二次函数顶点式公开课

合集下载

二次函数(配顶点式)——公开课

二次函数(配顶点式)——公开课

公开课教案第六课时2.1 二次函数(6)授课人:涂瑞珊 授课时间:2016.12.28 授课班级:九年级 教学目标:1.使学生掌握用描点法画出函数y =ax 2+bx +c 的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y =ax 2+bx +c 的性质。

重点:用描点法画出二次函数y =ax 2+bx +c 的图象和通过配方确定抛物线的对称轴、顶点坐标。

难点:理解二次函数y =ax 2+bx +c(a ≠0)的性质以及它的对称轴(顶点坐标分别是x =-b 2a 、(-b 2a ,4ac -b 24a)是教学的难点。

教学过程:一、提出问题导入新课1.你能说出函数y =-4(x -2)2+1图象的开口方向、对称轴和顶点坐标吗?具有哪些性质?2.函数y =-4(x -2)2+1图象与函数y =-4x 2的图象有什么关系?3.不画出图象,你能直接说出y =2x 2-8x+7函数的图象的开口方向、对称轴和顶点坐标吗?通过今天的学习你就明白了二、学习新知1、 思考: 像函数 y =-4(x -2)2+1很容易说出图像的顶点坐标,函数y =2x 2-8x+7能画成y=a(x -h)2+k 这样的形式吗?2、 师生合作探索:y =2x 2-8x+7 变成 y=a(x -h)2+k 的过程3、做一做(1). 通过配方变形,说出函数y =-2x 2+8x -8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?在学生做题时,教师巡视、指导; 让学生总结配方的方法;思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?4、课本做一做:确定下列函数图像的对称轴和顶点坐标(1)y =3x 2-6x+7 (2)y =2x 2-12x+85、y =ax 2+bx +c(a ≠0)的配方以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。

【精品讲义】二次函数一般式、顶点式、交点式

【精品讲义】二次函数一般式、顶点式、交点式

二次函数一般式、顶点式、交点式这节课我们学什么1. 会用待定系数法求二次函数的解析式;2. 会平移二次函数2(0)y ax a =≠的图象得到二次函数2()y a x h k =-+的图象;了解特殊与一般相互联系和转化的思想;3. 根据交点求解解析式.知识点梳理1、顶点式:()2y a x h k =-+的图像与性质2、交点式:12()()y a x x x x =--的图像与性质1x 、2x 分别是二次函数与x 轴的两个交点坐标,如果二次函数与x 轴的交点坐标已知,则我们可以设解析式为12()()y a x x x x =--,然后再根据条件求出a 即可;3、一般式2y ax bx c =++的性质对于一般式:2(0)y ax bx c a =++≠,我们怎么能知道二次函数的对称轴以及顶点坐标呢?将一般式配方成顶点式:2y ax bx c =++=2()b c a x x a a ++=22222()44b b b c a x x a a a a ++-+ =222(())()22b b c b a x x a a a a+++- =222424b b ac a x a a -⎛⎫+= ⎪⎝⎭ 所以,任意二次函数,其对称轴方程为:直线2b x a =-;顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭, 1. 当0a >时,抛物线开口向上,对称轴为直线2b x a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大; 2. 当0a <时,抛物线开口向下,对称轴为直线2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;典型例题分析1、 二次函数一般式;例1、抛物线1422-+-=x x y 的对称轴是直线 .【答案:1x =】例2、抛物线2243y x x =-+的顶点坐标是 .【答案:(1,1)】例3、二次函数223y x x =--,当0y <时,自变量x 的取值范围是 . 【答案:根据一般式,画出图像,求出与x 轴的两个交点,位于x 轴下方的部分就是0y <;∴13x -<<】例4、已知二次函数2y ax bx c =++的图象如图,则a 、b 、c 的正负性分别是 .【答案:0a <;0b <;0c >】例5、如果)21y A ,(-,)12y B ,(-为二次函数241y x x =-+的图像上的两点,试判断1y 与2y 的大小为 .【答案:21y y <】例6、若二次函数()32122--++=m m x m y 的图象经过原点,则m 的值为 . 【答案:3】例7、二次函数2y ax bx c =++的图像如图所示,那么2,4,2,abc b ac a b a b c -+++值为正数的有 个.【答案:2】例8、已知二次函数2y ax bx c =++的图象与x 轴交于点(2,0)-、1(,0)x 且112x <<,与y 轴的正半轴的交点在(0,2)的下方.下列结论:①420a b c -+=;②0a b c -+>;③0a b c ++<;④0a b <<.其中正确结论的是 .【答案:①正确,将2x =-即可;②正确,将1x =-代入得:0a b c -+>; ③错误,将1x =代入得:0a b c ++>;④正确,将2x =-代入得:420a b c -+=,将1x =代入得:0a b c ++>,所以(42)()0a b c a b c -+-++<,整理得:330a b -<】例9、已知二次函数2231y x x =++的顶点是A ,与x 轴的两个交点为B 、C (B 点在C 点的左侧)与y 轴的交点为D ,求四边形ABCD 的面积.【答案:31(,)48A --;(1,0)B -;1(,0)2C -;(0,1)D ;面积为932】2、 二次函数顶点式;例10、把二次函数221x y =的图像向左平移1个单位,再向上平移3个单位,则所得图像的解析式为: . 【答案:21(1)32y x =++或21722y x x =++】例11、如果抛物线23y x mx m =-++的顶点在x 轴上,那么m = . 【答案:6m =或2m =-】例12、抛物线21y ax =-上有一点(2,2)P ,平移该抛物线,使其顶点落在点(1,1)A (1,1)A 处,这时,点P 落在点Q 处,则点Q 的坐标为 .【答案:(3,4)Q ,原函数顶点坐标是(0,1)-】例13、将函数2287y x x =-+-写成()2y a x m k =++的形式为_______________. 【答案:22(2)1y x =--+】例14、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1)满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,当x 为何值时,y 随x 的增大而增大;(3)m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?【答案:(1)3m =-或2m =;(2)2m =,(0,0);当0x =时,y 有最小值为0,当0x >,y 随x 的增大而增大(3)3m =-,(0,0);当0x =时,y 有最大值为0,当0x >,y 随x 的增大而减小】例15、(1)若抛物线m mx x y 22++=的顶点在y 轴右侧,求m 的取值范围; (2)已知抛物线22(1)16y x k x =-++的顶点在x 轴上,求k 的值; (3)若抛物线22(1)16y x k x =-++的顶点在y 轴,求k 的值.【答案:(1)0m <;(2)3k =或5k =-;(3)1k =-】3、 二次函数交点式;例16、抛物线c bx x y ++=2经过点(0,3)-和)0,1(-,那么抛物线的解析式是 . 【答案:223y x x =--】例17、二次函数的图像经过点(1,0)-,(3,0),且最大值是3,求二次函数的解析式.【答案:2339424y x x =-++】例18、已知抛物线2(0)y ax bx c a =++≠与x 轴的两交点的横坐标分别是1-和3,与y 轴交点的纵坐标是32-;(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向,对称轴和顶点坐标.【答案:(1)21322y x x =--;(2)开口向上;对称轴:直线1x =;顶点坐标(1,2)】课后练习练1. 抛物线265y x x -=+的顶点坐标为 .【答案:(3,4)-】练2. 已知一元二次方程230x bx -=+的一根为3-,在二次函数23y x bx +=-的图象上有三点14(,)5y -、25(,)4y -、31(,)6y -,1y 、2y 、3y 的大小关系是 . 【答案:123y y y <<】练3. 已知函数21()32y k x x +=+-的图象与x 轴有交点,则k 的取值范围是 . 【答案:4k ≤】练4. 若二次函数232y x x c =-+图象的顶点在x 轴上,则c = . 【答案:916c =】练5. 抛物线2y ax bx c =++在点(3,1)处达到最高点,抛物线与y 轴交点的纵坐标为8-,则它的解析式为 .【答案:268y x x =-+-】练6. 已知抛物线2y ax bx c =++经过(1,2)、(3,0)两点,它在x 轴上截得线段的长为6.求此抛物线的函数解析式.【答案:21327828y x x =-+或21944y x =-+】练7. 已知抛物线22y x mx =-+-与直线2y x b =-+相交于M N 、两点,点M 、点N 的横坐标分别是7和-2.求:(1)M N 、两点的坐标;(2)直线和抛物线的解析式;(3)若坐标原点是O ,求MON ∆的面积.【答案:(1)(7,30)M -,(2,12)N --;(2)232y x x =-+-;216y x =--;(3)72MON S ∆=】练8. 抛物线2y ax bx c =++过点()0,1-与点()3,2,顶点在直线33y x =-上,0a <,求此二次函数的解析式.【答案:142-+-=x x y 】练9. 已知二次函数图象与x 轴交于(2,0)A -,(3,0)B 两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求ABP ∆的面积.【答案:(1)25482582582++-=x x y ;(2)5ABP S ∆=】练10. 已知抛物线22y x mx m =-+-. (1)求证此抛物线与x 轴有两个不同的交点;(2)若m 是整数,抛物线22y x mx m =-+-与x 轴交于整数点,求m 的值; (3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为.B 若M 为坐标轴上一点,且MA MB =,求点M 的坐标.【答案:(1)240b ac ∆=->;(2)2m =;(3)(1)0,或(0,1)】课后小测验1. 将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向右平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .【答案:2123y x =-;21(3)23y x =--;(0,2)-;(3,2)-】2. 抛物线1662--=x x y 的顶点坐标为_________.【答案:(3,25)-】3. 二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于________. 【答案:-6,6】4. 已知抛物线的顶点坐标为(1,1),且抛物线过原点,则抛物线的关系式是 .【答案:22y x x =-+】5. 抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,ABC ∆的面积为1,则b 的值为______.【答案:3-】本章小结精品文档考试教学资料施工组织设计方案。

《二次函数》公开课教案

《二次函数》公开课教案

二次函数教学 目 标1、会画二次函数的顶点式y =a (x -h)2+k 的图象 2、掌握二次函数y =a (x -h)2+k 的性质; 3、会应用二次函数y =a (x -h)2+k 的性质解题 重 点 掌握二次函数y =a (x -h)2+k 的性质; 难 点会应用二次函数y =a (x -h)2+k 的性质解题课堂教学设计知识回忆——整理知识点y =ax 2y =ax 2+ky =a (x-h)2开口方向顶点对称轴最值增减性 〔对称轴左侧〕2.对于二次函数的图象,只要|a |相等,那么它们的形状_________,只是_________不同.二、探索新知:画出函数y =-12(x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.列表:x … -4 -3 -2 -1 0 1 2 …y =-12(x +1)2-1 … … y =12(x-1)2+1 ……由图象归纳: 1.函数开口方向 顶点对称轴最值 增减性y =-12(x +1)2-1y =12 (x-1)2+12.把抛物线y =-12x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =-12(x +1)2-1.三、理一理知识点y =ax 2y =ax 2+ky =a (x-h)2y =a (x -h)2+k开口方向顶点 对称轴2.抛物线y =a (x -h)2+k 与y =ax 2形状___________,位置________________.四、课堂练习 1.y =3x 2y =-x 2+1y =12 (x +2)2 y =-4 (x -5)2-3开口方向 顶点对称轴最值增减性〔对称轴左侧〕增减性 〔对称轴右侧〕2.y =6x 2+3与y =6 (x -1)2+10_____________相同,而____________不同.3.顶点坐标为〔-2,3〕,开口方向和大小与抛物线y =12x 2相同的解析式为〔 〕A .y =12 (x -2)2+3B .y =12 (x +2)2-3C .y =12 (x +2)2+3D .y =-12(x +2)2+34.二次函数y =(x -1)2+2的最小值为__________________.5.将抛物线y =5(x -1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.假设抛物线y =ax 2+k 的顶点在直线y =-2上,且x =1时,y =-3,求a 、k 的值.最值增减性 〔对称轴右侧〕增减性 〔对称轴左侧〕7.假设抛物线y=a (x-1)2+k上有一点A〔3,5〕,那么点A关于对称轴对称点A’的坐标为 __________________.五、目标检测1.开口方向顶点对称轴y=x2+1y=2 (x-3)2y=- (x+5)2-42.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用以下哪幅图表示〔〕A B C D4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,那么所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,那么这条抛物线的解析式为____________________________.〔任写一个〕反思通过复习类比,大局部同学对于二次函数的理解都比拟好,会画二次函数的顶点式y=a (x -h)2+k的图象;会应用二次函数y=a (x-h)2+k的性质解题会找自变量,会列简单的函数关系式,总体效果良好!学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

二次函数的顶点式ppt课件

二次函数的顶点式ppt课件

❖ 2.y2+3y+ (
3 )2 2
3
=(y+ 2
)2
❖ 3.函数y=x2+6x化为顶点式是 y(x3)29 。
❖ 4.函数y=2x2-6x+9化为顶点式是y2(x23)2。92
❖ 5. 函数y=ax2+bx+c化为顶点式是
.
精选ppt课件
12
根据公式确定下列二次函数图象的对称轴和顶点坐标:
1y2x23x1;
点在x轴上方 点在x轴下方 点在x轴上
a-b+c>0 a-b+c<0 a-b+c=0
练习
11、已知:二次函数y=ax2+bx+c的图象如图所 示,下列结论中下不正确的是 ( D )
A、abc>0
y
B、b2-4ac>0
C、2a+b>0 D、4a-2b+c<0
-1 o 1 x
试一试:已知;二次函数y=2x2-(m+1)x+(m-1). (1)求证:不论m为何值时,函数的图像与x轴总 有交点,并指出m为何值时,只有一个交点; (2)当m为何值时,函数图像过原点,并指出此时 函数图像与x轴的另一个交点; (3)若函数图像的顶点在第四象限,求m的取值 范围.
整理:前三项化为平方形式,后两 项合并同类项
配方后的表达 3x122. 化简:去掉中括号
式通常称为顶
点式
简单说成:一提、二配、三化简
函数y=3x2-6x+5的图象特征
2.根据配方式(顶点式)确定开口方向,对称 轴,顶点坐标.
y3 x1 22.
∵a=3>0,∴开口向上; 对称轴:直线x=1; 顶点坐标:(1,2).

二次函数顶点式公开课教学设计

二次函数顶点式公开课教学设计

二次函数顶点式公开课教学设计2019-2020学年度第一学期校际公开课一、基本信息:学科(版本):新人教版初中数学学校:XXX设计者:XXX二、教学目标:知识与技能:掌握二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用;会用描点法画出y=a(x-h)2+k(a≠0)的图象。

过程与方法:用联系、类比等方法探究数学问题,提高学生数学思维分析能力;使学生在小组合作探究中体会合作与交流的重要性。

情感、态度与价值观:培养学生对数学的兴趣和自信心,激发学生的研究热情。

三、研究者分析:学生在此前已经研究了二次函数y=ax2+k(a≠0)和y=a(x-h)2(a≠0)的图象和性质。

四、教学重难点分析:教学重点:二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用。

教学难点:理解二次函数y=a(x-h)2+k(a≠0)与y=ax2(a ≠0)之间的联系。

五、教学准备:XXX白板、班级优化大师等软件。

六、教学过程:教学环节:教学内容1.二次函数y=-2x2的开口、顶点坐标、对称轴和最值。

2.把y=-2x2的图像向上平移3个单位,向左平移2个单位。

3.请猜测一下:二次函数y=-2(x+2)2+3的图象是否可以由y=-2x2平移得到?你认为该如何平移呢?4.画出函数y=-(x+1)2-1的图像,指出它的开口方向、顶点与对称轴。

师生活动:1.抽选学生上台填写答案,教师擦去蒙层检查答案。

2.抽选学生上台移动抛物线,教师做点评。

3.学生回答问题并讨论。

4.学生利用班级优化大师等软件画出函数图象,教师做即时点评。

本次校际公开课的教学目标是通过掌握二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用,以及会用描点法画出y=a(x-h)2+k(a≠0)的图象,提高学生的数学思维分析能力和合作交流能力,培养学生对数学的兴趣和自信心。

在学生已经研究了二次函数y=ax2+k(a≠0)和y=a(x-h)2(a≠0)的图象和性质的基础上,本次教学重点是教授二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用,教学难点是理解二次函数y=a(x-h)2+k(a≠0)与y=ax2(a ≠0)之间的联系。

二次函数 公开课一等奖课件

二次函数  公开课一等奖课件

解 : 方 程 x 2 2 x = k 在 [ - 1 , 1 ] 有 解 ,
即 y x 2 2 x (x 1 )2 1 , x [ 1 ,1 ] 与直线y =k有交点,
fm in(x)≤ k≤ fm a x(x),
y
由图象 ,得 f(1)≤ k≤f(1).
1≤ k≤ 3.
Y=k
x -1 1
(k )
k 0
f (k) 0
根的分布
k1x1x2k2
图象 y
k1 o k2 x
充要条件
0
k
1
b 2a
k2
f (k1) 0
f ( k 2 ) 0
m npq
y f (m ) 0
m x1 n
p x2 q
np mo
q
x
f (n ) 0 f(p) 0 f (q ) 0
主页
根的分布
两个实根有 且仅有一根 在区间[ k 1 , k 2 ] 内
图象
y
充要条件
k1
o x1
k2
x2 x
f(k1)f(k2)0
y
f (k1) 0
x1
o k1
k2
x2 x
k1
b 2a
k1
2
k2
y
x1
o k1
k2
x2 x
主页
f (k2) 0
k1
k2 2
b 2a
k2
【1】假设方程x2 -2x =k在区间[ -1,1]上有解, 那么实数k的取值范围为-_1_≤__k_≤__3______.
方,
f (2) 0, f (2) 0,
即22xx2 2 22xx130,0,

二次函数顶点式ppt课件

二次函数顶点式ppt课件

x
y 1 x2 3 3
–2(0,-3) –3 –4精选ppt课件 –5
y 1 x2
3
6
3.左右 平移
如何由
y
1 3
x2
y
的图1象(得x到2y)2的图13(象x。2)、2
y
3
5
x= - 2 4 x= 2
3
2
(-2,0) 1
y 1 x –252–4–3–2–1–O1
3
–2
1
(2,0) 23
a的绝对值越大,开口越小
直线x=h
(h,0)
顶点是最低点
顶点是最高点
在对称轴左精选侧pp递t课件减
在对称轴左侧递增 4
在对称轴右侧递增 在对称轴右侧递减
复习回顾: 1.填表
抛物线 开口方向 对称轴 顶点坐标
y0.5x2
y0.5x21
y0.5x21
y 2x2
y2(x1)2 y2(x1)2
向下
x=0

-5.5 -3 -1.5
再描点、连线
-1 0 1 2 …
-1 -1.5 -3 -5.5 … 直线x=-1
(1)抛物线 y1(x1)2 1
2
的开口方向、对称轴、顶点? 抛物线 y1(x1)2 1 的开口向下, 2
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x -2 -3 -4 -5
与y = ax2形状相同精选,ppt课位件 置不同。
16
如何平移:
y 3 (x 1)2 4
y3(x1)2 2 4
y3(x3)2 3 4
y3(x5)2 2 4
精选ppt课件
17
例4.要修建一个圆形喷水池,在池中心竖直 安装一根水管.在水管的顶端安装一个喷水 头,使喷出的抛物线形水柱在与池中心的水 平距离为1m处达到最高,高度为3m,水柱落 地处离池中心3m,水管应多长?

求二次函数的表达式PPT课件一等奖新名师优质课获奖比赛公开课

求二次函数的表达式PPT课件一等奖新名师优质课获奖比赛公开课
熟练掌握二次函数旳有关知识,会 灵活利用一般式、顶点式、交点式 求二次函数旳解析式是处理综合应 用题旳基础和关键。
倍速课时学练
• 一、二次函数常用旳几种解析式旳拟定
1、一般式
已知抛物线上三点旳坐标,一般选择一般式。 2、顶点式 已知抛物线上顶点坐标(对称轴或最值),一般选择顶点式。 3、交点式
已知抛物线与x轴旳交点坐标或对称轴,选择交点式。 4、平移式
旳图像如图所示,
倍速课时学练
∴ y = a (x+1) (x- 3) 又 C(1,4)在抛物线上
∴ 4 = a (1+1) (1-3) ∴ a = -1 ∴ y = - ( x+1) (x-3)

评析:
本题可采用一般式、顶点式和交点式求 解,经过对比可发觉用顶点式和交点式求解 比用一般式求解简便。同步也培养学生一题 多思、一题多解旳能力,从不同角度进行思 维开放、解题措施开放旳培养。注重解题技 巧旳养成训练,可事半功倍。
(2)再将
向下平移3个单位得 (上加下减)
即所求旳解析式为
倍速课时学练
四、尝试练习
1、已知二次函数旳图像过原点,当x=1时,y有最小值为 -1,求其解析式。
解:设二次函数旳解析式为
∵ x = 1, y= -1 , ∴顶点(1,-1)。 ∴ 又(0,0)在抛物线上, ∴ ∴ a =1 ∴ 即
倍速课时学练
当水位为2.5米时, y = 水位+船高 =2.5+1.4 =3.9 > 3.6
∴ 船不能经过拱桥。
复习二次函数四种平移关系
倍速课时学练
三、应用举例
例3、将抛物线
向左平移4个单位,
再向下平移3个单位,求平移后所得抛物线旳解析式。

人教版数学九年级上册优质课课件《二次函数的顶点式》

人教版数学九年级上册优质课课件《二次函数的顶点式》

与y=-3x² 有 关哟
开口向下, 当x=1时y有 最大值:且 对称轴仍是平行于y轴的直线 最大值= 2 (x=1);增减性与y= -3x2类似. (或最大值=-2).
二次函数y=a(x-h)² +k与y=ax² 的关系
一般地,由y=ax² 的图象便可得到二次函数y=a(x-h)² +k 的图象:y=a(x-h)² +k(a≠0) 的图象可以看成y=ax² 的 图象先沿x轴整体左(右)平移|h|个单位(当h>0时,向 右平移;当h<0时,向左平移),再沿对称轴整体上(下) 平移|k|个单位 (当k>0时向上平移;当k<0时,向下平 移)得到的. 因此,二次函数y=a(x-h)² +k的图象是一条抛物线,它 的开口方向、对称轴和顶点坐标与a,h,k的值有关. 抛物线y=a(x-h)² +k有如下特点: (1)当a>0时,开口向上;当a<0时,开口向下; (2)对称轴是直线x=h; (3)顶点坐标是(h,k)。
y
y 3x 1 2
2
y 3x 2
y 3x 1
2 2
二次函数y=-3(x-1)2+2与 y=-3(x-1)2+2的图象可 以看作是抛物线y=-3x2 先沿着x轴向右平移1个 单位,再沿直线x=1向上 (或向下)平移2个单位后 得到的.
y 3x 1 2
X=1
y
解:如图建立直角坐标系,点(1、3)是 顶点,设抛物线的解析式为 Y=a(x-1)² +3 (0≤x≤3) 点(3、0)在抛物线上,所以有 0=a(3-1)² +3 ∴ a=-¾ 点(1、3) ∴ y=-¾(x-1)² +3 (0≤x≤3) 是顶点,知 当x=0时,y=2.25, 道h=1, 即水管应长2.25m。 k=3,求出 a就好啦!

中考数学《二次函数》公开课获奖课件百校联赛一等奖课件

中考数学《二次函数》公开课获奖课件百校联赛一等奖课件

y=(-7)2+6×(-7)+5=12.
又∵抛物线与y轴交于点B(0,5),
∴CD边上旳高为12-5=7,
∴S△BCD=
1×8×7=28.
2
【知识拓展】二次函数旳图象是抛物线,是轴对称图形, 图象上纵坐标相等旳两个点有关对称轴对称.
热点考向四 二次函数与方程或不等式
【例3】(2023·牡丹江中考)抛物线
二、二次函数y=ax2+bx+c(a≠0)旳图象与性质
1.当a>0时
(1)开口方向:向上.(2)顶点坐标:(___2b_a_
4ac b2
, 4a ).(3)对称
轴:直线__x____2b_a__.
(4)增减性:当x< b 时,y随x旳增大而_减__小__;当x> b 时,
2a
2a
y随x旳增大而_增__大__.
2a
2a
y随x旳增大而_____减. 小
4ac b2
(5)最值:当x= b 时,y最大值=____4_a____.
2a
【思维诊疗】(打“√”或“×”) 1.y=ax2+2x+3是二次函数. ( × ) 2.二次函数y=3(x+3)2-2旳顶点坐标是(3,-2). ( × ) 3.二次函数y=x2-2旳对称轴是y轴,有最小值-2. ( √ ) 4.二次函数y=x2先向右平移2个单位,再向下平移3个单位,得 到旳函数体现式是y=(x+2)2-3. ( × )
(3)∵抛物线对称轴为x=1,∴抛物线在2<x<3这一段与在1<x <0这一段有关对称轴对称,又直线l与直线AB有关对称 轴对称,结合图象能够观察到抛物线在-2<x <-1这一段位于 直线l旳上方,在-1< x<0这一段位于直线l旳下方.∴抛物线与 直线l旳交点横坐标为-1; 当x=-1时,y=-2×(-1)+2=4,则抛物线过点(-1,4).当x=-1 时,m+2m -2=4,m=2. ∴抛物线旳体现式为y=2x2-4x-2.

(第6套)人教版九年级数学上册 22《二次函数》二次函数的应用公开课精品教学课件

(第6套)人教版九年级数学上册 22《二次函数》二次函数的应用公开课精品教学课件

度如A何D表示4?0 X 30 40
3 AD (40 x)
4
M
30cm
(2)设矩y 3形(40的 x)x面 3积(x2 为 40xy) ,求3 (xy 2与0)2 x30的0 函数关系式 D
C
并直接写4 出x的4取值范围4 ?

当x取何值时,y的最大值是多少?
A
B
N
40cm
(0 < x < 40)
(2)每件商品的售价定为多少元时,每月可获得最大利润?最大利润是多少 元? y=-10x2+110x+2100 =-10(x-5.5)2+2402.5
∵x为正整数∴由函数图像可知:x=5或x=6时,y有最大值为2400. ∴每件商品的售价定为55或56元时,每月可获得最大利润为2400元。
(3) 每件商品的售价定为多少元时,每个月的利润等于2200元?并直接回答 售价在什么范围内时,每个月的利润不低于2200元?
(3)根据图像回答下列问题 y= -2x2-4x+8
-4 (-1,10)
8
2
(1)若-2≤x ≤3,则函数的 最大值是 10
(2)若1≤x ≤3,则函数的
最大值是 2
-2 -3
3 11 3
(3当y≥2时,x的取值
范围是 -3≤x ≤1
2、如图所示的二次函数的解析式为:
(1)若-1≤x≤2,该 函数的最大值是
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
活动一:
(1)将二次函数 y= -2x2-4x+8 化为顶点式。
y= -2(x+1)2+10

北师大版九年级数学下册《已知二个条件确定二次函数的表达式》公开课课件_16

北师大版九年级数学下册《已知二个条件确定二次函数的表达式》公开课课件_16
二次函数y=ax2+bx+c(a, b, c为常数, a≠0)的关系式时,通常又需要几个条件?
初步探究
问题一:若二次函数y=2x²+3x+c图象过点(-1,10),
可以确定这个二次函数的表达式吗? 能
问题二:若二次函数y=2x²+bx+c图象过点(-1,10),
可以确定这个二次函数的表达式吗? 不能
复习引入
3.y=kx (k≠0)
找 一个点
y

k(k

系数
0)
k 需待定
确定 一 个方程
x
找 两个点
4.y=kx+b (k≠0) 两系数 k,b 需待定
两 个方程
解一元一次方程
解二元一次方程组
如果如确定果如果确确定定二二次次函数函y=a数x2+yb=x+acx(a2, +b,bc为x+常c数(a, a,≠b0,)c为的关常系式数时,,通a≠常0) 的又表需要达几式个条时件,? 通常又需要几个条件?
独立 作业
驶向胜利 的彼岸
P42 做一做 P43 习题2.6 1题 P45 习题2.7 2题+“顶点”
学习目标
1.会用待定系数法确定二次函数表达 式. 2.能根据抛物线上两个或三个点的坐 标,选择恰当的表达式确定二次函数 的表达式。
复习引入
1.二次函数表达式的一般形式是什么?
y=ax²+bx+c (a,b,c为常数,a ≠0)
2.二次函数表达式的顶点式是什么?
y=a(x-h)2+k (a ≠0)
问题三:已知二次函数y=ax2+c 的图象过点(2, 3) 和(0,-5),可以确定这个二次函数的表达式吗?

二次函数的图像和性质(原创公开课)

二次函数的图像和性质(原创公开课)
2
配方
解:
1 2 y x 6 x 21 2
1 2 y x 6 x 21 2 转化为上 提取二次项系数 1 x 2 12 x 42 2 一节课所 1 2 学知识 配方 x 12x 36 36 42 2 1 2 整理 x 6 6 顶点式 2 2 1 2 y a ( x h) k 化简:去掉中括号 x 6 3. 2
写出下列抛物线的开口方向、对称轴和顶点坐标。
1.
3.
y 3x 2x 1 2 y x - 4x 3 2
2
2.
y x 2x 3
2
例1:指出抛物线:
y x 3x 2
2
的开口方向,求出它的对称轴、顶点坐标、 与y轴的交点坐标、与x轴的交点坐标。并画 出草图。
对于y=ax2+bx+c我们可以确定它的开口 方向,求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x轴的交点坐标(有交 点时),这样就可以画出它的大致图象。






1 2 y x 6 x 21 2
归纳:如何配方
配 方
方法1:看成方程进行配方; 方法2: (1)“提”:提出二次项系数 (2)“配”:括号内配成完全平方; (3)“化”:化成顶点式
2 1 y= — (x―6) +3 2
1 2 解:配方可得 y x 6 x 21 2 1 2 x 6 3 2
2、说出下列抛物线y=a(x -h)2+k的开口方向、对 称轴及顶点: 2 2
( 1 )y ( 2 x 3) 5;(2)y ( 3 x 1 ) 2;
a=2>0,开口向上 a=-3<0,开口向下

二次函数的性质公开课一等奖课件省赛课获奖课件

二次函数的性质公开课一等奖课件省赛课获奖课件

②顶点式 y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶 点.当已知抛物线的顶点坐标或对称轴,能够先求出抛物线 顶点时,设顶点式解题十分简捷.加上其他条件确定 a 的值, 即可求出函数的解析式;
③两根式 y=a(x-x1)(x-x2)(a≠0),其中 x1、x2 就是方程 ax2+bx+c=0 的两根,即抛物线与 x 轴两交点的横坐标.当 题中已知抛物线与 x 轴交点的坐标时,设出零点式解题比较 简单.
已知顶点为(1,-3),∴h=-1,k=-3, 即所求的二次函数 y=a(x-1)2-3. 又∵图像经过点 P(2,0), ∴0=a×(2-1)2-3,∴a=3, ∴函数的解析式为 y=3(x-1)2-3,即 y=3x2-6x.
解法四:设解析式为 y=a(x-x1)(x-x2)(a≠0), 其中 x1,x2 是抛物线与 x 轴的两交点的横坐标, 已知抛物线与 x 轴的一个交点 P(2,0),对称轴是 x=1, ∴抛物线与 x 轴的另一个交点为(0,0), ∴x1=0,x2=2, ∴所求的解析式为 y=a(x-0)(x-2), 又∵顶点为(1,-3),∴-3=a×1×(1-2),∴a=3, ∴所求函数的解析式为 y=3x2-6x.
∴函数的解析式为 y=3x2-6x.
解法二:设所求函数的解析式为 y=ax2+bx+c(a≠0),
4a+2b+得 ab= =3-,6, c=0.
∴函数的解析式为 y=3x2-6x.
解法三:设所求函数的解析式为 y=a(x+h)2+k(a≠0), 则顶点坐标为(-h,k),
[分析] 本题中已知二次函数 f(x)的解析式,故可考虑用 配方法将 f(x)化成顶点式,进而确定对称轴和顶点坐标.然后 再结合对称性求 f(3)及比较 f(-12)与 f(32)的大小.

二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案第一章:二次函数的顶点式图像1.1 引入二次函数的一般形式:y = ax^2 + bx + c1.2 解释二次函数的顶点式图像:y = a(x h)^2 + k,其中(h, k)为顶点坐标1.3 探讨顶点式图像的特点:开口方向、对称轴、顶点坐标等1.4 利用顶点式图像分析二次函数的增减性、最大值或最小值等性质第二章:开口方向与a的取值2.1 分析a的取值对开口方向的影响:a > 0时,开口向上;a < 0时,开口向下2.2 利用顶点式图像观察不同开口方向的二次函数特点2.3 引导学生通过观察图像判断开口方向及a的取值范围第三章:对称轴与顶点坐标3.1 解释二次函数的对称轴公式:x = h3.2 探讨对称轴与顶点坐标的关系:对称轴经过顶点3.3 利用顶点式图像分析二次函数的对称性质3.4 引导学生通过图像找到对称轴及顶点坐标第四章:增减性与最值4.1 解释二次函数的增减性:a > 0时,函数在顶点左侧递减,在顶点右侧递增;a < 0时,函数在顶点左侧递增,在顶点右侧递减4.2 探讨最值的求法:当a > 0时,最小值为顶点的y坐标;当a < 0时,最大值为顶点的y坐标4.3 利用顶点式图像观察二次函数的最值及增减性4.4 引导学生通过图像分析二次函数的最值和增减性第五章:实际问题与二次函数的顶点式图像5.1 引入实际问题:如抛物线运动、物体的抛物线轨迹等5.2 解释实际问题中的二次函数顶点式图像与性质的应用5.3 利用顶点式图像解决实际问题,如求物体的最大高度等5.4 引导学生将实际问题与二次函数的顶点式图像和性质相结合,提高解决问题的能力第六章:二次函数图像的平移6.1 回顾一次函数图像的平移规律:上加下减,左加右减6.2 介绍二次函数图像的平移规律:上加下减,左加右减,改变顶点坐标6.3 利用顶点式图像展示二次函数图像的平移过程6.4 引导学生通过实际例子,掌握二次函数图像的平移规律第七章:二次函数图像的叠加7.1 解释二次函数图像的叠加原理:两个函数图像在同一坐标系中绘制,观察交点情况7.2 利用顶点式图像展示两个二次函数图像的叠加情况7.3 探讨二次函数图像的叠加规律:开口方向、对称轴、顶点坐标等7.4 引导学生通过实际例子,理解二次函数图像的叠加原理第八章:二次函数图像与坐标轴的交点8.1 分析二次函数图像与x轴的交点:令y = 0,解方程得到x的值8.2 分析二次函数图像与y轴的交点:令x = 0,解方程得到y的值8.3 利用顶点式图像找出二次函数图像与坐标轴的交点8.4 引导学生通过实际例子,求解二次函数图像与坐标轴的交点第九章:二次函数图像的应用9.1 引入实际应用场景:如抛物线运动、物体的抛物线轨迹等9.2 解释实际应用中二次函数图像的重要性9.3 利用顶点式图像解决实际应用问题,如求物体的最大速度等9.4 引导学生将实际应用与二次函数图像相结合,提高解决问题的能力10.2 强调二次函数图像在实际问题中的应用价值10.3 提出拓展问题,激发学生对二次函数图像与性质的深入研究兴趣10.4 引导学生进行拓展练习,巩固所学知识重点和难点解析一、二次函数的顶点式图像重点和难点解析:理解顶点式图像的开口方向、对称轴、顶点坐标等特点是教学的重点,也是学生理解的难点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
(x2,0)
第一段抛物线y 1 (x 6)2 +4,OC 4 3+6 12
将第一段抛物线向下平移2个单位, 再向右平移h个单位得到第二段抛物线。
设第二段抛物线的解析式为: y 1 (x 6) h2 4 2
12
此图象过点C(4 3+6, 0),代入求出h,从而 求出CD, 再求出BD
12
对已于求第C(一4 段3+抛6)物,线即ByC4 13 (x 6)2 +4,令y 2 球落地后会弹起,如果弹起后12的抛物线与原来的抛物线
解方形运状动程相员或同乙E,要F最抢= 大到x1高第度二x减个2 少落 到点原Db,2来他a最应(4大再a取c高向2度前的跑6 一多 半5少)。米?
2E
(x1,0)
2
1.二次函数的一些性质。 2.二次函数的实践应用。
1.本节课主要的数学思想:
(1)函数思想 (2)数形结合思想 (3)方程思想 (4)平移变换思想
2.主要方法: 待定系数法
布置作业: 课时作业P31-32
9 设篮球高度能达到篮圈中心3米高,
令y 1 x 42 4=3,
9 解之,得x1=(1 不合题意,舍去),x2 =7
即篮球与小明的水平距离没有达到8米,此球不能投中。
y
4
3
0,
20 9
O
(4,4) 4
(8,3)
8,
20 9
8
x
y
(4,4) (5,4)
4
3
0,
20 9
A(7,3)
平Leabharlann 平移移y = ax2 + k
y = a(x – h )2
上下平移
左右平移
y = ax2
(上加下减,左加右减)
知识回顾 用待定系数法求二次函数的解析式
常见类型
1、一般式:y ax2本节b重x 点 c
运用
2、顶点式:y a(x h)2 k
3、交点式:y a(x x1)(x x2 )
知识回顾
抛物线y ax2 bx (c a 0)与x轴交于两点A(x1,0)、 B(x2,0),用含a、b、c的式子表示的AB距离。
简析: AB= x1-x2 = (x1-x2)2 = (x1+x2)2 4x1x2
( b )2 4 c b2 4ac b2 4ac
a
a
a2
a
条件:小明球出手时离地面高 20 米,

B(8,3)
O
45
8
x
用抛物线知识解决一些实际问题的一般步骤:
建立直角坐标系(有则不画) 二次函数的图象和性质 问题求解 找出实际问题的答案
如图,点O处有一足球守门员,他在离地面1 米的点A处开出一高球飞出,球的路线是抛物线。 运动员乙距O点6米的B处发现球在自己头顶正上方 达到最高点M,距地面约4米高。
9
小明与篮圈中心的水平距离为8米,
球出手后水平距离为4米时最高4米, 篮圈中心距离地面3米。
出手高度要增加 解这:段如抛图物,线建的立顶平3点面为直2(角04坐,标47系)米,,
设其对应的函数解析9式为:3
解之,得a 1 9
y 1 x 42 4 (0≤x≤8)
y a x 4 2 4 (0≤x≤8)
抛物线经过点
0,20 9
9
当x 8时,y 20 9
此球没有达到篮圈中心距离地面3
20 a0 42 4
米的高度,不能投中。
9
条件:小明球出手时离地面高 20 米,
9
小明与篮圈中心的水平距离为8米,
球出手后水平距离为4米时最高4米,
篮圈中心距离地面3米。
问题小:明此球向能前否平投中移?1米 解法二:前面可解法投相中同,得y 1 x 42 (4 0≤x≤8)
知识回顾 二次函数的对称轴与顶点:
二次函数 对称轴
y=a(x-h)2+k ( a≠ 0)
x=h
顶点坐标 (h , k)
y=ax2+bx+c
( a≠ 0)
x b 2a
b 2a
,
4ac 4a
b2
知识回顾
各种形式的二次函数( a≠ 0)的图象 (平移)关系
y = a( x – h )2 + k




求足球落地点C 距守门员地点O大约多远?
(取4 3 7)
简析:易求抛物线解析式为y 1 (x 6)2 +4 12
令y 0,解方程得x 4 3 6 1(3 负值舍去)
即OC 13米
简已析求:第C一D的次落长地即前E抛F的物线长解,析求式出为Ey、 F的1 (横x 坐6)2标+4即可
相关文档
最新文档