初一数学上有理数与无理数的概念和练习(有详细的答案!)
2024年人教版七年级上册数学第二单元课后练习题(含答案和概念)
2024年人教版七年级上册数学第二单元课后练习题(含答案和概念)试题部分一、选择题:1. 下列哪个数是负数?()A. 3B. 0C. 5D. (3)2. 下列各数中,哪个数是最小的正整数?()A. 0.1B. 1C. 0D. 1A. 正数乘以正数等于负数B. 负数乘以负数等于正数C. 正数乘以负数等于正数D. 0乘以任何数都等于0A. 一个数的绝对值是它本身B. 一个数的绝对值是它的相反数C. 一个数的绝对值是它到原点的距离D. 一个数的绝对值是它的大小5. 计算下列各式的结果:()A. |3| = 3B. |(3)| = 3C. |3 5| = 2D. |3 (5)| = 76. 下列各式中,哪个是同类项?()A. 3x和4yB. 5a^2和6a^3C. 2m和3nD. 4ab和5ab7. 下列哪个选项是合并同类项的正确结果?()A. 3x + 4x = 7xB. 5a^2 2a^2 = 3a^4C. 6m + 3n = 9mnD. 4ab 5ab = ab8. 下列哪个选项是正确的算术平方根定义?()A. 一个数的算术平方根是它的平方B. 一个数的算术平方根是它的相反数的平方C. 一个正数的算术平方根是它的正的平方根D. 一个负数的算术平方根是它的负的平方根9. 下列哪个数是有理数?()A. √2B. πC. 1.414D. √110. 下列哪个选项是正确的有理数的除法法则?()A. 正数除以正数等于负数B. 负数除以负数等于正数C. 正数除以负数等于负数D. 0除以任何数都等于0二、判断题:1. 任何数乘以0都等于0。
()2. 负数的绝对值是它本身。
()3. 同类项可以相加或相减。
()4. 算术平方根一定是正数。
()5. 0是正数和负数的分界点。
()6. 有理数的乘法满足交换律。
()7. 有理数的除法满足结合律。
()8. 任何有理数都可以表示为分数的形式。
()9. 负数的平方是正数。
()10. 两个负数相除的结果一定是正数。
2024年最新人教版初一数学(上册)期末试卷及答案(各版本)
2024年最新人教版初一数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列哪一个数是有理数()A. √2B. √3C. √5D. √94. 下列哪一个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 平行四边形5. 下列哪一个数是无理数()A. 0.333B. 0.666C. 0.121212D. 0.1010010001二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个无理数的积都是无理数。
()3. 任何两个实数的和都是实数。
()4. 任何两个实数的积都是实数。
()5. 任何两个实数的差都是实数。
()三、填空题5道(每题1分,共5分)1. 两个数的和为10,其中一个数为x,另一个数为______。
2. 两个数的积为15,其中一个数为x,另一个数为______。
3. 两个数的差为8,其中一个数为x,另一个数为______。
4. 两个数的商为3,其中一个数为x,另一个数为______。
5. 两个数的和为6,其中一个数为x,另一个数为______。
四、简答题5道(每题2分,共10分)1. 请简要解释有理数的概念。
2. 请简要解释无理数的概念。
3. 请简要解释实数的概念。
4. 请简要解释平行四边形的性质。
5. 请简要解释矩形的性质。
五、应用题:5道(每题2分,共10分)1. 已知一个数为x,它的相反数为3,求x的值。
2. 已知一个数为x,它的倒数为2,求x的值。
3. 已知一个数为x,它的平方为9,求x的值。
4. 已知一个数为x,它的立方为27,求x的值。
5. 已知一个数为x,它的平方根为3,求x的值。
六、分析题:2道(每题5分,共10分)1. 请分析有理数和无理数的区别。
初一上期数学第一章 有理数 知识归纳
第一章有理数1.1正数和负数1.正负数正数:大于0的数叫做正数.负数:小于0的数叫做负数.0:非正非负【注】①符号:一个数前面的“+”“-”号叫做它的符号.②正数前面的“+”号可以省略,负数前面的“-”号不可以省略.2.相反意义的量用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.【注】“相反意义的量”包括两个方面的含义:一是相反意义;二是要有量.3.“O”的特征(1)0既不是正数,也不是负数,是正数与负数的分界;(2)0是自然数;(3)0的意义:①有时表示没有,如文具盒中有0支铅笔,表示没有铅笔;②有时是一个数,如0度是一个确定的温度;③有时也作为基准,如零上3度.1.2有理数知识点一有理数1、有理数的定义:整数和分数统称为有理数(小数可以化为分数,所以看为为分数)2、有理数的分类:1):按定义⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫数有限小数或无限循环小负分数正分数分数负整数自然数正整数整数有理数0 2):按正负分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数04、四非正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数(自然数);负整数和零统称为非正整数;【技巧】读的时候,在非正、非负后面加一个“的”知识点二 数轴1、数轴的定义:用一条直线上的点表示数,这条直线叫做数轴。
2、数轴三要素原点、正方向、单位长度称为数轴的三要素,三者缺一不可.【注】单位长度:指所取度量单位的名称,是一条人为规定的代表"1"的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,不能再改变.3、数轴画法首先:画一条水平的直线;其次:在直线上选取一点为原点;再次:确定向右为正方向,用箭头表示出来;最后:根据实际情况,选取适当的长度作为单位长度.4、与有理数的关系(1)有理数和无理数都可以用数轴上的点表示出来.(2)正有理数表示的点位于原点的右边,负有理数表示的点位于原点的左边5、利用数轴比较大小数轴可以用来比较大小,左<右﹔负数<0<正数.知识点三相反数1、定义只有符号不同的两个数叫做互为相反数.【注】①一般地,a和a-互为相反数,a表示任意一个数,可以是正数、负数,也可以是0.②0的相反数是0③“只有符号不同”应与“只要符号不同”区分开﹒④相反数必须成对出现,不能单独存在.2、几何意义一对相反数表示的点在数轴上应分别位于原点两侧;到原点的距离相等;这两点是关于原点对称的.3、求法求任意一个数的相反数,只要在这个数的前面添上“—”号即可.4、相反数的性质(1)若a与b互为相反数,则0=a,则a与b互为相反数.+b=+ba;反之,若0(2)任何一个数都有相反数,而且只有一个.正数的相反数是负数;负数的相反数是正数; 0的相反数仍是0.五、多重符号化简一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“―”号,也可以把“―”号全部去掉;一个正数前面有奇数个"―"号,则化简后只保留一个"―"号,即“奇负偶正”(其中“奇偶”是指正数前面的“―"号的个数的奇偶数,“负正"是指化简的最后结果的符号).知识点四 绝对值1、绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a (a 可以是正数、负数和0)2、绝对值性质:()()()⎪⎩⎪⎨⎧<-=>=0000a a a a a a3、绝对值具有非负性(1)若有几个非负数的和为0,则这几个非负数均为0。
七年级有理数概念题
七年级有理数概念题有理数是整数和分数的统称,包括正整数、负整数、零以及正分数、负分数。
在学习有理数概念题时,需要掌握有理数的加减乘除运算规则、有理数的大小比较、有理数的绝对值等基本概念。
下面将为您介绍一些七年级有理数概念题的相关内容:1. 有理数的加减法:有理数的加减法遵循以下规则:- 同号相加,取绝对值相加,结果的符号与原数相同。
- 异号相加,取绝对值相减,结果的符号取绝对值较大的数的符号。
通过练习一些有理数的加减法题目,可以帮助学生掌握有理数的加减法规则,提高计算能力。
2. 有理数的乘法:有理数的乘法规则为:- 同号相乘,结果为正数。
- 异号相乘,结果为负数。
在乘法运算中,学生需要注意符号的运用,通过练习有理数的乘法题目,巩固乘法规则,提高计算水平。
3. 有理数的除法:有理数的除法也有相应的规则:- 除数不为0,被除数为0时,商为0。
- 同号相除,结果为正数。
- 异号相除,结果为负数。
在进行有理数的除法运算时,学生需要注意除数不能为0的情况,熟练掌握有理数的除法规则,避免出现计算错误。
4. 有理数的大小比较:在比较有理数的大小时,可以通过绝对值的大小来判断,绝对值大的数较大,绝对值小的数较小。
同时,注意有理数的正负情况,负数的绝对值大于正数的绝对值。
通过练习有理数的大小比较题目,可以帮助学生理解有理数的大小关系,提高比较能力。
5. 有理数的绝对值:有理数的绝对值是数的绝对值,即数到原点的距离,绝对值为正数,不考虑数的符号。
绝对值的概念在有理数的运算中有着重要的作用,通过练习有理数的绝对值题目,可以帮助学生理解绝对值的概念,提高数的理解能力。
通过练习以上的有理数概念题目,可以帮助学生巩固有理数的基本概念,提高有理数的运算能力,加深对数学知识的理解。
希望以上内容能对您有所帮助,有任何疑问,欢迎继续咨询。
人教初一数学上册知识点
人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。
比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。
②重要程度:在初一数学里超级重要。
它是学习后面各种计算、方程的基础。
很多数学概念和实际问题的解决都是基于有理数的运算。
③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。
④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。
2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。
单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。
②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。
③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。
④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。
二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。
②关联知识:和后面要学的无理数合起来就是实数了。
有理数的运算规则对整式运算也有启发意义。
③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。
关键点就是得牢记运算规则,多做练习。
④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。
考查方式从单纯的计算,到在应用题中的运算都有。
2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。
②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。
③重难点分析:整式的系数、次数概念容易混淆,这是难点。
初一数学有理数试题答案及解析
初一数学有理数试题答案及解析1.若的相反数是3,5,则的值为_________.【答案】2或-8【解析】因为的相反数是3,所以.因为,所以.所以的值为2或-8.2.某初中校为每个学生编号,设定末尾用1表示男生,用2表示女生,若201103202表示“2011年入学的3班20号同学,是位女生”,则2012年入学的5班13号男生的编号是.【答案】201205131.【解析】根据编号的方法,前四位表示入学年份,第五、六位表示班级,第七、八位表示学号,末尾数表示性别,然后写出该同学的编号即可.2012年入学的5班13号男生的编号是:201205131;故答案为:201205131.【考点】用数字表示事件.3.(1)问题:你能比较和的大小吗?为了解决这个问题,首先写出它的一般形式,即比较和的大小(是正整数),然后我们从分析,,,…这些简单情况入手,从中发现规律,经过归纳,猜想出结论.通过计算,比较下列各组数的大小(在横线上填写“>”、“<”、“=”号):,,,,,…(2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是什么?(3)根据上面的归纳猜想,尝试比较和的大小.【答案】(1)<,<,>,>,>;(2)当时,<,当≥3时,>;(3)>.【解析】仔细分析所给各组数的大小即可得到规律,再应用这个规律解题即可.(1),,,,;(2)当时,<,当≥3时,>;(3)>.【考点】找规律-数字的变化点评:解答找规律的题目要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找到“<”、“>”的临界点.4.下列式子一定成立的是()A.x4+x4=2x8B.x4·x4 =x8C.(x4)4=x8D.x4÷x4=0【答案】B【解析】A.错误:x4+x4=2x4;C.错误:(x4)4=x16 D.错误:x4÷x4=1,选B正确。
【考点】整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。
苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)
第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。
初一数学有理数无理数题目
2.2有理数与无理数同步精练一、单选题1.下列说法中,正确的个数有()①-3.14既是负数,又是小数,也是有理数;②-25既是负数,又是整数,但不是自然数;③0既不是正数也不是负数,但是整数;④0是非负数.A.1个B.2个C.3个D.4个2.下列说法正确的个数有()①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A.1个B.2个C.3个D.4个3.下列各数:1.414,π,13-,0,其中是无理数的为()A.1.414B.πC.13-D.04.对于 3.271-,下列说法不正确的是()A.是负数,不是整数B.是分数,不是自然数C.是有理数,不是分数D.是负有理数,且是负分数5.下列说法正确的是()A.有理数包括正有理数和负有理数B.2a是正数C.正数又可称为非负数D.有理数中有绝对值最小的数6.下列实数是无理数的是()A.-2B.16C D7.下列说法正确的是()A.所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数D.不是正数的数一定是负数8.下列四个数中,是正整数的是()A.﹣1B.0C.12D.1 9.下列实数中的无理数是()A BC D .22710.在5-,2.3,0,π,123-五个数中,非负的有理数共有().A .1个B .2个C .3个D .4个11.下列实数为无理数的是()A .-5B .72C .0D .π12.在3-,3π,1.62,0四个数中,有理数的个数为()A .4B .3C .2D .1二、填空题13.是整数而不是正数的有理数是______.14.在-42,+0.01,π,0,120这5个数中,正有理数是___________.15.在有理数﹣0.5,﹣3,0,1.2,2,312中,非负整数有____.16.在 3.5+,0,11,2-,23-,0.7-中,负分数有个______个.17.写出两个符合条件:是正数但不是整数的数,这两个数可以是____.三、解答题18.如图所示,将下列各数填入相应的集合圈内:12-,﹣7,+2.8,﹣900,﹣312,99.9,0,4.19.把下列各数分类,并填在表示相应集合的大括号里:-2,37+,0.8,12,0,-2.1,375-,17%,0.4.(1)正数集合:{}(2)整数集合:{}(3)分数集合:{}(4)负数集合:{}(5)正整数集合:{}(6)负分数集合:{}20.请把下列各数填入相应的集合中:﹣(+4),|﹣3.5|,0,3,10%,2018,+(﹣5),﹣2.030030003…(每两个3之间逐次加一个0).正分数集合:{…};负有理数集合:{…};非负整数集合:{…};参考答案1--10DBBCD DBDCB11--12DB13.非正整教殊性.14.+0.01,120.15.0,216.217.12和13(答案不唯一).键.18.解:根据负数的定义,负数有1-2、﹣7、﹣900、﹣312;根据整数的定义,整数有﹣7、﹣900、0、4.根据正数的定义,正数有+2.8、99.9、4.∴既是负数又是整数的有﹣7、﹣900;既是整数又是正数的有4.19.(1)解:正数集合:{37+,0.8,12,17%,0.4}(2)整数集合:{-2,12,0}(3)分数集合:{37+,0.8,-2.1,375-,17%,0.4}(4)负数集合:{-2,-2.1,375 -}(5)正整数集合:{12}(6)负分数集合:{-2.1,375 -}20.正分数集合:{|﹣3.5|,10%,…};负有理数集合:{﹣(+4),+(-5),…};非负整数集合:{0,2018,…};。
初一数学重要知识点
初一数学重要知识点初一数学重要知识点(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a?b=a+(?b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
初一数学有理数知识点与经典例题
初一数学有理数知识点与经典例题一、有理数知识点。
(一)有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。
2. 有理数的分类。
- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。
1. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
2. 数轴上的点与有理数的关系。
- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。
(三)相反数。
1. 相反数的定义。
- 只有符号不同的两个数叫做互为相反数。
特别地,0的相反数是0。
例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。
2. 相反数的性质。
- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。
(四)绝对值。
1. 绝对值的定义。
- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
2. 绝对值的性质。
- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如,|3| = 3,| - 3|=3,|0| = 0。
- 非负性:| a|≥s lant0。
(五)有理数的大小比较。
1. 法则。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数,绝对值大的反而小。
例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。
初一数学有理数试题答案及解析
初一数学有理数试题答案及解析1.一粒米的质量大约是0.000 021 kg,这个数字用科学记数法表示为( )A.21×10-4 kg B.2.1×10-6 kg C.2.1×10-5 kg D.2.1×10-4 kg【答案】C.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.000021=2.1×10-5.故选C.【考点】科学记数法—表示较小的数.2.绝对值不大于3的整数的和是.【解析】绝对值不大于3的整数即为绝对值分别等于3、2、1、0的整数,据此解答.解:不大于3的整数绝对值有0,1,2,3.因为互为相反数的两个数的绝对值相等,所以绝对值不大于3的整数是0,±1,±2,±3;其和为0.故答案为:0.点评:考查了绝对值的定义和性质,注意掌握互为相反数的两个数的绝对值相等.3.数轴上原点表示的数是______,绝对值最小的有理数是_______.【答案】0,0【解析】根据数轴的知识、绝对值的规律求解即可.解:数轴上原点表示的数是0;绝对值最小的有理数是0.【考点】数轴的知识,绝对值的规律点评:解题的关键是熟练掌握绝对值的规律:正数和0的绝对值是它本身,负数的绝对值是它的相反数.4.很多代数原理都可以用几何模型解释.现有若干张如图所示的卡片,请拼成一个边长为(2a+b)的正方形(要求画出简单的示意图),并指出每种卡片分别用了多少张?然后用相应的公式进行验证.【答案】种卡片用了4张;种卡片用了4张;种卡片用了1张.;验证:【解析】解:拼图如下从图中可知:种卡片用了4张;种卡片用了4张;种卡片用了1张.验证如下:根据正方形面积公式:,成立【考点】几何模型点评:本题难度中等,主要考查学生使用几何模型验证代数原理的能力。
七年级数学上册1.2.1 有理数-有理数的概念及分类-填空题专项练习一(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习一1.2.1 有理数-有理数的概念及分类1.将下列各数填入适当的括号内:9-,227,0.314-,2020,0,338-,π-,66.(1)整数集合______…};(2)负分数集合______…};(3)非负整数集合______…}.2.___________既不是正数,也不是分数,但它是整数.3.在数8.3,-4,-0.8,-15,0.9,0,-223,-|-2 4 |中,有______个数是正数,有______个数是非负数,有_________个数不是整数.4.大于-2而小于3的非负整数是_______.5.在“1,﹣0.3,13+,0,﹣3.3”这五个数中,非负有理数______(写出所有符合题意的数).6.比3小的非负整数有 ________个,7.下列各数中﹣2,0,116,53-,2019,0.121221222…,﹣0.32,-π.非负有理数有______个.8.在数322180.27520 1.048100473++----,,,,,,,,,中,负分数有______________________,非负整数有__________________________.9.在有理数中,既不是正数也不是负数的数是________.10.下列各数中:127,-3.1416,0,58-,10%,17,••3.21-,-89,分数有_____个;非负整数有_______个.11.把下列各数填入相应的大括号内13.5-,2,0,3.14,27-,15%-,1-,227负数集合{_______________}整数集合{________________}分数集合{________________}12.在有理数﹣0.2,﹣3,0,312,﹣5,1中,非负整数有__.13.在3.14122,373π,0.2020020002…(每相邻两个2之间依次增加一个0),__________________________,无理数有__________________________.14.在1.7,-17,0,257-,-0.001,π,92-,2003和-1中,有理数有_______个,负数有________个,其中负整数有___________个,负分数有_________个.15.在+8.3,-6,-0.8,-(-2),0,12中,整数有_______个.16.在28,2020,3,07-,15,13,, 6.94-+-中,正整数有m 个,负数有n 个,则m n +的值为__________.17.最小的正整数是__________,最大的负整数是__________,最大的非正数________.18.下列各数:①12;②213;③0;④-4;⑤-227;⑥-0.3;⑦π;⑧25%,其中是分数的是___________(填序号)19.在﹣227,0,﹣0.010010001…,π四个数中,有理数有_____个. 20.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④2π-不仅是有理数,而且是分数;⑤237是无限不循环小数,所以不是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为_________个.参考答案1.(1)9-,2020,0,66;(2)30.314,38--;(3)2020,0,66.解析:根据整数、负分数、非负整数的意义,逐个进行判断即可.详解:解:(1)整数有:9-,2020,0,66,故答案为:9-,2020,0,66;(2)负分数有:30.314,38--,故答案为:30.314,38--;(3)非负整数有:2020,0,66,故答案为:2020,0,66.点睛:本题考查整数集合,负分数集合,非负整数集合,掌握有理数的分类是解题关键.2.0解析:根据有理数的分类可求解.详解:解:0既不是正数,也不是分数,但它是整数.故答案为0.点睛:本题主要考查有理数的分类,属于基础知识.3.2 3 5解析:试题分析:正数有8.3,0.9共2个,非负数有0,8.3,0.9共3个,8.3,-0.8,-15,0.9,-223不是整数,共5个.考点:有理数的分类.4.0,1,2.详解:试题分析:大于-2而小于3的整数是-1,0,1,2共4个,非负整数是0,1,2.考点:绝对值.5.1,+13,0详解:非负有理数包含0和正有理数,所以1,+13,0满足题意.6.3.解析:非负整数是大于或等于0的整数,根据小于3的条件即可得出答案.详解:解:因为非负整数是大于或等于0的整数,并且小于3,所以比3小的非负整数的是0,1,2.所以有3个,故答案为3.点睛:本题考查的是非负整数的概念,掌握非负整数是大于或等于0的整数是解答此题的关键.7.3解析:根据非负有理数的定义找出题目中给出的非负有理数,数其个数,即可得出答案. 详解:依题意可得,非负有理数有:0,116,2019,共3个,故答案为:3.点睛:本题考查的是有理数,理解非负有理数的概念是解决本题的关键,非负有理数包括0和正有理数.8.11.04,3--8,2,0+解析:按照有理数的分类填写.详解:解:负分数有1 1.04,3--,非负整数有8,2,0+,故答案为:11.04,3--;8,2,0+.点睛:本题考查了有理数的分类,解题的关键是掌握负分数和非负整数的定义.9.0解析:根据有理数分为:正数,0,负数,即可得到答案.详解:解:在有理数中,既不是正数也不是负数的数是0.故答案为0.点睛:本题考查了有理数的分类,熟记0既不是正数,也不是负数是解题的关键.10.5 2解析:根据有理数的分类可直接进行解答.详解:由下列各数中:127,-3.1416,0,58-,10%,17,••3.21-,-89,分数有127,-3.1416,58-,10%,••3.21-,共5个;非负整数有0,17,共2个;故答案为5,2.点睛:本题主要考查有理数的分类,熟练掌握有理数的概念是解题的关键.11.13.5-,27-,15%-,1-;2,0,27-,1-;13.5-, 3.14,15%-,22 7解析:根据有理数的分类,即可得到答案.详解:负数有:13.5-, 27-,15%-,1-;整数有: 2,0,27-,1-;分数有:13.5-, 3.14, 15%-, 227. 故答案是:13.5-, 27-,15%-,1-;2,0,27-,1-;13.5-, 3.14, 15%-,227. 点睛:本题主要考查有理数的分类,掌握负数,整数,分数的概念,是解题的关键.12.0,1解析:非负整数是0和正整数的统称,依据定义即可作出判断.详解:在有理数﹣0.2,﹣3,0,312,﹣5,1中,非负整数有0,1.点睛:本题主要考查了非负整数定义,熟悉掌握定义是关键.13.1223.14,,0.12,37,0.20200200023π解析:分别根据实数的分类及有理数、无理数的概念进行解答详解:根据有理数及无理数的概念可知,在这一组数中是有理数的有1223.14,,0.12,37,0.20200200023π.故答案为(1)1223.14,,0.12,372,0.20200200023π. 点睛: 本题考查的是实数的分类及无理数、有理数的定义,比较简单.14.8 5 2 3解析:根据负数的定义以及负整数、负分数的定义,求解即可求得答案详解:有理数:1.7,-17,0,257-,-0.001,92-,2003和-1共8个;负数为:-17,257-,-0.001,92-,-1共5个;负整数有:-17,-1共2个;负分数有:257-,-0.001,92-共3个.故答案为:8,5,2,3.点睛:此题考查了有理数的分类.熟练掌握有理数的分类是解题的关键.15.3解析:根据整数的定义进行判断即可.详解:解:整数有:-6,-(-2),0,故整数有3个;故答案为:3.点睛:本题考查整数的定义与特点,掌握整数的定义是解题的关键.16.5解析:先根据正整数和负数的定义求出m、n的值,再求两者之和即可.详解:正整数有2020,13+,共2个负数有8,5, 6.9---,共3个2,3m n==∴235m n∴+=+=故答案为:5.点睛:本题考查了正整数的定义、负数的定义,熟记各定义是解题关键.17.1 -1 0解析:根据最小的正整数是1,最大的负整数是-1,最大的非正数0即可.详解:解:最小的正整数是1,最大的负整数是-1,最大的非正数0,故答案为:1,-1,0.点睛:本题考查了有理数的概念和性质,解题的关键是熟知最小的正整数是1,最大的负整数是-1,最大的非正数0.18.②⑤⑥⑧解析:根据分数的定义即可判断.详解:①12;②213;③0;④-4;⑤-227;⑥-0.3;⑦π;⑧25%,其中是分数的是②213、⑤-227、⑥-0.3、⑧25%,故答案为:②⑤⑥⑧.点睛:此题主要考查有理数的分类,解题的关键是熟知分数的定义.19.2解析:根据有理数是有限小数或无限循环小数,可得答案.详解:解: ﹣227,0是有理数故答案为:2.点睛:本题考查了实数,有理数是有限小数或无限循环小数,无理数是无限不循环小数.20.5解析:根据有理数的分类作出判断,即可得出答案.详解:解:①没有最小的整数,故该项说法错误;②有理数包括正数、0和负数,故该项说法错误;③非负数就是正数和0,故该项说法错误; ④2π-是无理数,故该项说法错误; ⑤237是无限循环小数,所以是有理数,故该项说法错误; ⑥无限小数不都是有理数,故该项说法正确;⑦正数中没有最小的数,负数中没有最大的数,,故该项说法正确;所以其中错误的说法的个数为5个,故答案为:5.点睛:本题考查了有理数的分类,掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.。
初一数学有理数试题答案及解析
初一数学有理数试题答案及解析1.―0.5的相反数是.【答案】0.5【解析】正数的相反数是负数,0的相反数是0,负数的相反数是正数,所以-0.5的相反数是0.5. 本题涉及了相反数,该题很简单,主要考查学生对相反数的理解和判断,除此以外,常考的还有绝对值和平方等。
2.下列计算中,正确的是()A.30+3-3=-3B.C.(2a2)3=8a5D.-a8÷a4=-a4【答案】D【解析】根据有理数的乘方法则、二次根式的性质、幂的运算法则依次分析各选项即可.A、,B、不是同类项,无法合并,C、,故错误;D.,本选项正确.本题涉及了实数的运算,计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.3.下列结论正确的有()(1)零是绝对值最小的实数;(2)π-3的相反数是3-π;(3)无理数就是带根号的数;(4)-的立方根为±;(5)所有的实数都有倒数;(6)的绝对值是。
A.5个B.4个C.3个D.2个【答案】C.【解析】(1)零是绝对值最小的实数;正确;(2)π-3的相反数是3-π,正确;(3)无理数就是带根号的数,错误;(4)-的立方根为±,错误;(5)所有的实数都有倒数,错误;(6)的绝对值是,正确.共有3个正确的,故选C.【考点】1.绝对值;2.无理数;3.立方根.4.已知两数在数轴上的位置如图所示,则化简代数式的结果是()A.1B.C.D.-1【答案】B【解析】由数轴可知,且,所以,故.5.有理数在数轴上表示的点如图所示,则的大小关系是()A.B.C.D.【答案】D【解析】由数轴可知,所以其在数轴上的对应点如图所示,则,选D.6.有理数a、b在数轴上位置如图所示,试化简.【答案】-5-2b.【解析】由有理数a、b在数轴上位置可得1<a<2,-3<b<-1.正数和零的绝对值是它本身,附属的绝对值是它的相反数,所以,︱1-3b︱=1-3b; ︱2+b︱=-(2+b),︱3b-2︱=3b-2,试题解析:原式=1-3b-4-2b+3b-2=-5-2b【考点】1.数形结合.2.绝对值.3.整式加减.7.如果数轴上的点A对应的数为,那么与A点相距3个单位长度的点所对应的有理数为_________________.【答案】或2.【解析】如果数轴上的点A对应的数为,那么与A点相距3个单位长度的点所对应的有理数为:或.【考点】实数与数轴.8.﹣|﹣|的倒数是()A.B.﹣C.2D.﹣2【答案】D【解析】根据绝对值和倒数的定义作答.解:∵﹣|﹣|=﹣,﹣的倒数是﹣2,∴﹣|﹣|的倒数是﹣2.故选:D.点评:此题主要考查了倒数与绝对值的性质,根据一个负数的绝对值是它的相反数.若两个数的乘积是1,我们就称这两个数互为倒数得出是解决问题的关键.9.利用整式乘法公式计算:2014×2012-20132=_________.【答案】【解析】2014×2012-20132=(2013+1)(2013-1)-20132=20132-1-20132=-1【考点】整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。
七年级上数学:有理数和无理数(提优练习有答案)
2.2有理数与无理数1.下列各数:…(每相邻两个1之间0的个数一次加1),,其中有理数有 ( )A.3个 B.4个 C.5个 D.6个2.(2020独家原创试题)将分数化为小数是,则小数点后第2 020位上的数是 ( )A.8 B .7 C.1 D.23.写出5个数同时满足以下三个条件:(1)其中3个数属于非正数集合;(2)其中3个数属于非负数集合;(3)5个数都属于整数集合.4.在 (每相邻的两个1之间依次多一个3)中,无理数的个数是 ( )A.1 B.2 C.3 D.45.(2020江苏徐州期中,4,★☆☆)在这5个数中,无理数有 ( )A.0个 B.1个 C.2个 D.3个6.(2020江苏南京鼓楼期中,12,,★☆☆)写出一个负有理数_____________ 7.(2020江苏南京雨花台期中,10,★☆☆)下列各数:其中是无理数的是_________(填写序号).8.&(2020江苏镇江句容月考,22,★☆☆)把下列各数填在相应的括号内.(每相邻两个l之间0的个数依次加l).①自然数集合:{ …};②整数集合:{ …};③非正数集合:{ …};④正分数集合:{ …};⑤正有理数集合:{ …};⑥无理数集合’:{ …}.9.(2018辽宁锦州中考,1,★☆☆)下列各数为无理数的是 ( )10.(2015江苏扬州中考,1,★☆☆)0是 ( )A.有理数 B .无理数 C.正数 D.负数11.(2017江苏盐城中考,7,★☆☆)请写出一个无理数_______________ 12.500多年前.数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生.在研究1和2的比例中项(如果l:X=X:2,那么X叫1和2的比例中项)时,怎么也想不出这个比例中项值.后来,他画出了一个边长为1的正方形,设该正方形的对角线长为x,由毕达哥拉斯定理得,他想省代表对角线的长,而,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么?(2)x可能是分数吗?如果是,请找出来;如果不是,请说明理由.13.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、干分之几等等的数.转化时需要先去掉无限循环小数的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍、一千倍、…,使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就减掉了.例题:例如把化为分数(如图2—2—1①②所示).。
七年级上册数学有理数练习题及答案
七年级上册数学有理数练习题及答案导语:数学是一门需要重复练习和不断巩固的学科,特别是对于初中的学生来说,在学习有理数的过程中,练习题是非常重要的。
本文将为你提供一些七年级上册数学有理数的练习题及答案,希望能够帮助你巩固知识点,提高解题能力。
一、填空题1. 将-5.2表示成有理数的形式是 ____________。
2. 一个负数和一个正数相加的结果可能是 _____________。
3. 已知a是负有理数,b是正有理数,那么a乘以b的结果是_____________。
4. 这个数,负有理数,和它的相反数的和是 ___________。
5. -2.5减去6.8,结果是 ____________。
答案:1. -5 2/102. 一个正数3. 负有理数4. 05. -9.3二、选择题1. -7.5的相反数是:A. 7.5B. -7.5C. -6.5D. 6.5答案:B2. 下列哪个是负有理数:A. 0B. 3/4C. -1D. 5/6答案:C3. 两个负有理数相加的结果可能是:A. 正有理数B. 负有理数C. 0D. 无法确定答案:B4. 两个相反数相加的结果是:A. 正有理数B. 负有理数C. 0D. 无法确定答案:C5. -1.5加上0.9的结果是:A. -2.4B. -0.6C. 0.6D. 2.4答案:B三、计算题1. 用分数表示下列数:-2.8,-4.6,3.75。
答案:-2 4/5,-4 3/5,3 3/42. 计算:-7.3 +3.5 - 1.8。
答案:-5.63. 计算:(-1.5) × (-4.2)。
答案:6.34. 计算:-9.2 ÷ (-0.5)。
答案:18.45. 计算:-3.6 - 7.5 × (1/2)。
答案:-7.35四、应用题1. 有一冰柜的温度为-5.2摄氏度,经过一段时间后,温度下降了3.6摄氏度,求现在冰柜的温度。
答案:-8.8摄氏度2. 小明在学校时,距离家2.5千米,他走了1.8千米后转了个弯,又走了3.6千米才到了学校,求小明走到学校一共走了多远。
初一数学上有理数与无理数的概念和练习(有详细的答案!)
有理数和无理数【1】的概念与练习知识清单1定义:有理数:我们把能够写成分数形式n m(m 、n 是整数,n≠0)的数叫做有理数。
无理数:①无限②不循环小数叫做无理数。
2有理数的分类整数和分数都可以写成分数的形式,它们统称为有理数。
零既不是正数,也不是负数。
有限小数和无限循环小数是有理数。
3无理数的两个前提条件:(1) 无限(2)不循环4两者的区别:(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数。
(2)任何一个有理数后可以化为分数的形式,而无理数则不能。
经典例题例1:下列各数中,哪些是有理数?哪些是无理数?-3,3π,-61,0.333…,3.30303030…,42,-3.1415926,0,3.101001000……(相邻两个1之间0的个数逐个加1),面积为π的圆半径为r 。
例2:下列说法正确的是:()A.整数就是正整数和负整数B.分数包括正分数、负分数C.正有理数和负有理数统称有理数D.无限小数叫做无理数闯关全练一.填空题:(1)我们把能够写成分数形式n m(m 、n 是整数,n≠0)的数叫做。
(2)有限小数和都可以化为分数,他们都是有理数。
(3)小数叫做无理数。
(4)写出一个比-1大的负有理数。
二.判断题(1)无理数与有理数的差都是有理数;(2)无限小数都是无理数;(3)无理数都是无限小数;(4)两个无理数的和不一定是无理数。
(5)有理数不一定是有限小数。
答案例1: 无理数有:3π,0,3.101001000……,(相邻两个1之间0的个数逐个加1)有理数有:-3,-61,0.333…,3.30303030…,42,-3.1415926,0,面积为π的圆半径为r例2:B (A ,还有0 C ,还有0 D ,无限不循环)闯关全练一、(1)有理数(2)无限循环小数、(3)无限不循环小数、(4)答案不唯一,如:-0.5二、(1)错,如3π-0=3π(2)错,如:0.333…(3)对,无理数的两个前提条件之一无限(4)对,3π+(-3π)=0(5)对,如:0.333…。
有理数与无理数知识点以及专项训练(含答案解析)
有理数与无理数知识点以及专项训练知识点1:有理数有理数:有理数是整数和分数的统称;正整数:1、2、3、4、5···整数: 0负整数:-1、-2、-3、-4、-5····分数:正分数:12、65、83···负分数:−12、−56、−38、−215···注意分数:只要能够写成分子、分母都是整数且分子不是分母倍数的数都是分数。
有限小数、无限循环小数由于都能够写成这种形式,所以它们都是分数。
非正整数:0、-1、-2、-3、-4···非负整数:0、1、2、3、4、5···最小的正整数:1最大的负整数:-1有理数的划分:(1)按整数、分数的关系分类:(2)按正数、负数与0的关系分类:知识点2:无理数无理数:无限不循环小数叫做无理数。
我们初中接触到的数中,不是有理数就是无理数。
无理数常见的特征:①看似循环实际不循环: 0.1010010001…(每两个1之间0的数量逐渐增加)、0.12345678910111213…(数字按照规律逐渐增加)②含π类的数:2π、12π、-10π等等③含√类:√2、√3、√5、2√2、√10等等;但是注意:√4=2、√9=3、√16=4、√25=5等等,这些属于整数。
知识点3:循环小数化分数定义:如果一个无限小数的各数位上的数字,从小数部分的某一位起,按一定顺序不断重复出现,那么这样的小数叫做无限循环小数,简称循环小数,其中重复出现的一个或几个数字叫做它的一个循环节.纯循环小数:从小数点后面第一位起就开始循环的小数,叫做纯循环小数.例如:0.666…、0.2·等等纯循环小数化为分数的方法是:分子是一个循环节的数字组成的数;分母的各位数字都是9,9的个数等于一个循环节的位数.例如 0.3=39=13,0.189=189999=737.混循环小数:如果小数点后面的开头几位不循环,到后面的某一位才开始循环,这样的小数叫做混循环小数.例如:0.1·2·、0.3456456….混循环小数化为分数的方法是:分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个9,再在后面按不循环部分的位数添写几个0组成的数.0.918=918−9990=101110,0.239=239−23900=625,0.35135=35135−3599900=3510099900=1337注意: (1)任何一个“循环小数”都可以化为“分数”.(2)“混循环小数”化“分数”也可以先化为纯循环小数,然后再化为分数.【有理数和无理数】1. 下列各数是正整数的是( )A .-1B .2C .0.5D .√22. 下面说法中正确的是( ).A .非负数一定是正数.B .有最小的正整数,有最小的正有理数.C .−a 一定是负数.D .正整数和正分数统称正有理数. 3. 下列四种说法,正确的是( ).A. 所有的正数都是整数B. 不是正数的数一定是负数C. 正有理数包括整数和分数D. 0不是最小的有理数4. 下列说法正确的是( )A .整数就是正整数和负整数B .分数包括正分数、负分数C .正有理数和负有理数统称有理数D .无限小数叫做无理数5. 下列说法:①一个有理数不是整数就是分数;②有理数包括正有理数和负有理数;③分数可分为正分数和负分数;④存在最大的负整数;⑤不存在最小的正有理数.其中正确的个数是( )A .2个B .3个C .4个D .5个 6.112是( )A .整数B .有限小数C .无限循环小数D .无限不循环小数7. 在实数√5、227、0、π2、√36、﹣1.414,有理数有( ) A .1个 B .2个 C .3个 D .4个 8. 下列实数中,是无理数的为( )A .﹣4B .0.101001C .13D .√29. 以下各正方形的边长是无理数的是( )A.面积为25的正方形;B.面积为16的正方形;C.面积为8的正方形;D.面积为1.44的正方形. 10. 下列说法正确的是( )A .不循环小数是无理数B .无限不循环小数是无理数C .无理数大于有理数D .两个无理数的和还是无理数 11. 下列说法:①﹣2.5既是负数、分数,也是有理数;②﹣22既是负数、整数,也是自然数;③0既不是正数,也不是负数,但是整数;④0是非负数. 其中正确的有( ) A .1个 B .2个 C .3个 D .4个 12. 已知a 为有理数,b 为无理数,你们a +b 为___________.13. 在﹣1、0.2、−15、3、0、﹣0.3、12中,负分数有_______________________,整数有_____________________.14. 在227、3.14159、√7、﹣8、√23、0.6、0、√36、π3中是无理数的个数____________.15. 在有理数−23、﹣5、3.14中,属于分数的个数共有_________. 16. 请把下列各数填入它所属于的集合的大括号里.1、0.0708、 -700、 -3.88、 0、3.14159265、 −723、0.2·3·正整数集合:{ }; 负整数集合:{ }; 整数集合:{ }; 正分数集合:{ }; 负分数集合:{ }; 分数集合:{ }; 非负数集合:{ }; 非正数集合:{ }. 17. 将下列各数填入相应的括号内3π、-2、−12、3.020020002…、0、227、2、2012、-0.2·3·整数集合:{ } 分数集合:{} 负有理数集合:{ } 无理数集合:{}18. 下面两个圆圈分别表示负数集和分数集,请把下列6个数填入这两个圈中合适的位置.﹣28%、−(−37)、﹣2014、3.14、﹣(+5)、﹣0.3·【循环小数化分数】1. 把循环小数6.142化成分数是( ) A . 6142999B . 6745C . 62999D . 6322252. 在6.4040…、3.333、9.505,三个数中,6.4040…是循环小数,把这个数化为分数可以写作________________. 3. 0.2666…化为分数是_______________.4. 把下列循环小数化分数 (1)0.6·(2)3.1·02·(3)0.21·5·(4)6.353·(5)0.7·8· (6)1. 7·8·(7)0.17·8·(8)1.17·8·5. 试验与探究我们知道13写为小数即0.3·,反之,无限循环小数0.3·写成分数即13.一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.7·为例进行讨论:设0.7·= x ,由0.7·=0.7777…,可知,10x −x =7,解方程得x =79,于是得0.7·=79.请仿照上述例题完成下列各题: (1)请你把无限循环小数0.5·写成分数,即0.5·=_____________. (2)你能化无限循环小数0.7·3·为分数吗?请仿照上述例子求之.有理数与无理数知识点以及专项训练(含有答案解析)知识点1:有理数有理数:有理数是整数和分数的统称;正整数:1、2、3、4、5···整数: 0负整数:-1、-2、-3、-4、-5····分数:正分数:12、65、83···负分数:−12、−56、−38、−215···注意分数:只要能够写成分子、分母都是整数且分子不是分母倍数的数都是分数。
初一数学有理数无理数题目
初一数学有理数无理数题目【实用版】目录一、有理数与无理数的概念二、有理数与无理数的性质三、有理数与无理数的运算规则四、初一数学有理数无理数题目的解题方法与技巧五、总结正文一、有理数与无理数的概念有理数指的是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数)。
而无理数指的是不能表示为两个整数之比的数,它的小数部分既不是有限小数也不是循环小数,例如圆周率π和自然对数的底数 e 等。
二、有理数与无理数的性质有理数具有如下性质:1) 有理数可以表示为分数形式,即 a/b(a、b 为整数,b≠0);2) 有理数可以表示为小数形式,包括有限小数和循环小数;3) 有理数可以进行加、减、乘、除等运算。
无理数具有如下性质:1) 无理数不能表示为分数形式,即无法表示为 a/b(a、b 为整数,b≠0);2) 无理数的小数部分既不是有限小数也不是循环小数;3) 无理数可以进行加、减、乘、除等运算。
三、有理数与无理数的运算规则有理数与无理数的运算规则与实数的运算规则相同,包括加法、减法、乘法、除法。
在运算过程中,需要注意以下几点:1) 运算顺序,先乘除后加减;2) 同号相乘为正,异号相乘为负;3) 除数不能为零。
四、初一数学有理数无理数题目的解题方法与技巧在初一数学中,有理数与无理数的题目主要涉及有理数的大小比较、有理数的混合运算、无理数的估算等。
解题时,可以采用以下方法与技巧:1) 利用数轴进行有理数大小比较;2) 将有理数混合运算转化为简单的加减运算;3) 利用近似值估算无理数的大小;4) 注意运算过程中的符号和精度。
五、总结有理数与无理数是初中数学中的基本概念,掌握它们的性质和运算规则对于解决相关题目至关重要。
初一数学有理数与无理数
有理数与无理数1.有理数我们把能够写成分数形式n m (m 、n 是整数,n ≠0)的数叫做有理数.2.无理数无限不循环小数叫无理数,例如π.3.有理数的分类()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数常见题型:区分有理数和无理数;有理数与无理数分类.易错点:1.正数和零统称为非负数;2.负数和零统称为非正数;3.正整数和零统称为非负整数;4.负整数和零统称为非正整数.中考回顾:基础知识,是运算的基础.例1在+2017,﹣3.2,0,227-,π,0.010010001…,﹣49这七个数中,有理数的个数为()A .4B .5C .6D .7例2按要求选择下列各数:3,π,0, 3.5-,13,0.03-,0.26+,1-,132,94-,1,7-,2.4.(1)属于整数的有________________________________________________(2)属于分数的有________________________________________________(3)属于非正数的有______________________________________________(4)属于非负数的有______________________________________________(5)属于非负整数的有____________________________________________(6)属于有理数的有______________________________________________参考答案1.【答案】B【考点】有理数的概念【解析】在+2017,﹣3.2,0,227-,π,0.010010001…,﹣49这七个数中,有理数有+2017,﹣3.2,0,227-,﹣49,有理数的个数为5;其中0.010010001…只是小数部分有规律并不是循环小数,是无限不循环小数,即无理数.2.【答案】(1)属于整数的有3、0、1-、1、7-(2)属于分数的有 3.5-、13、0.03-、0.26+、132、94-、2.4(3)属于非正数的有0、0.03-、1-、94-、7-(4)属于非负数的有3、π、0、13、0.26+、132、1、2.4(5)属于非负整数的有1-、7-(6)属于有理数的有3、0、 3.5-、13、0.03-、0.26+、1-、132、94-、1、7-、2.4【考点】有理数的分类【解析】主要是其中的非正数包括0和负数,非负数包括0和正数,非负整数包括0和正整数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数和无理数的概念与练习
知识清单
1定义:有理数:我们把能够写成分数形式
n
m (m 、n 是整数,n≠0)的数叫做有理数。
无理数:①无限②不循环小数叫做无理数。
2有理数的分类
整数和分数都可以写成分数的形式,它们统称为有理数。
零既不是正数,也不是负数。
有限小数和无限循环小数是有理数。
3无理数的两个前提条件:
(1) 无限(2)不循环
4两者的区别:
(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数。
(2)任何一个有理数后可以化为分数的形式,而无理数则不能。
经典例题
例1:下列各数中,哪些是有理数?哪些是无理数? -3,3π,-6
1,0.333…,3.30303030…,42,-3.1415926,0,3.101001000……(相邻两个1之间0的个数逐个加1),面积为π的圆半径为r 。
例2:下列说法正确的是:( )
A.整数就是正整数和负整数
B.分数包括正分数、负分数
C.正有理数和负有理数统称有理数
D.无限小数叫做无理数 闯关全练
一. 填空题:
(1)我们把能够写成分数形式n
m (m 、n 是整数,n≠0)的数叫做 。
(2)有限小数和 都可以化为分数,他们都是有理数。
(3) 小数叫做无理数。
(4)写出一个比-1大的负有理数 。
二. 判断题
(1)无理数与有理数的差都是有理数;
(2)无限小数都是无理数;
(3)无理数都是无限小数;
(4)两个无理数的和不一定是无理数。
(5)有理数不一定是有限小数。
答案
例1: 无理数有:
3
π,0,3.101001000……,(相邻两个1之间0的个数逐个加1) 有理数有:-3,-61,0.333…,3.30303030…,42,-3.1415926,0,面积为π的圆半径为r 例2: B (A ,还有0 C ,还有0 D ,无限不循环)
闯关全练
一、(1)有理数
(2)无限循环小数、
(3)无限不循环小数、
(4)答案不唯一,如:-0.5
二、(1)错,如3π-0=3
π (2)错,如:0.333…
(3)对,无理数的两个前提条件之一无限
(4)对,3π+(-3
π)=0 (5)对,如:0.333…。