方面:- 发动机部件分析:涉及发动机曲轴、连杆、活塞等零部件的疲劳、强度和振动分析。

结构有限元分析-第3章-轴对称

结构有限元分析-第3章-轴对称

3 轴对称问题弹性力学空间问题中的轴对称问题是指,物体的几何形状、约束情况及所受的外力都对称于空间的某一根轴,因此在物体中通过该轴的任何平面都是对称面,所有应力、应变和位移也对称于该轴,这类问题称为轴对称问题。

研究轴对称问题时通常采用圆柱坐标系(r,θ,z),以z轴为对称轴。

轴对称问题实例如图3.1所示的受均布内压作用的长圆筒,通过Z轴的一个纵截面就是对称面图3.1受均布内压作用的长圆筒3.1 三角形截面环单元三结点单元位移函数图4-2 三结点单元轴对称问题分析中所使用的三结点单元,在对称面上是三角形,在整个弹性体中是三棱圆环,各单元中圆环形铰相联接。

三角形截面环单元的结点位移在轴对称问题中,弹性体内任意一点上,不存在切向位移,只存在径向位移u 和轴向位移w ,两个位移分量表示为,⎭⎬⎫⎩⎨⎧=w u f }{[][]Tmm j j i iT mT jT iew u w u w u==δδδδ}{单元结点位移轴对称问题的三结点三角形单元位移函数取为,⎭⎬⎫++=++=z r z r u 654321w αααααα⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m j i u u u c c c b b b a a a 21321ααα根据结点位移,可得:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m j i w w w c c c b b b a a a 21654ααα单元形函数jm m j i r z z r a -=mmj ji iz r z r z r 11121=∆mj i z z b -=jm i r r c -=(i ,j ,m ))(21z c r b a N i i i i ++∆=单元内任一点的位移{}[]{}em jim m j j i i m jim j iN N N w u w u w u N N N N N N w u f δ=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧=00003.2 应变矩阵(几何矩阵)根据几何方程及单元内位移的表达式,可得:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∂∂+∂∂∂∂∂∂=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧r w z u z w ru r u zr z r γεεεθ应变矩阵)(21m m j j i i u b u b u b r u ++∆=∂∂)(21m m j j i i u f u f u f r u ++∆=rcz b r a f i i i ++=(下标轮换))(21m m j j i i w c w c w c z w ++∆=∂∂)(21m m j j i i u c u c u c z u ++∆=∂∂)(21m m j j i i w b w b w b r w ++∆=∂∂应变矩阵[]{}em ji m m mm m jj jj j ii ii i zr z r B B B b c c f b b c c f b b c c f b δγεεεθ=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡∆=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧00000000021),,(00021][m j i b c c f b A B i i i iii ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=3.3 应力矩阵由轴对称问题的物理方程,得到弹性矩阵,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------+-=)1(22100011101110111)21)(1()1(][μμμμμμμμμμμμμμμμμE D应力矩阵11A =-μμ2)1(221A =--μμ3)21)(1(4)1(A E=-+-μμμ令:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-=21111110010101)21)(1()1(][A A A A AA A E D μμμ则弹性矩阵为:]][[][B D S =][][m j iS S S S =),,()(2]][[][2211113m j i b A c A c f b A c A f b A c A f b A B D S i ii i i i ii i i i i i ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++∆==由弹性矩阵[D ]和几何矩阵[B ]可以得到应力矩阵[S ],由应力矩阵可知,除剪应力为常量,其它三个正应力分量都是r 、z 的函数。

5_轴对称问题有限元分析

5_轴对称问题有限元分析

<<结构分析中的有限单元法>>
By Xiaojun Wang
13 /54
单元刚度矩阵
同平面问题一样, 同平面问题一样, 用虚位移原理推导单元刚度矩 在轴对称情况下,单元的虚 阵。在轴对称情况下,单元的 虚位移方程为
(u ) F = ∫∫∫ (ε ) σ rdrdθ dz
e* T e *
T
(5.17)
0 0 cm bm
( m = i, j , k )
(5.12)<<构分析中的有限单元法>>
By Xiaojun Wang
8 /54
单元应变与应力
由此可见, 轴对称问题的几何方程式(5.11), 由此可见, 轴对称问题的几何方程式 , 在形式上 和平面问题是一样的, 和平面问题是一样的,但是轴对称问题中的 B 和 ε 并不完 全是常量元素, 的函数, 全是常量元素,其中各点的应变将随 r 、z 的函数,故 B 是 的函数。 r 、 z 的函数。 由于 B 是 r 、z 的函数, 的函数, 所以单元中各点的应变将随 r 、 而变化,即单元中各点的应变不同。为了简化计算, z 而变化,即单元中各点的应变不同。为了简化计算,通 常用单元形心坐标 ( z , r ) 近似代替 f i 中的 r 、 z 值,即用单 处的应变作为单元的平均应变, 元形心 ( z , r ) 处的应变作为单元的平均应变,变成常应变 单元, 单元,即
<<结构分析中的有限单元法>>
By Xiaojun Wang 9 /54
单元应变与应力
1 z ≈ z = ( zi + z j + zk ) 3 1 r ≈ r = ( ri + rj + rk ) 3 am cm z fm ≈ fm = + bm + r r

北科大有限元资料2(判断题-课后思考题-知识点总结)

北科大有限元资料2(判断题-课后思考题-知识点总结)

1、弹性力学和材料力学在研究对象上的区别?6答:材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件。

弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,弹性力学的研究对象要广泛得多。

2、理想弹性体的五点假设?答:连续性假定、完全弹性假定、均匀性假定、各向同性假定、小位移和小变形的假定。

3、什么叫轴对称问题,采用什么坐标系分析?为什么?答:如果弹性体的几何形状、约束状态以及外载荷都对称于某一根轴,那么弹性体所有的位移、应变和应力也都对称于这根轴,这类问题称为轴对称问题。

对于轴对称问题,采用圆柱坐标。

当以弹性体的对称轴为Z轴时,则所有的应力分量,应变分量和位移分量都只与坐标r、z有关,而与θ无关。

4、梁单元和杆单元的区别?答:主要区别是受力不同,梁单元主要承受弯矩,杆单元主要承受轴向力。

杆单元通常用于网架、桁架的分析;而梁单元则基本上可以适用于各种情况。

5、薄板弯曲问题与平面应力问题的区别?答:平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷,变形发生在板面内;后者受力特点是当承受垂直于板面的载荷时,板在弯曲应力和扭转应力作用下将变成曲面板。

6、有限单元法结构刚度矩阵的特点?答:主对称元素总是正的;对称性;稀疏性;奇异性;非零元素呈带状分布。

7、有限单元法的收敛性准则?答:完备性要求,协调性要求。

完备性要求。

如果出现在泛函中场函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式。

或者说试探函数中必须包括本身和直至m 阶导数为常数的项。

单元的插值函数满足上述要求时,我们称单元是完备的。

协调性要求。

如果出现在泛函中的最高阶导数是m阶,则试探函数在单元交界面上必须具有Cm-1连续性,即在相邻单元的交界面上应有函数直至m-1阶的连续导数。

当单元的插值函数满足上述要求时,我们称单元是协调的。

8、简述圣维南原理在工程实际中的应用?答:物体小部分边界上的面力是平衡力系,则近处产生显著应力,远处应力小到忽略不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档