金华市二中2019-2020学年上学期高二数学12月月考试题含解析
金华市第二中学2019-2020学年上学期高二数学12月月考试题含解析
金华市第二中学2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}2. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1 C .a <﹣1D .a >﹣13. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )4. 已知双曲线和离心率为4sin π的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26D .275. 是首项,公差的等差数列,如果,则序号等于( )A .667B .668C .669D .670 6. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x7. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2-8. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=9. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .10.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前10项和为( ) A .89 B .76C .77D .3511.如果(m ∈R ,i 表示虚数单位),那么m=( )A .1B .﹣1C .2D .012.若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )A .B .C .D .二、填空题13.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .14.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .。
2019-2020学年上学期高二数学12月月考试题含解析(1134)
马鞍山市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知表示数列的前项和,若对任意的满足,且,则( )A .B .C .D .2. 已知点P (1,﹣),则它的极坐标是( )A .B .C .D .3. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 34. 已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38B .20C .10D .95. 设集合M={x|x 2+3x+2<0},集合,则M ∪N=( )A .{x|x ≥﹣2}B .{x|x >﹣1}C .{x|x <﹣1}D .{x|x ≤﹣2}6. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自然数为( )A .11B .12C .13D .147. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧8. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016B .[]0,2015C .(]1,2016D .[]1,20179. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定10.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( )A .1个B .2个C .3个D .4个11.已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .12.数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .5二、填空题13.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .14.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .15.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xxe xf e (其中为自然对数的底数)的解集为 .16.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .17.设函数f (x )=,则f (f (﹣2))的值为 .18.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.三、解答题19.已知数列{a n }的前n 项和为S n ,且S n =a n ﹣,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y+2=0上.(1)求数列{a n },{b n }的通项a n 和b n ;(2)设c n=a n•b n,求数列{c n}的前n项和T n.20.在中,、、是角、、所对的边,是该三角形的面积,且(1)求的大小;(2)若,,求的值。
2019-2020年高二上学期第三次月考数学试卷(理科) 含解析
2019-2020年高二上学期第三次月考数学试卷(理科)含解析一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(﹣1,3)且与直线2x+y+3=0垂直的直线方程为()A.x﹣2y+7=0 B.2x﹣y+5=0 C.x﹣2y﹣5=0 D.2x+y﹣5=02.双曲线﹣=1的焦点到其渐近线距离为()A.1 B. C. D.23.下列说法不正确的是()A.若“p且q”为假,则p,q至少有一个是假命题B.命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0”C.当a<0时,幂函数y=x a在(0,+∞)上单调递减D.“φ=”是“y=sin(2x+φ)为偶函数”的充要条件4.在空间四边形OABC中,,,,点M在线段OA上,且OM=2MA,N为BC的中点,则等于()A.﹣+B.﹣++C. D.5.下列命题中正确命题的个数是()①过空间任意一点有且仅有一个平面与已知平面垂直;②过空间任意一条直线有且仅有一个平面与已知平面垂直;③过空间任意一点有且仅有一个平面与已知的两条异面直线平行;④过空间任意一点有且仅有一条直线与已知平面垂直.A.1 B.2 C.3 D.46.P为抛物线y2=﹣4x上一点,A(0,1),则P到此抛物线的准线的距离与P 到点A的距离之和的最小值为()A. B. C. D.7.某几何体的三视图如图所示,则该几何体的体积是()A.2π+B.4π+C.4π+4 D.2π+48.已知圆C:x2+y2=12,直线l:4x+3y=25,圆C上任意一点A到直线l的距离小于2的概率为()A. B. C. D.9.正四棱锥S﹣ABCD中,O为顶点在底面上的射影,P为侧棱SB的中点,且SO=OD,则直线BC与AP所成的角的余弦值为()A. B. C. D.10.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.11.如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是()A.B.C.D.12.已知点P为椭圆+=1上的动点,EF为圆N:x2+(y﹣1)2=1的任一直径,求最大值和最小值是()A.16,12﹣4 B.17,13﹣4 C.19,12﹣4 D.20,13﹣4二、填空题(每小题5分,共20分,把答案填在答题卡的相应位置.)13.长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,则这个球的表面积为.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=.15.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为.16.圆x2+y2=9的切线MT过双曲线﹣=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|﹣|PT|=.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知命题p:“+=1是焦点在x轴上的椭圆的标准方程”,命题q:∃x1∈R,8x12﹣8mx1+7m﹣6=0.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.18.如图,在四棱锥O﹣ABCD中,底面ABCD是边长为1的菱形,∠ABC=,OA ⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(1)证明:直线MN∥平面OCD.(2)求三棱锥N﹣CDM的体积.19.已知抛物线x2=4y的焦点为F,P为该抛物线上的一个动点.(1)当|PF|=2时,求点P的坐标;(2)过F且斜率为1的直线与抛物线交与两点AB,若P在弧AB上,求△PAB 面积的最大值.20.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.21.如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.(1)证明:BE⊥CD′;(2)求二面角D′﹣BC﹣E的余弦值.22.已知椭圆G的中心是原点O,对称轴是坐标轴,抛物线的焦点是G的一个焦点,且离心率.(Ⅰ)求椭圆G的方程;(Ⅱ)已知圆M的方程是x2+y2=R2(1<R<2),设直线l与圆M和椭圆G都相切,且切点分别为A,B.求当R为何值时,|AB|取得最大值?并求出最大值.xx重庆市杨家坪中学高二(上)第三次月考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(﹣1,3)且与直线2x+y+3=0垂直的直线方程为()A.x﹣2y+7=0 B.2x﹣y+5=0 C.x﹣2y﹣5=0 D.2x+y﹣5=0【考点】待定系数法求直线方程.【分析】过点(m,n)且与直线Ax+By+C=0垂直的直线方程为B(x﹣m)﹣A (y﹣n)=0,代入可得答案.【解答】解:过点(﹣1,3)且与直线2x+y+3=0垂直的直线方程为(x+1)﹣2(y﹣3)=0,即x﹣2y+7=0,故选:A.2.双曲线﹣=1的焦点到其渐近线距离为()A.1 B. C. D.2【考点】双曲线的简单性质.【分析】由双曲线方程求出焦点坐标及一条渐近线方程,在由点到直线的距离公式求得答案.【解答】解:由双曲线﹣=1,得a2=2,b2=3,c2=a2+b2=5,∴双曲线的右焦点F(,0),一条渐近线方程为y=x=x,即2y﹣x=0.由点到直线的距离公式得,焦点到其渐近线的距离d==.故选C.3.下列说法不正确的是()A.若“p且q”为假,则p,q至少有一个是假命题B.命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0”C.当a<0时,幂函数y=x a在(0,+∞)上单调递减D.“φ=”是“y=sin(2x+φ)为偶函数”的充要条件【考点】特称命题.【分析】A根据复合命题的真假性,即可判断命题是否正确;B根据特称命题的否定是全称命,写出它的全称命题即可;C根据幂函数的图象与性质即可得出正确的结论;D说明充分性与必要性是否成立即可.【解答】解:对于A,当“p且q”为假时,p、q至少有一个是假命题,是正确的;对于B,命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0”,是正确的;对于C,a<0时,幂函数y=x a在(0,+∞)上是减函数,命题正确;对于D,φ=时,y=sin(2x+φ)=cos2x是偶函数,充分性成立,y=sin(2x+φ)为偶函数时,φ=kπ+,k∈Z,必要性不成立;∴是充分不必要条件,命题错误.故选:D.4.在空间四边形OABC中,,,,点M在线段OA上,且OM=2MA,N为BC的中点,则等于()A.﹣+B.﹣++C. D.【考点】向量加减混合运算及其几何意义.【分析】由题意结合图形,直接利用,求出,然后即可解答.【解答】解:因为空间四边形OABC如图,,,,点M在线段OA上,且OM=2MA,N为BC的中点,所以=.所以=.故选B.5.下列命题中正确命题的个数是()①过空间任意一点有且仅有一个平面与已知平面垂直;②过空间任意一条直线有且仅有一个平面与已知平面垂直;③过空间任意一点有且仅有一个平面与已知的两条异面直线平行;④过空间任意一点有且仅有一条直线与已知平面垂直.A.1 B.2 C.3 D.4【考点】平面的基本性质及推论.【分析】为了对各个选项进行甄别,不必每个选项分别构造一个图形,只须考查正方体中的线面即可.【解答】解:考察正方体中互相垂直的线和平面.对于①:过空间任意一点不是有且仅有一个平面与已知平面垂直;如图中平面A1D和平面A1B与平面AC垂直;故错;对于②:过空间任意一条直线有且仅有一个平面与已知平面垂直;这是正确的,如图中,已知平面A1D和平面A1B与平面AC垂直;故正确;对于③:过空间任意一点不是有且仅有一个平面与已知的两条异面直线平行;如图中:过C1的与A1B1与AD都平行的平面就不存在;故错;对于④:过空间任意一点有且仅有一条直线与已知平面垂直是正确的.故选B.6.P为抛物线y2=﹣4x上一点,A(0,1),则P到此抛物线的准线的距离与P 到点A的距离之和的最小值为()A. B. C. D.【考点】抛物线的简单性质.【分析】通过抛物线方程可知焦点F(﹣1,0),利用两点间距离公式可知|AF|=,通过抛物线定义可知点P到准线的距离d与|PF|相等,P到此抛物线的准线的距离与P到点A的距离之和的最小值.【解答】解:∵抛物线方程为y2=﹣4x,∴焦点F(﹣1,0),又∵A(0,1),∴|AF|==,由抛物线定义可知点P到准线的距离d与|PF|相等,∴d+|PA|=|PF|+|PA|≥|AF|=,故选:D.7.某几何体的三视图如图所示,则该几何体的体积是()A.2π+B.4π+C.4π+4 D.2π+4【考点】由三视图求面积、体积.【分析】由题意,几何体的直观图是三棱锥与圆柱的的组合体,三棱锥的底面是直角边长为2的等腰三角形,高为2,圆柱的底面半径是2,高为2,即可求出几何体的体积.【解答】解:由题意,几何体的直观图是三棱锥与圆柱的的组合体,三棱锥的底面是直角边长为2的等腰三角形,高为2,圆柱的底面半径是2,高为2,所以体积为+=2π+,故选:A.8.已知圆C:x2+y2=12,直线l:4x+3y=25,圆C上任意一点A到直线l的距离小于2的概率为()A. B. C. D.【考点】几何概型.【分析】试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,根据题意做出符合条件的弧长对应的圆心角是60°,根据几何概型概率公式得到结果.【解答】解:由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,∵圆心到直线的距离是=5,∴在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P==故选A.9.正四棱锥S﹣ABCD中,O为顶点在底面上的射影,P为侧棱SB的中点,且SO=OD,则直线BC与AP所成的角的余弦值为()A. B. C. D.【考点】异面直线及其所成的角.【分析】以O为原点建立空间直角坐标系O﹣xyz,利用向量法能求出直线BC与AP所成的角的余弦值.【解答】如图所示,以O为原点建立空间直角坐标系O﹣xyz.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),S(0,0,a),C(﹣a,0,0),P(0,,).则=(﹣a,﹣a,0),=(﹣a,,),C=(a,a,0).设直线BC与AP所成的角为θ,则cosθ===.∴直线BC与AP所成的角的余弦值为.故选:C.10.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.【考点】椭圆的简单性质.【分析】求出A的对称点的坐标,然后求解椭圆长轴长的最小值,然后求解离心率即可.【解答】解:A(﹣1,0)关于直线l:y=x+3的对称点为A′(﹣3,2),连接A′B 交直线l于点P,则椭圆C的长轴长的最小值为|A′B|=2,所以椭圆C的离心率的最大值为:==.故选:A.11.如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是()A.B.C.D.【考点】棱柱的结构特征;函数的图象与图象变化.【分析】球面与正方体的表面都相交,我们考虑三个特殊情形:①当x=1;②当x=;③当x=.其中①③两种情形所得弧长相等且为函数f(x)的最大值,根据图形的相似,②中弧长为①中弧长的一半.对照选项,即可得出答案.【解答】解:如图,球面与正方体的表面都相交,根据选项的特点,我们考虑三个特殊情形:①当x=1;②当x=;③当x=.①当x=1时,以A为球心,1为半径作一个球,该球面与正方体表面的交线分别是图中的红色的弧线,其弧长为:3××2π×1=,且为函数f(x)的最大值;②当x=时,以A为球心,为半径作一个球,该球面与正方体表面的交线分别是图中的兰色的弧线,根据图形的相似,其弧长为①中弧长的一半;③当x=.以A为球心,为半径作一个球,该球面与正方体表面的交线分别是图中的粉红色的弧线,其弧长为:3××2π×1=,且为函数f(x)的最大值;对照选项,B正确.故选B.12.已知点P为椭圆+=1上的动点,EF为圆N:x2+(y﹣1)2=1的任一直径,求最大值和最小值是()A.16,12﹣4 B.17,13﹣4 C.19,12﹣4 D.20,13﹣4【考点】椭圆的简单性质.【分析】根据题意,得|NE|=|NF|=1且,由此化简得=﹣1,根据椭圆方程与两点的距离公式,求出当P的纵坐标为﹣3时,取得最大值20,由此即得=﹣1的最大值,当P的纵坐标为时,取得最小值,由此即得=﹣1的最小值.【解答】解:∵EF为圆N的直径,∴|NE|=|NF|=1,且,则=(+)•(+)=(+)•()==﹣1,设P(x0,y0),则有即x02=16﹣y02又N(0,1),∴=,而y0∈[﹣2,2],∴当y0=﹣3时,取得最大值20,则=﹣1=20﹣1=19,当y0=时,取得最小值,则=﹣1=﹣1=.∴最大值和最小值是:19,.故选:C.二、填空题(每小题5分,共20分,把答案填在答题卡的相应位置.)13.长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,则这个球的表面积为50π.【考点】球内接多面体.【分析】设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.【解答】解:设球的半径为R,由题意,球的直径即为长方体的体对角线的长,则(2R)2=32+42+52=50,∴R=.R2=50π.∴S球=4π×故答案为:50π.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=﹣7.【考点】直线的一般式方程与直线的平行关系.【分析】根据两直线平行的条件可知,(3+a)(5+a)﹣4×2=0,且5﹣3a≠8.进而可求出a的值.【解答】解:直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则(3+a)(5+a)﹣4×2=0,即a2+8a+7=0.解得,a=﹣1或a=﹣7.又∵5﹣3a≠8,∴a≠﹣1.∴a=﹣7.故答案为:﹣7.15.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为.【考点】直线与平面所成的角.【分析】取AD中点E,连结CE,过B作BO⊥CE,交CE于点O,则∠BCO就是线BC与平面ACD所成角,由此能求出结果.【解答】解:如图,取AD中点E,连结CE,过B作BO⊥CE,交CE于点O,则∠BCO就是线BC与平面ACD所成角,设正四面体ABCD的棱长为2,则CO===,∴cos∠BCO==,∴sin∠BCO==.故答案为:.16.圆x2+y2=9的切线MT过双曲线﹣=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|﹣|PT|=2﹣3.【考点】圆与圆锥曲线的综合;双曲线的简单性质.【分析】由双曲线方程,求得c=,根据三角形中位线定理和圆的切线的性质,可知|PO|=|PF′|,|PT|=|MF|﹣|FT|,并结合双曲线的定义可得|PO|﹣|PT|=|FT|﹣(|PF|﹣|PF′|)=2﹣3.【解答】解:设双曲线的右焦点为F′,则PO是△PFF′的中位线,∴|PO|=|PF′|,|PT|=|MF|﹣|FT|,根据双曲线的方程得:a=3,b=2,c=,∴|OF|=,∵MF是圆x2+y2=9的切线,|OT|=3,∴Rt△OTF中,|FT|==2,∴|PO|﹣|PT|=|PF′|﹣(|MF|﹣|FT|)=|FT|﹣(|PF|﹣|PF′|)=2﹣3,故答案为:2﹣3.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知命题p:“+=1是焦点在x轴上的椭圆的标准方程”,命题q:∃x1∈R,8x12﹣8mx1+7m﹣6=0.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.【考点】命题的真假判断与应用;复合命题的真假.【分析】若p∨q为真命题,p∧q为假命题,则p,q一真一假,进而可得实数m的取值范围.【解答】解:如果p为真命题,则有,即1<m<2;若果q为真命题,则64m2﹣32(7m﹣6)≥0,解得m≤或m≥2.因为p∨q为真命题,p∧q为假命题,所以p和q一真一假,若p真q假,则<m<2,若p假q真,则m≤1或m≥2.所以实数m的取值范围为(∞,1]∪(,+∞).18.如图,在四棱锥O ﹣ABCD 中,底面ABCD 是边长为1的菱形,∠ABC=,OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点.(1)证明:直线MN ∥平面OCD .(2)求三棱锥N ﹣CDM 的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)取AD 中点E ,连结ME ,NE ,推导出平面MNE ∥平面CDO ,由此能证明直线MN ∥平面OCD .(2)三棱锥N ﹣CDM 的体积V N ﹣CDM =V M ﹣CDN ,由此能求出结果.【解答】证明:(1)取AD 中点E ,连结ME ,NE ,∵M 为OA 的中点,N 为BC 的中点,∴ME ∥OD ,NE ∥CD ,∵ME ∩NE=E ,OD ∩CD=D ,ME ,NE ⊂平面MNE ,OD ,CD ⊂平面CDO , ∴平面MNE ∥平面CDO ,∵MN ⊂平面MNE ,∴直线MN ∥平面OCD .解:(2)∵OA ⊥底面ABCD ,OA=2,M 为OA 的中点,∴AM ⊥平面CDN ,且AM=1,∵底面ABCD 是边长为1的菱形,∠ABC=,∴=,∴三棱锥N ﹣CDM 的体积V N ﹣CDM =V M ﹣CDN ===.19.已知抛物线x2=4y的焦点为F,P为该抛物线上的一个动点.(1)当|PF|=2时,求点P的坐标;(2)过F且斜率为1的直线与抛物线交与两点AB,若P在弧AB上,求△PAB 面积的最大值.【考点】抛物线的简单性质.【分析】(1)当|PF|=2时,利用抛物线的定义,即可求点P的坐标;(2)先求出|AB|,再计算抛物线上点到直线的最大距离,即可求出△PAB的面积的最大值.【解答】解:(1)设P(x,y),则y+1=2,∴y=1,∴x=±2,∴P(±2,1);(2)过F的直线方程为y=x+1,代入抛物线方程,可得y2﹣6y+1=0,可得A(2﹣2,3﹣2),B(2+2,3+2),∴|AB|=•|2+2﹣2+2|=8.平行于直线l:x﹣y+1=0的直线设为x﹣y+c=0,与抛物线C:x2=4y联立,可得x2﹣4x﹣4c=0,∴△=16+16c=0,∴c=﹣1,两条平行线间的距离为=,∴△PAB的面积的最大值为=4.20.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.【考点】直线与圆相交的性质.【分析】(1)分类讨论,利用待定系数法给出切线方程,然后再利用圆心到切线的距离等于半径列方程求系数即可;(2)可先利用PM(PM可用P点到圆心的距离与半径来表示)=PO,求出P点的轨迹(求出后是一条直线),然后再将求PM的最小值转化为求直线上的点到原点的距离PO之最小值.【解答】解:(1)将圆C配方得(x+1)2+(y﹣2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得=,即k=2±,从而切线方程为y=(2±)x.…②当直线在两坐标轴上的截距不为零时,设直线方程为x+y﹣a=0,由直线与圆相切得x+y+1=0,或x+y﹣3=0.∴所求切线的方程为y=(2±)xx+y+1=0或x+y﹣3=0.…(2)由|PO|=|PM|得,x12+y12=(x1+1)2+(y1﹣2)2﹣2⇒2x1﹣4y1+3=0..…即点P在直线l:2x﹣4y+3=0上,|PM|取最小值时即|OP|取得最小值,直线OP⊥l,∴直线OP的方程为2x+y=0.…解方程组得P点坐标为(﹣,).…21.如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.(1)证明:BE⊥CD′;(2)求二面角D′﹣BC﹣E的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(1)由已知得BE⊥EC.从而BE⊥面D'EC,由此能证明BE⊥CD'.(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,则∠D'FM是二面角D'﹣BC﹣E的平面角.由此能求出二面角D'﹣BC﹣E的余弦值.法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z 轴,建立空间直角坐标系.利用向量法能求出二面角D'﹣BC﹣E的余弦值.【解答】证明:(1)∵AD=2,AB=1,E是AD的中点,∴△BAE,△CDE是等腰直角三角形,∵AB=AE=DE=CD,∠BAE=∠CDE=90°,∴∠BEC=90°,∴BE⊥EC.又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC,∴BE⊥面D'EC,又CD'⊂面D'EC,∴BE⊥CD'.…解:(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,连接D'M,D'F,则D'M⊥EC,∵平面D'EC⊥平面BEC,∴D'M⊥平面BEC,∴D'M⊥BC,∴BC⊥平面D′MF,∴D'F⊥BC,∴∠D'FM是二面角D'﹣BC﹣E的平面角.在Rt△D'MF中,D'M=,,∴,∴二面角D'﹣BC﹣E的余弦值为.…法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z 轴,建立如图空间直角坐标系.则,,,.设平面BEC的法向量为,平面D'BC的法向量为,则,取x2=1,得=(1,1,1),cos<>==,∴二面角D'﹣BC﹣E的余弦值为.…22.已知椭圆G的中心是原点O,对称轴是坐标轴,抛物线的焦点是G的一个焦点,且离心率.(Ⅰ)求椭圆G的方程;(Ⅱ)已知圆M的方程是x2+y2=R2(1<R<2),设直线l与圆M和椭圆G都相切,且切点分别为A,B.求当R为何值时,|AB|取得最大值?并求出最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I)依题意可设椭圆G的方程,利用抛物线的焦点是G的一个焦点,且离心率,求得几何量,即可求椭圆G的方程;(II)直线方程与椭圆方程联立,利用直线与圆、椭圆相切,确定参数之间的关系,表示出|AB|,利用基本不等式,可求|AB|最大值.【解答】解:(I)依题意可设椭圆G的方程为,则因为抛物线的焦点坐标为,所以,又因为,所以,所以,故椭圆G的方程为.…(II)由题意知直线l的斜率存在,所以可设直线l:y=kx+m,即kx﹣y+m=0∵直线l和圆M相切,∴,即m2=R2(k2+1)①联立方程组消去y整理可得(1+4k2)x2+8kmx+4m2﹣4=0,∵直线l和椭圆G相切,∴△=64k2m2﹣4(1+4k2)(4m2﹣4)=0,即m2=4k2+1②由①②可得设点B的坐标为(x0,y0),则有,,所以,所以等号仅当,即取得故当时,|AB|取得最大值,最大值为1.…xx2月7日。
2019-2020学年上学期高二数学12月月考试题含解析(1200)
南岸区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( ) A .1 B .0C .﹣1D .0或﹣12. 求值: =( )A .tan 38°B .C .D .﹣3. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .44. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A .11?B .12?C .13?D .14?5. 已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( ) A .{5,8}B .{4,5,6,7,8}C .{3,4,5,6,7,8}D .{4,5,6,7,8}6. 已知变量x 与y 负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )A . =﹣0.2x+3.3B . =0.4x+1.5C . =2x ﹣3.2D . =﹣2x+8.67. 在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .218. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.9. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )A .B .C .D .10.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?11.等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .7212.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .二、填空题13.若log 2(2m ﹣3)=0,则e lnm ﹣1= .14.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .15.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为.16.设函数f(x)=则函数y=f(x)与y=的交点个数是.17.设p:实数x满足不等式x2﹣4ax+3a2<0(a<0),q:实数x满足不等式x2﹣x﹣6≤0,已知¬p是¬q的必要非充分条件,则实数a的取值范围是.18.(sinx+1)dx的值为.三、解答题19.已知直线l:x﹣y+9=0,椭圆E:+=1,(1)过点M(,)且被M点平分的弦所在直线的方程;(2)P是椭圆E上的一点,F1、F2是椭圆E的两个焦点,当P在何位置时,∠F1PF2最大,并说明理由;(3)求与椭圆E有公共焦点,与直线l有公共点,且长轴长最小的椭圆方程.20.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.21.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?22.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.23.已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围.24.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.南岸区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:∵(a ﹣i )•2i=2ai+2为正实数, ∴2a=0, 解得a=0. 故选:B .【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.2. 【答案】C【解析】解: =tan (49°+11°)=tan60°=,故选:C .【点评】本题主要考查两角和的正切公式的应用,属于基础题.3. 【答案】 【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +bm +14-n =k (-2-m )+b-1-m,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 4. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12,则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5. 【答案】C【解析】解:∵A={4,5,6,8},B={3,5,7,8}, ∴A ∪B={3,4,5,6,7,8}. 故选C6. 【答案】A【解析】解:变量x 与y 负相关,排除选项B ,C ; 回归直线方程经过样本中心,把=3, =2.7,代入A 成立,代入D 不成立.故选:A .7. 【答案】B【解析】解:∵a=1,b=4,C=60°,∴由余弦定理可得:c===.故选:B .8. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .9.【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A.【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.10.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.11.【答案】D【解析】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.12.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A.【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.二、填空题13.【答案】.【解析】解:∵log2(2m﹣3)=0,∴2m﹣3=1,解得m=2,∴e lnm﹣1=e ln2÷e=.故答案为:.【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用.14.【答案】4.【解析】解:由题意,设P(4cosθ,2sinθ)则P到直线的距离为d==,当sin(θ﹣)=1时,d取得最大值为4,故答案为:4.15.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.16.【答案】4.【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4.故答案为:4.17.【答案】.【解析】解:∵x2﹣4ax+3a2<0(a<0),∴(x﹣a)(x﹣3a)<0,则3a<x<a,(a<0),由x2﹣x﹣6≤0得﹣2≤x≤3,∵¬p是¬q的必要非充分条件,∴q是p的必要非充分条件,即,即≤a<0,故答案为:18.【答案】2.【解析】解:所求的值为(x﹣cosx)|﹣11=(1﹣cos1)﹣(﹣1﹣cos(﹣1))=2﹣cos1+cos1=2.故答案为:2.三、解答题19.【答案】【解析】解:(1)设以点M(,)为中点的弦的端点为A(x1,y1),B(x2,y2),∴x1+x2=1,y1+y2=1,把A(x1,y1),B(x2,y2)代入椭圆E:+=1,得,∴k AB==﹣=﹣,∴直线AB的方程为y﹣=﹣(x﹣),即2x+8y﹣5=0.(2)设|PF1|=r1,|PF2|=r1,则cos∠F1PF2==﹣1=﹣1=﹣1,又r1r2≤()2=a2(当且仅当r1=r2时取等号)∴当r1=r2=a,即P(0,)时,cos∠F1PF2最小,又∠F1PF2∈(0,π),∴当P为短轴端点时,∠F1PF2最大.(3)∵=12,=3,∴=9.则由题意,设所求的椭圆方程为+=1(a2>9),将y=x+9代入上述椭圆方程,消去y,得(2a2﹣9)x2+18a2x+90a2﹣a4=0,依题意△=(18a2)2﹣4(2a2﹣9)(90a2﹣a4)≥0,化简得(a2﹣45)(a2﹣9)≥0,∵a2﹣9>0,∴a2≥45,故所求的椭圆方程为=1.【点评】本题考查直线方程、椭圆方程的求法,考查当P在何位置时,∠F1PF2最大的判断与求法,是中档题,解题时要认真审题,注意根的判别式、余弦定理、椭圆性质的合理运用.20.【答案】【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.21.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f (x )=﹣3x 2+40x ,∴f (x )=﹣3x 2+40x (x ∈N*且x ≤12).该商场预计销售该商品的月利润为g (x )=(﹣3x 2+40x )(185﹣150﹣2x )=6x 3﹣185x 2+1400x ,(x ∈N*且x ≤12), 令h (x )=6x 3﹣185x 2+1400x (1≤x ≤12),h'(x )=18x 2﹣370x+1400,令h'(x )=0,解得(舍去).>0;当5<x ≤12时,h'(x )<0.∴当x=5时,h (x )取最大值h (5)=3125.max =g (5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.22.【答案】【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,∴所求概率为2244225516125C C P C C =-⋅=(6分)(Ⅱ)0,1,2,ξ= 23253(0)10C P C ξ===,1123253(1)5C C P C ξ⋅===,22251(2)10C P C ξ===,(9分)故的分布列为:(10分)∴3314012105105E ξ=⨯+⨯+⨯= (12分) 23.【答案】【解析】解:(I )∵椭圆的左焦点为F ,离心率为,过点M (0,1)且与x 轴平行的直线被椭圆G 截得的线段长为.∴点在椭圆G 上,又离心率为,∴,解得∴椭圆G的方程为.(II)由(I)可知,椭圆G的方程为.∴点F的坐标为(﹣1,0).设点P的坐标为(x0,y0)(x0≠﹣1,x0≠0),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得.又由已知,得,解得或﹣1<x0<0.设直线OP的斜率为m,则直线OP的方程为y=mx.由方程组消去y0,并整理得.由﹣1<x0<0,得m2>,∵x0<0,y0>0,∴m<0,∴m∈(﹣∞,﹣),由﹣<x0<﹣1,得,∵x0<0,y0>0,得m<0,∴﹣<m<﹣.∴直线OP(O是坐标原点)的斜率的取值范围是(﹣∞,﹣)∪(﹣,﹣).【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用.24.【答案】【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设T r+1为常数项,则:T r+1=C9r=C9r2r,由﹣r=0,得r=3,∴常数项为:C9323=672;(2)令x=1,得(1+2)9=39.【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题.。
金华市高中2018-2019学年上学期高二数学12月月考试题含解析
金华市高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 半径R 的半圆卷成一个圆锥,则它的体积为( )A .πR 3B .πR 3C .πR 3D .πR 32. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是()A .B .πC .D .3. 设公差不为零的等差数列的前项和为,若,则( ){}n a n n S 4232()a a a =+74S a = A .B .C .7D .1474145【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力.n 4. 下列关系正确的是( )A .1∉{0,1}B .1∈{0,1}C .1⊆{0,1}D .{1}∈{0,1}5. 独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是()A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%6. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( )A .x+y=0B .x+y=2C .x ﹣y=2D .x ﹣y=﹣27.已知幂函数y=f (x )的图象过点(,),则f (2)的值为()A .B .﹣C .2D .﹣28. A={x|x <1},B={x|x <﹣2或x >0},则A ∩B=( )A .(0,1)B .(﹣∞,﹣2)C .(﹣2,0)D .(﹣∞,﹣2)∪(0,1)9. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q2016310.年月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20350500150名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为,,,按分层抽样的方法,应从青年职工中抽取的人数为()56710A. B. C. D.【命题意图】本题主要考查分层抽样的方法的运用,属容易题.11.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A.B.C.1D.12.设偶函数f(x)在[0,+∞)单调递增,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(,1)B.(﹣∞,)∪(1,+∞)C.(﹣,)D.(﹣∞,﹣)∪(,+∞)二、填空题13.如图所示,在三棱锥C﹣ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD 所成的角是 .14.已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x g(x)(a>0,a≠1);②g(x)≠0;③f(x)g'(x)>f'(x)g(x);若,则a= .15.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .16.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 . 17.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .18.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .三、解答题19.(本题满分14分)在ABC ∆中,角,,所对的边分别为,已知cos (cos )cos 0C A A B +-=.A B C c b a ,,(1)求角B 的大小;(2)若,求b 的取值范围.2=+c a 【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.20.已知,若,求实数的值.{}{}22,1,3,3,31,1A a a B a a a =+-=--+{}3A B =- 21.已知函数f (x )=alnx+x 2+bx+1在点(1,f (1))处的切线方程为4x ﹣y ﹣12=0.(1)求函数f (x )的解析式;(2)求f (x )的单调区间和极值.22.在直角坐标系xOy 中,以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,曲线C 2的参数方程为(θ为参数).(Ⅰ)求曲线C 1的直角坐标方程与曲线C 2的普通方程;(Ⅱ)试判断曲线C 1与C 2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.23.【淮安市淮海中学2018届高三上第一次调研】已知函数.()133x x af x b+-+=+(1)当时,求满足的的取值;1a b ==()3xf x =x (2)若函数是定义在上的奇函数()f x R ①存在,不等式有解,求的取值范围;t R ∈()()2222f t t f t k -<-k ②若函数满足,若对任意,不等式恒成立,()g x ()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦x R ∈()()211g x m g x ≥⋅-求实数的最大值.m24.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.金华市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】解:2πr=πR ,所以r=,则h=,所以V=故选A 2. 【答案】C【解析】函数f (x )=sin (2x+θ)(﹣<θ<)向右平移φ个单位,得到g (x )=sin (2x+θ﹣2φ),因为两个函数都经过P (0,),所以sin θ=,又因为﹣<θ<,所以θ=,所以g (x )=sin (2x+﹣2φ),sin (﹣2φ)=,所以﹣2φ=2k π+,k ∈Z ,此时φ=k π,k ∈Z ,或﹣2φ=2k π+,k ∈Z ,此时φ=k π﹣,k ∈Z ,故选:C .【点评】本题考查的知识点是函数y=Asin (ωx+φ)的图象变换,三角函数求值,难度中档 3. 【答案】C.【解析】根据等差数列的性质,,化简得,∴4231112()32(2)a a a a d a d a d =+⇒+=+++1a d =-,故选C.1741767142732a dS d a a d d⋅+===+4. 【答案】B【解析】解:由于1∈{0,1},{1}⊆{0,1},故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.5.【答案】C【解析】解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C.【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.6.【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,∴•k=﹣1且=k•+b,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D.7.【答案】A【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A.8.【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A∩B=(﹣∞,﹣2)∪(0,1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.9.【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.10.【答案】C11.【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.12.【答案】A【解析】解:因为f(x)为偶函数,所以f(x)>f(2x﹣1)可化为f(|x|)>f(|2x﹣1|)又f(x)在区间[0,+∞)上单调递增,所以|x|>|2x﹣1|,即(2x﹣1)2<x2,解得<x<1,所以x的取值范围是(,1),故选:A.二、填空题13.【答案】 30° .【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,故∠GEF即为EF与CD所成的角.又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.14.【答案】 .【解析】解:由得,所以.又由f(x)g'(x)>f'(x)g(x),即f(x)g'(x)﹣f'(x)g(x)>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.15.【答案】 2016 .【解析】解:∵f(x)=f(2﹣x),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.16.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).17.【答案】 4 .【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y 为y=2x+z ,由图可知,当直线y=2x+z 过点A (﹣2,0)时,直线y=2x+z 在y 轴上的截距最大,即z 最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.18.【答案】 .【解析】解:由于角A 为锐角,∴且不共线,∴6+3m >0且2m ≠9,解得m >﹣2且m .∴实数m 的取值范围是.故答案为:.【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.三、解答题19.【答案】(1);(2).3B π=[1,2)【解析】20.【答案】.23a =-【解析】考点:集合的运算.21.【答案】【解析】解:(1)求导f ′(x )=+2x+b ,由题意得:f ′(1)=4,f (1)=﹣8,则,解得,所以f (x )=12lnx+x 2﹣10x+1;(2)f (x )定义域为(0,+∞),f ′(x )=,令f ′(x )>0,解得:x <2或x >3,所以f (x )在(0,2)递增,在(2,3)递减,在(3,+∞)递增,故f (x )极大值=f (2)=12ln2﹣15,f (x )极小值=f (3)=12ln3﹣20.22.【答案】【解析】解:(Ⅰ)由曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,可得它的直角坐标方程为x+y=1,根据曲线C 2的参数方程为(θ为参数),可得它的普通方程为+y 2=1.(Ⅱ)把曲线C 1与C 2是联立方程组,化简可得 5x 2﹣8x=0,显然△=64>0,故曲线C 1与C 2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.23.【答案】(1)(2)①,②61x =-()1,-+∞【解析】试题解析:(1)由题意,,化简得131331x x x +-+=+()2332310x x ⋅+⋅-=解得,()13133x x =-=舍或所以1x =-(2)因为是奇函数,所以,所以()f x ()()0f x f x -+=1133033x x x x a a b b-++-+-++=++化简并变形得:()()333260x x a b ab --++-=要使上式对任意的成立,则x 30260a b ab -=-=且解得:,因为的定义域是,所以舍去11{{ 33a a b b ==-==-或()f x R 1{ 3a b =-=-所以,所以1,3a b ==()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意有:1212,,x x R x x ∈<()()()()211212121222333313133131x x x x x x f x f x ⎛⎫-⎛⎫ ⎪-=-= ⎪ ⎪++++⎝⎭⎝⎭因为,所以,所以,12x x <21330x x ->()()12f x f x >因此在R 上递减.()f x 因为,所以,()()2222f t t f t k -<-2222t t t k ->-即在时有解220t t k +-<所以,解得:,440t ∆=+>1t >-所以的取值范围为()1,-+∞②因为,所以()()()12333x x f x g x -⎡⎤⋅+=-⎣⎦()()3323x x g x f x --=-即()33x xg x -=+所以()()222233332x x x xg x --=+=+-不等式恒成立,()()211g x m g x ≥⋅-即,()()23323311x x x x m --+-≥⋅+-即:恒成立93333x x x x m --≤+++令,则在时恒成立33,2x x t t -=+≥9m t t≤+2t ≥令,,()9h t t t =+()29'1h t t=-时,,所以在上单调递减()2,3t ∈()'0h t <()h t ()2,3时,,所以在上单调递增()3,t ∈+∞()'0h t >()h t ()3,+∞所以,所以()()min 36h t h ==6m ≤所以,实数m 的最大值为6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。
【精准解析】浙江省金华市方格外国语学校2019-2020学年高二上学期12月月考数学试题
称,故选 C. 【点睛】本小题主要考查空间点对称关系,考查理解和记忆能力,属于基础题.
2.圆 x2 y2 2 与圆 x2 y2 2x 2y 0 的位置关系是( )
A. 相交 【答案】A
B. 内切
C. 外切
D. 相离
-1-
【解析】 【分析】
计算两个圆的圆心距以及 r1 r2 , r1 r2 ,比较大小后得出正确选项.
AB CD AB BD BC AB BD AB BC
-4-
0 BA BC
BA
BC
cos45
1
.设直线
AB
与
CD
所成角为
,则
cos AB CD AB CD
1 2
2
1 2
,故
60
.所以本小题选
B.
【点睛】本小题主要考查利用空间向量的数量积,计算空间两条异面直线所成角的大小,考
【点睛】本小题主要考查充分、必要条件的判断,考查含有绝对值的不等式,属于基础题.
4.给定①②两个命题:①为“若 a b ,则 a2 b2 ”的逆否命题;②为“若 x 3 ,则
x2 x 6 0 ”的否命题,则以下判断正确的是( )
A. ①为真命题,②为真命题
B. ①为假命题,②为假命题
C. ①为真命题,②为假命题
D. ①为假命题,②为真命题
【答案】C
【解析】
【分析】
判断①原命题的真假性,得出其逆否命题的真假性.写出②的否命题,并判断真假性.由此得
出正确选项.
【详解】对于①原命题显然为真命题,故其逆否命题也为真命题.对②其否命题是“若 x 3 ,
-2-
则 x2 x 6 0 ”,由于 x 2 时, x2 x 6 0 ,故否命题是假命题.所以①为真命题,②
浙江省金华市高二上学期数学12月月考试卷
浙江省金华市高二上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019高二上·金华月考) 在空间直角坐标系中,点与点()A . 关于平面对称B . 关于平面对称C . 关于平面对称D . 关于轴对称2. (2分)若圆始终平分圆的周长, 则a、b应满足的关系式是()A .B .C .D .3. (2分) (2019高一下·上海月考) 在中,内角、、所对应的边分别为、、,则“ ”是“ 是以、为底角的等腰三角形”的().A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分也非必要条件4. (2分)给出以下命题①若则;②已知直线x=m与函数f(x)=sinx,的图象分别交于M,N两点,则的最大值为;③若A,B是△ABC的两内角,如果A>B,则sinA>sinB;④若A,B是锐角△ABC的两内角,则sinA>cosB。
其中正确的有()个A . 1B . 2C . 3D . 45. (2分) (2016高二上·绍兴期中) 已知α,β是相异两平面,m,n是相异两直线,则下列命题中不正确的是()A . 若m∥n,m⊥α,则n⊥αB . 若m⊥α,m⊥β,则α∥βC . 若m∥α,α∩β=n,则m∥nD . 若m⊥α,m⊂β,则α⊥β6. (2分)下列求导运算正确的是()A .B .C .D .7. (2分) (2016高二上·包头期中) 平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1 ,α∩平面ABCD=m,α∩平面ABA1B1=n,则m、n所成角的正弦值为()A .C .D .8. (2分) (2018高二下·中山期末) 函数在点处的切线方程是()A .B .C .D .9. (2分) (2018高二下·湛江期中) 设A、B是椭圆C:长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A .B .C .D .10. (2分) (2018高一下·百色期末) 正方体 - 中,与平面所成角的余弦值为()A .B .C .二、填空题 (共7题;共7分)11. (1分) (2015高二上·余杭期末) 已知直线ax+y+2=0与直线x﹣(3a﹣1)y﹣1=0互相垂直,则a=________12. (1分)过点的函数图象的切线斜率为________.13. (1分)(2017·山东) 由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为________.14. (1分) (2019高二上·长沙期中) 已知为坐标原点,点在抛物线:上,过点作两直线分别交抛物线于点,,若,则的值为________.15. (1分) (2017高三上·南通期末) 已知三次函数f(x)= x3+ x2+cx+d(a<b)在R上单调递增,则的最小值为________.16. (1分)(2017·青岛模拟) 已知抛物线y2=2x和圆x2+y2﹣x=0,倾斜角为的直线l经过抛物线的焦点,若直线l与抛物线和圆的交点自上而下依次为A,B,C,D,则|AB|+|CD|=________.17. (1分) (2018高二上·贺州月考) 在中,, D是边上的一点,,的面积为,则的长为________.三、解答题 (共5题;共50分)18. (10分)已知圆C:(x﹣3)2+(y﹣4)2=4.(1)若直线l1过定圆心C,且平行于直线x﹣2y+3=0,求直线l1的方程;(2)若圆D半径是3,圆心在直线l2:x+y﹣2=0上,且圆与C外切,求圆D的方程.19. (10分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC=2.(Ⅰ)若D为AA1中点,求证:平面B1CD⊥平面B1C1D;(Ⅱ)在AA1上是否存在一点D,使得二面角B1﹣CD﹣C1的大小为60°.20. (10分)(2018·杨浦模拟) 如图,在棱长为1的正方体中,点E是棱AB上的动点.(1)求证:;(2)若直线与平面所成的角是45 ,请你确定点E的位置,并证明你的结论.21. (10分) (2017高二下·濮阳期末) 过椭圆 =1的右焦点F作斜率k=﹣1的直线交椭圆于A,B 两点,且共线.(1)求椭圆的离心率;(2)当三角形AOB的面积S△AOB= 时,求椭圆的方程.22. (10分)(2017·天河模拟) 已知函数f(x)=ax2﹣(2a﹣1)x﹣lnx(a为常数,a≠0).(Ⅰ)当a<0时,求函数f(x)在区间[1,2]上的最大值;(Ⅱ)记函数f(x)图象为曲线C,设点A(x1 , y1),B(x2 , y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共50分) 18-1、18-2、20-1、20-2、21-1、21-2、。
高二12月月考(数学)试题含答案
高二12月月考(数学)(考试总分:150 分)一、单选题(本题共计8小题,总分40分)1.(5分)1.直线x﹣y+1=0的斜率为()A.B.﹣C.D.﹣2.(5分)2.已知向量=(2,3,1),=(1,2,0),则|+|等于()A.B.3C.D.93.(5分)3.如图,在三棱柱ABC﹣A1B1C1中,M为A1C1的中点,若=,=,=,则下列向量与相等的是()A.﹣﹣+B.+﹣C.﹣++D.++4.(5分)4.《周髀算经》是中国最古老的天文学和数学著作,书中提到冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为()A.6.5尺B.13.5尺C.14.5尺D.15.5尺5.(5分)5.在正方体ABCD﹣A1B1C1D1中,M、N分别为棱A1B1和BB1的中点,那么异面直线AM和CN所成角的余弦值是()A.B.C.D.﹣6.(5分)6.历时23天嫦娥五号成功携带月球样品返回地球,标志着中国航天向前迈出一大步.其中2020年11月28日晚,嫦娥五号成功进行首次近月制动,进入一个大椭圆轨道.该椭圆形轨道以月球球心为一个焦点F1,若其近月点A(离月球表面最近的点)与月球表面距离为r1公里,远月点B(离月球表面最远的点)与月球表面距离为r2公里,并且F1,A,B在同一直线上已知月球的半径为R公里,则该椭圆形轨道的离心率为()A.B.C.D.7.(5分)7.已知动点P在直线l1:3x﹣4y+1=0上运动,动点Q在直线l2:6x+my+4=0上运动,且l1∥l2,则|PQ|的最小值为()A.B.C.D.8.(5分)8.若等差数列{a n}的前n项和为S n,首项a1>0,a2020+a2021>0,a2020•a2021<0,则满足S n>0成立的最大正整数n是()A.4039B.4040C.4041D.4042二、多选题(本题共计4小题,总分20分)9.(5分)9.关于双曲线C1:=1与双曲线C2:=1,下列说法正确的是()A.它们的实轴长相等B.它们的渐近线相同C.它们的离心率相等D.它们的焦距相等10.(5分)10.已知圆C1:x2+y2=1和圆C2:x2+y2﹣4x=0的公共点为A,B,则()A.|C1C2|=2B.直线AB的方程是x=C.AC1⊥AC2D.|AB|=11.(5分)11.若数列{a n}满足a1=1,a2=1,a n=a n﹣1+a n﹣2(n≥3,n∈N+),则称数列{a n}为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用则下列结论成立的是()A.a7=13B.a1+a3+a5+……+a2019=a2020C.S7=54D.a2+a4+a6+……+a2020=a202112.(5分)12.已知正方体ABCD﹣A1B1C1D1的棱长为2,点E,F在平面A1B1C1D1内,若|AE|=,AC⊥DF,则()A.点E的轨迹是一个圆B.点F的轨迹是一个圆C.|EF|的最小值为﹣1D.AE与平面A1BD所成角的正弦值的最大值为三、填空题(本题共计3小题,总分15分)13.(5分)13.若直线x﹣y+1=0与直线mx+3y﹣1=0互相垂直,则实数m的值为.14.(5分)14.若双曲线的渐近线为,则双曲线C的离心率为.15.(5分)16.在平面直角坐标系中,O为坐标原点,过点(,0)的直线l与圆C:x2+y2﹣4x+8=0交于A,B两点,则四边形OACB面积的最大值为.四、解答题(本题共计7小题,总分75分)16.(5分)15.已知四面体ABCD的顶点分别为A(2,3,1),B(1,0,2),C(4,3,﹣1),D(0,3,﹣3),则点D到平面ABC的距离.17.(10分)17.在:①圆C与y轴相切,且与x轴正半轴相交所得弦长为2;②圆C经过点A(4,1)和B(2,3);③圆C与直线x﹣2y﹣1=0相切,且与圆Q:x2+(y﹣2)2=1相外切。
2019-2020学年上学期高二数学12月月考试题含解析(790)
金华市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.执行如图所示的程序框图,若输入的分别为0,1,则输出的()A.4 B.16 C.27 D.362.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是()A.20人B.40人C.70人D.80人3.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A.1:2:3 B.2:3:4 C.3:2:4 D.3:1:24.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是()A.1个B.2个C.3个D.4个5.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )。
A3B4C5D66. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A .B .﹣C .D .﹣7. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .28. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ) A .232 B .252 C .472 D .484 9. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1 B .y=lnx C .y=x 3 D .y=|x| 10.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.11.复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 12.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M的变化而变化二、填空题13.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .14.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .15.S n =++…+= .16.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O 外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .17.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 18.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .三、解答题19.已知矩阵M=的一个属于特质值3的特征向量=,正方形区域OABC 在矩阵N 应对的变换作用下得到矩形区域OA ′B ′C ′,如图所示. (1)求矩阵M ;(2)求矩阵N 及矩阵(MN )﹣1.20.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.21.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;111](2)求该几何体的表面积S.22.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差.23.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.24.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.金华市第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
金华市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
金华市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或C .或D .0或2. 下列式子表示正确的是( )A 、{}00,2,3⊆B 、{}{}22,3∈C 、{}1,2φ∈D 、{}0φ⊆3. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )A .f (x )=3﹣xB .f (x )=x ﹣3C .f (x )=1﹣xD .f (x )=x+14. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A . B .C .D .5. 复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6. 一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?7. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数8. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, } B .{,, } C .{V|≤V≤} D .{V|0<V≤}9. 下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x+x 0﹣1<0”的否定是“∀x ∈R ,x 2+x ﹣1>0”C .命题“若x=y ,则sin x=sin y ”的逆否命题为假命题D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题10.在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( ) A. B.C. D11.已知平面向量=(1,2),=(﹣2,m),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)12.设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .二、填空题13.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.14.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.15.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为 16.设,则17.已知函数2()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( ) A .1 B .±1 CD.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.18.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m .三、解答题19.如图,边长为2的正方形ABCD 绕AB 边所在直线旋转一定的角度(小于180°)到ABEF 的位置. (Ⅰ)求证:CE ∥平面ADF ;(Ⅱ)若K 为线段BE 上异于B ,E 的点,CE=2.设直线AK 与平面BDF 所成角为φ,当30°≤φ≤45°时,求BK 的取值范围.20.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =(Ⅰ)证明:b n ∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n 有a n .21.若{a n}的前n项和为S n,点(n,S n)均在函数y=的图象上.(1)求数列{a n}的通项公式;(2)设,T n是数列{b n}的前n项和,求:使得对所有n∈N*都成立的最大正整数m.22.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=2时,求不等式f(x)<g(x)的解集;(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.23.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.24.已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>0} (1)求A∩B(2)若A∪C=C,求实数m的取值范围.金华市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),又f(x+2)=f(x),∴f(x)是周期为2的函数,又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].综上所述,a=﹣或0故选D.2.【答案】D【解析】试题分析:空集是任意集合的子集。
金东区第二中学2019-2020学年上学期高二数学12月月考试题含解析
金东区第二中学2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( )A .10B .9C .8D .52. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( )A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )3. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)4. 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )A .B .C . +D . ++15. 经过点()1,1M 且在两轴上截距相等的直线是( )A .20x y +-=B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=6. 设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A.B.C.D.7.数列{a n}是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=()A.1 B.2 C.3 D.48.sin(﹣510°)=()A.B.C.﹣D.﹣9.特称命题“∃x∈R,使x2+1<0”的否定可以写成()A.若x∉R,则x2+1≥0 B.∃x∉R,x2+1≥0C.∀x∈R,x2+1<0 D.∀x∈R,x2+1≥010.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C. D.11.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A.a,b,c中至少有两个偶数B.a,b,c中至少有两个偶数或都是奇数C.a,b,c都是奇数D.a,b,c都是偶数12.设a,b∈R且a+b=3,b>0,则当+取得最小值时,实数a的值是()A.B. C.或D.3二、填空题13.设函数f(x)=,则f(f(﹣2))的值为.14.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是.。
浙江省金华市数学高二上学期理数月考试卷
浙江省金华市数学高二上学期理数月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018高一下·龙岩期末) 已知一组数据的平均数,则数据的平均数为()A . 3B . 5C . 9D . 112. (2分)若a和b是计算机在区间(0,2)上产生的均匀随机数,则一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率为()A .B .C .D .3. (2分)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1 , CC1的中点,则在空间中与直线A1D1 , EF,CD都相交的直线().A . 有无数条B . 有且只有两条C . 有且只有三条D . 不存在4. (2分)△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为()A .B .C .D .5. (2分) (2019高二下·滁州期末) 已知命题:,,则是()A . ,B . ,C . ,D . ,6. (2分) (2017高二上·长春期末) 为了了解800名高三学生是否喜欢背诵诗词,从中抽取一个容量为20的样本,若采用系统抽样,则分段的间隔为()A . 50B . 60C . 30D . 407. (2分) (2018高一下·安徽期末) 将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()A . 81B . 83C . 无中位数D . 84.58. (2分) (2020高二下·鹤壁月考) 命题;命题 .若为假命题,为真命题,则实数的取值范围是()A .B . 或C . 或D . 或9. (2分)(2018·河北模拟) 已知一个几何体的三视图如下图所示,则该几何体的表面积为()A .B .C .D .10. (2分) (2019高三上·禅城月考) 执行如图所示的程序框图,若输出,则输入的()A .B .C .D .11. (2分)(2020·聊城模拟) 我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童.如图的刍童有外接球,且,,,,平面与平面间的距离为,则该刍童外接球的体积为()A .B .C .D .12. (2分)(2018·永州模拟) 三棱锥的所有棱长都相等,别是棱的中点,则异面直线与所成角的余弦值为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[40,60)内的频数为________.14. (1分)(2019·通州模拟) 如图是一个算法的伪代码,若输入的值为3时,则输出的的值为________.15. (1分) (2016高一下·天全期中) 下列叙述正确的是________.① ⇔G为△ABC的重心,.② 为△ABC的垂心;③ 为△ABC的外心;④ ⇔O为△ABC的内心.16. (1分)(2019·通州模拟) 在平面直角坐标系中,的外接圆方程为,,边的中点关于直线y=x+2的对称点为,则线段长度的取值范围是________.三、解答题 (共6题;共37分)17. (5分)已知函数 .(1)求不等式的解集;(2)设关于的不等式的解集为,若,求实数的取值范围.18. (10分)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1) P(A),P(B),P(C).(2) 1张奖券的中奖概率.(3) 1张奖券不中特等奖,且不中一等奖的概率.19. (10分)某种商品价格与该商品日需求量之间的几组对照数据如表:价格x(元/kg)1015202530日需求量y(kg)1110865(1)求y关x的线性回归方程;(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?参考公式:线性回归方程y=bx+a,其中b= ,a= ﹣b .20. (5分)(2017·嘉兴模拟) 如图,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.(Ⅰ)求证:AC⊥平面ABB1A1;(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.21. (5分) (2017高二下·吉林期末) 在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人.(1)求该考场考生中“阅读与表达”科目中成绩等级为A的人数;(2)已知参加本考场测试的考生中,恰有2人的两科成绩等级均为A.在至少一科成绩等级为A的考生中,随机抽取2人进行访谈,求这2人的两科成绩等级均为A的概率.22. (2分)(2019·黄冈模拟) 如图,已知多面体,,,均垂直于平面,,,, .(1)证明:;(2)求平面与平面所成锐二面角大小.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共37分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、22-1、22-2、。
2019-2020学年上学期高二数学12月月考试题含解析(788)
金东区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( ) A .∅ B .{1,4}C .MD .{2,7}2. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( ) A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.3. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( ) A .1 B .2 C .3 D .44. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1B .±2C.或3D .1或25. 某程序框图如图所示,该程序运行输出的k 值是( )A .4B .5C .6D .76. 在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB的长为( )A .4B .4C .2D .27. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点)0,43(π,则ω的最小值是( ) A .31 B . C .35D .8. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .29. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .10.若1sin()34πα-=,则cos(2)3πα+=A 、78-B 、14- C 、14 D 、7811.已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .3 12.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .二、填空题13.已知(1+x+x 2)(x)n(n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .14.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.15.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .16.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE 所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .17.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .18.已知复数,则1+z 50+z 100= .三、解答题19.长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点. (1)求证:BD 1∥平面A 1DE ; (2)求证:A 1D ⊥平面ABD 1.20.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ′,证明:BC ′∥面EFG .21.设函数()xf x e =,()lng x x =.(Ⅰ)证明:()2e g x x≥-; (Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围.22.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点. (Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.23.已知函数f (x )=log 2(x ﹣3), (1)求f (51)﹣f (6)的值; (2)若f (x )≤0,求x 的取值范围.24.已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.(1)求函数的单调区间;(2)若x∈[1,3]时,f(x)>1﹣4c2恒成立,求实数c的取值范围.金东区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:∵M ∪N=M ,∴N ⊆M , ∴集合N 不可能是{2,7}, 故选:D【点评】本题主要考查集合的关系的判断,比较基础.2. 【答案】B 【解析】3. 【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)( x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()( b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.4. 【答案】D【解析】解:∵当2≤x ≤4时,f (x )=1﹣|x ﹣3|. 当1≤x <2时,2≤2x <4,则f (x )=f (2x )=(1﹣|2x ﹣3|),此时当x=时,函数取极大值; 当2≤x ≤4时, f (x )=1﹣|x ﹣3|;此时当x=3时,函数取极大值1;当4<x ≤8时,2<≤4,则f (x )=cf ()=c (1﹣|﹣3|), 此时当x=6时,函数取极大值c .∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c )共线,∴=,解得c=1或2. 故选D .【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f (x )的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.5. 【答案】 C【解析】解:程序在运行过程中各变量的值如下表示:S k 是否继续循环循环前 100 0/第一圈100﹣201 是第二圈100﹣20﹣212 是…第六圈100﹣20﹣21﹣22﹣23﹣24﹣25<0 6 是则输出的结果为7. 故选C .【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.6. 【答案】A【解析】解:圆x 2+y 2﹣8x+4=0,即圆(x ﹣4)2+y 2=12,圆心(4,0)、半径等于2.由于弦心距d==2,∴弦长为2=4,故选:A .【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.7. 【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 8. 【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x ﹣2)2+y 2=2的圆心(2,0),半径为,双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,可得:, 可得a 2=b 2,c=a ,e==.故选:B .【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.9. 【答案】B【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,则F (,0),依抛物线的定义知P 到该抛物线准线的距离为|PP ′|=|PF|, 则点P 到点M (0,2)的距离与P 到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M ,P ,F 三点共线时,取得最小值,为.故选:B .【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.10.【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-11.【答案】 D【解析】解:①∵x ∈[0,],∴fn (x )=sin n x+cos n x ≤sinx+cosx=≤,因此正确;②当n=1时,f 1(x )=sinx+cosx ,不是常数函数;当n=2时,f 2(x )=sin 2x+cos 2x=1为常数函数,当n ≠2时,令sin 2x=t ∈[0,1],则f n (x )=+=g (t ),g ′(t )=﹣=,当t ∈时,g ′(t )<0,函数g(t )单调递减;当t ∈时,g ′(t )>0,函数g (t )单调递增加,因此函数f n (x )不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.12.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C二、填空题13.【答案】5.【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x 2)(x)n (n ∈N +)的展开式中有常数项,故n ≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x 2)(x)n (n ∈N +)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x 2)(x)n (n ∈N +)的展开式中有常数项,故n ≠6;当n=7时,若r=2,(1+x+x 2)(x )n (n ∈N +)的展开式中有常数项,故n ≠7;当n=8时,若r=2,(1+x+x 2)(x )n (n ∈N +)的展开式中有常数项,故n ≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题. 14.【答案】10【解析】3m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,32为连续两项和,33为接下来三项和,故3m 的首个数为12+-m m .∵)(3+∈N m m 的分解中最小的数为91,∴9112=+-m m ,解得10=m .15.【答案】 (,+∞) .【解析】解:由题意,a >1.故问题等价于a x>x (a >1)在区间(0,+∞)上恒成立.构造函数f (x )=a x ﹣x ,则f ′(x )=a xlna ﹣1,由f ′(x )=0,得x=log a (log a e ),x >log a (log a e )时,f ′(x )>0,f (x )递增; 0<x <log a (log a e ),f ′(x )<0,f (x )递减. 则x=log a (log a e )时,函数f (x )取到最小值,故有﹣log a (log a e )>0,解得a >.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.16.【答案】4或.【解析】解:设AB=2x,则AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.17.【答案】12.【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解得x=3,所以15﹣x=12,即所求人数为12人,故答案为:12.18.【答案】i.【解析】解:复数,所以z2=i,又i2=﹣1,所以1+z50+z100=1+i25+i50=1+i﹣1=i;故答案为:i.【点评】本题考查了虚数单位i的性质运用;注意i2=﹣1.三、解答题19.【答案】【解析】证明:(1)连结A1D,AD1,A1D∩AD1=O,连结OE,∵长方体ABCD﹣A1B1C1D1中,ADD1A1是矩形,∴O是AD1的中点,∴OE∥BD1,∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,∴BD1∥平面A1DE.(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,∴ADD1A1是正方形,∴A1D⊥AD1,∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,∴A1D⊥AB,又AB∩AD1=A,∴A1D⊥平面ABD1.20.【答案】【解析】解:(1)如图(2)它可以看成一个长方体截去一个小三棱锥,设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=6×4×4=96cm3,V2=••2•2•2=cm3,∴V=v1﹣v2=cm3(3)证明:如图,在长方体ABCD﹣A′B′C′D′中,连接AD′,则AD′∥BC′因为E ,G 分别为AA ′,A ′D ′中点,所以AD ′∥EG ,从而EG ∥BC ′, 又EG ⊂平面EFG ,所以BC ′∥平面EFG ;2016年4月26日 21.【答案】【解析】(Ⅰ)令e e ()()2ln 2F x g x x x x =-+=-+,221e e ()x F x x x x-'∴=-=由()0e F x x '>⇒> ∴()F x 在(0,e]递减,在[e,)+∞递增,∴ min e ()(e)ln e 20e F x F ==-+= ∴()0F x ≥ 即e()2g x x≥-成立. …… 5分(Ⅱ) 记()()()x xh x f x f x ax e e ax -=---=--, ∴ ()0h x ≥在[0,)+∞恒成立,()e x xh x e a -'=+-, ∵ ()()e 00x x h x e x -''=-≥≥,∴ ()h x '在[0,)+∞递增, 又(0)2h a '=-, …… 7分 ∴ ① 当 2a ≤时,()0h x '≥成立, 即()h x 在[0,)+∞递增, 则()(0)0h x h ≥=,即 ()()f x f x ax --≥成立; …… 9分 ② 当2a >时,∵()h x '在[0,)+∞递增,且min ()20h x a '=-<, ∴ 必存在(0,)t ∈+∞使得()0h t '=.则(0,)x t ∈时,()0h t '<,即 (0,)x t ∈时,()(0)0h t h <=与()0h x ≥在[0,)+∞恒成立矛盾,故2a >舍去. 综上,实数a 的取值范围是2a ≤. …… 12分 22.【答案】【解析】(Ⅰ)证明:∵ABCD ﹣A 1B 1C 1D 1为正方体, ∴B 1C 1⊥平面ABB 1A 1; ∵A 1B ⊂平面ABB 1A 1, ∴B 1C 1⊥A 1B .又∵A 1B ⊥AB 1,B 1C 1∩AB 1=B 1,∴A1B⊥平面ADC1B1,∵A1B⊂平面A1BE,∴平面ADC1B1⊥平面A1BE;(Ⅱ)证明:连接EF,EF∥,且EF=,设AB1∩A1B=O,则B1O∥C1D,且,∴EF∥B1O,且EF=B1O,∴四边形B1OEF为平行四边形.∴B1F∥OE.又∵B1F⊄平面A1BE,OE⊂平面A1BE,∴B1F∥平面A1BE,(Ⅲ)解:====.23.【答案】【解析】解:(1)∵函数f(x)=log2(x﹣3),∴f(51)﹣f(6)=log248﹣log23=log216=4;(2)若f(x)≤0,则0<x﹣3≤1,解得:x∈(3,4]【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.24.【答案】【解析】解:(1)由题意:f′(x)=3x2+6ax+3b 直线6x+2y+5=0的斜率为﹣3;由已知所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以由f′(x)=3x2﹣6x>0得心x<0或x>2;所以当x∈(0,2)时,函数单调递减;当x∈(﹣∞,0),(2,+∞)时,函数单调递增.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由(1)知,函数在x∈(1,2)时单调递减,在x∈(2,3)时单调递增;所以函数在区间[1,3]有最小值f(2)=c﹣4要使x∈[1,3],f(x)>1﹣4c2恒成立只需1﹣4c2<c﹣4恒成立,所以c<或c>1.故c的取值范围是{c|c或c>1}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题.。
浙江省金华市高二上学期数学12月联考试卷
浙江省金华市高二上学期数学 12 月联考试卷姓名:________班级:________成绩:________一、 填空题 (共 14 题;共 14 分)1. (1 分) (2019·黄冈模拟) 命题“,”的否定是“________,”.2. (1 分) (2017 高二下·仙桃期末) 设圆 x2+y2=2 的切线 l 与轴的正半轴、轴的正半轴分别交于点 A、B, 当|AB|取最小值时,切线 l 的方程为________.3. (1 分) (2017·南开模拟) 过点(0,3b)的直线 l 与双曲线 C: ﹣ =1(a>0,b>0)的一条斜 率为正值的渐近线平行,若双曲线 C 的右支上的点到直线 l 的距离恒大于 b,则双曲线 C 的离心率的最大值是 ________.4. (1 分) (2016 高一上·会宁期中) 下列说法中,正确的是________ ·(1)任取 x>0,均有 3x>2x; ·(2)当 a>0,且 a≠1 时,有 a3>a2;·(3)y=( ) ﹣x 是减函数; ·(4)函数 f(x)在 x>0 时是增函数,x<0 也是增函数,所以 f(x)是增函数; ·(5)若函数 f(x)=ax2+bx+2 与 x 轴没有交点,则 b2﹣8a<0 且 a>0; ·(6)y=x2﹣2|x|﹣3 的递增区间为[1,+∞).5. (1 分) (2017 高二上·阜宁月考) 若不等式 实数 的取值范围是________.成立的一个充分非必要条件是,则6. (1 分) (2017 高二下·南通期中) 我市开展的“魅力教师”学生原创网文大赛,各校上传文章的时间为 3 月 1 日到 30 日,评委会把各校上传的文章按 5 天一组分组统计,绘制了频率分布直方图(如图).已知从左至右各 长方形的高的比为 2:3:4:6:4:1,第二组的频数为 180.那么本次活动收到的文章数是________.第 1 页 共 11 页7.(1 分)(2016 高一下·大连期中) 执行如图所示的程序框图,如果输入的 N 是 5,那么输出的 S 是________.8. (1 分) (2014·江苏理) 在平面直角坐标系 xOy 中,直线 x+2y﹣3=0 被圆(x﹣2)2+(y+1)2=4 截得的 弦长为________.9. (1 分) (2018 高二上·鹤岗期中) 下列命题正确的是________(写出正确的序号)①若、,,则动点 的轨迹是双曲线左边一支;②已知椭圆的长轴在 轴上,若焦距为 ,则实数 的值是 ;③抛物线 .的焦点坐标是10. (1 分) (2017·丰台模拟) 在平面直角坐标系 xOy 中.点 M 不与点 O 重合,称射线 OM 与圆 x2+y2=1 的交 点 N 为点 M 的“中心投影点“.⑴点 M(1, )的“中心投影点”为________⑵曲线 x2上所有点的“中心投影点”构成的曲线的长度是________.第 2 页 共 11 页11. (1 分) (2020·茂名模拟) 点 为曲线 在点 处的切线的倾斜角,则当 取最小值时 的值为________.图象上的一个动点, 为曲线12. (1 分) (2017 高二上·莆田月考) 已知 、 点 作此双曲线一条渐近线的垂线,垂足为 ,且满足为双曲线的左、右焦点,过,则此双曲线的渐近线方程为________.13. (1 分) (2017 高三上·漳州开学考) 若函数 f(x)= 数 a 的取值范围是________.在区间( , )上单调递增,则实14. (1 分) (2019 高三上·德州期中) 已知函数 , 中较小的数.其中表示(1) 若有且只有一个实根,则实数 的取值范围是________;(2) 若关于 的方程二、 解答题 (共 6 题;共 60 分)有且只有三个不同的实根,则实数 的取值范围是________.15. (10 分) (2018 高二上·抚顺期中) 已知,:,:.(I)若 是 的充分条件,求实数 的取值范围;(Ⅱ)若,“ 或 ”为真命题,“ 且 ”为假命题,求实数 的取值范围16. (10 分) (2018·衡水模拟) 已知椭圆 焦点 , 的距离之和为 4.的长轴与短轴之和为 6,椭圆上任一点到两(1) 求椭圆的标准方程;(2) 若直线 :与椭圆交于 , 两点, , 在椭圆上,且 , 两点关于直线对称,问:是否存在实数 ,使,若存在,求出 的值;若不存在,请说明理由.17. (10 分) (2020·重庆模拟) 已知函数.(1) 若是的极值点,求 a 的值及的单调区间;第 3 页 共 11 页(2) 若对任意,不等式成立,求 a 的取值范围.18. (5 分) (2019·天津模拟) 已知函数.(1) 求在点处的切线方程;(2) 若函数(3) 令求证:.与在内恰有一个交点,求实数 的取值范围;,如果图象与 轴交于, 中点为,19.(15 分) (2019 高二上·南通月考) 已知椭圆左、右顶点,为椭圆 上的两点(异于),连结(1) 求椭圆 的方程;(2) 证明:直线恒过定点.20. (10 分) (2017 高一下·正定期末) 已知函数小值 0,设 (1) 求. 的值;的焦距为分别为椭圆 的,且斜率是斜率的 倍.在上有最大值 1 和最(2) 若不等式在上有解,求实数 的取值范围;(3) 若方程( 为自然对数的底数)有三个不同的实数解,求实数 的取值范围.第 4 页 共 11 页一、 填空题 (共 14 题;共 14 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、参考答案10-1、 11-1、 12-1、 13-1、 14-1、 14-2、第 5 页 共 11 页二、 解答题 (共 6 题;共 60 分)15-1、 16-1、第 6 页 共 11 页16-2、第 7 页 共 11 页17-1、17-2、 18-1、 18-2、第 8 页 共 11 页18-3、19-1、19-2、第 9 页 共 11 页20-1、第 10 页 共 11 页20-2、20-3、第11 页共11 页。
金华市高中2019-2020学年高二上学期第一次月考试卷数学
金华市高中2019-2020学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .15 B .16 C .314 D .132. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或23. 设集合( )A .B .C .D .4. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣5. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.6. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°7. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤8. 下列命题中的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题9. 为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位10.已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( ) A .y=x ﹣4 B .y=2x ﹣3 C .y=﹣x ﹣6 D .y=3x ﹣211.已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x+sinx ,则( )A .B .C .D .12.已知三棱柱111ABC A B C 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A .4 B .4 C.4 D .34 二、填空题13.已知i 是虚数单位,复数的模为 .14.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .15.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .16.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.17.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .18.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .三、解答题19.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).20.设点P的坐标为(x﹣3,y﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率.21.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设P,M,N椭圆C上的三个动点.(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.22.已知全集U=R,函数y=+的定义域为A,B={y|y=2x,1≤x≤2},求:(1)集合A,B;(2)(∁U A)∩B.23.已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为0和3.(1)求函数f(x)的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间[0,5]上的最小值.24.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.金华市高中2019-2020学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】考点:等差数列.2.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.3.【答案】B【解析】解:集合A 中的不等式,当x >0时,解得:x >;当x <0时,解得:x <,集合B 中的解集为x >,则A ∩B=(,+∞). 故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4. 【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos <>===﹣,故选:A .【点评】本题考查了向量的夹角公式,属于基础题.5. 【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,6. 【答案】B【解析】解:∵向量=(1,),=(,x )共线,∴x====,故选:B .【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.7. 【答案】 D【解析】解:由导函数的图象可知,导函数f ′(x )的图象在x 轴下方,即f ′(x )<0,故原函数为减函数, 并且是,递减的速度是先快后慢.所以f (x )的图象如图所示. f (x )<0恒成立,没有依据,故①不正确;②表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]异号,即f (x )为减函数.故②正确; ③表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]同号,即f (x )为增函数.故③不正确, ④⑤左边边的式子意义为x 1,x 2中点对应的函数值,即图中点B 的纵坐标值, 右边式子代表的是函数值得平均值,即图中点A 的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.8.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确故选:D.【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.9.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.10.【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=﹣2,x12=﹣2y1,x22=﹣2y2.两式相减可得,(x1+x2)(x1﹣x2)=﹣2(y1﹣y2)∴直线AB的斜率k=1,∴弦AB所在的直线方程是y+5=x+1,即y=x﹣4.故选A,11.【答案】D【解析】解:由f(x)=f(π﹣x)知,∴f()=f(π﹣)=f(),∵当x∈(﹣,)时,f(x)=e x+sinx为增函数∵<<<,∴f()<f()<f(),∴f()<f()<f(),故选:D12.【答案】D【解析】考点:异面直线所成的角.二、填空题13.【答案】.【解析】解:∵复数==i﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.14.【答案】9.【解析】解:双曲线﹣=1的a=2,b=3,可得c 2=a 2+b 2=13,又||MF1|﹣|MF 2||=2a=4,|F 1F 2|=2c=2,∠F 1MF 2=90°,在△F 1AF 2中,由勾股定理得: |F 1F 2|2=|MF 1|2+|MF 2|2=(|MF 1|﹣|MF 2|)2+2|MF 1||MF 2|,即4c 2=4a 2+2|MF 1||MF 2|, 可得|MF 1||MF 2|=2b 2=18,即有△F 1MF 2的面积S=|MF 1||MF 2|sin ∠F 1MF 2=×18×1=9.故答案为:9.【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a 、b 、c 之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.15.【答案】 ③ .【解析】解:由 y=f'(x )的图象可知, x ∈(﹣3,﹣),f'(x )<0,函数为减函数;所以,①在区间(﹣2,1)内f (x )是增函数;不正确; ②在区间(1,3)内f (x )是减函数;不正确; x=2时,y=f'(x )=0,且在x=2的两侧导数值先正后负, ③在x=2时,f (x )取得极大值; 而,x=3附近,导函数值为正,所以,④在x=3时,f (x )取得极小值.不正确. 故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.16.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。
义乌市第二中学2019-2020学年上学期高二数学12月月考试题含解析
义乌市第二中学2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1 B .y=lnxC .y=x 3D .y=|x| 2. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( )A .15B .30C .31D .643. 已知α∈(0,π),且sin α+cos α=,则tan α=( ) A.B.C.D.4. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A.B.C.D.5. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21C .π121-D .π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.6. 已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B (x 2,x 22),记圆(x+1)2+y 2=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( ) A .[0,2] B .[0,3]C .[0,)D .[0,)DABCO7. 已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .158. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 9. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( ) A.﹣ B .﹣5 C .5D.10.已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧11.函数y=2|x|的图象是( )A. B. C.D.12.已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( ) A.B.﹣C.D.﹣二、填空题13.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.14.81()x x的展开式中,常数项为___________.(用数字作答) 【命题意图】本题考查用二项式定理求指定项,基础题.15.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .16.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .17.若执行如图3所示的框图,输入,则输出的数等于 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金华市二中2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________
一、选择题
1.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是()
A.b<a<c B.a<c<b C.a<b<c D.b<c<a
2.下列说法正确的是()
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
3.设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()
A.p或q B.p且q C.¬p或q D.p且¬q
4.在△ABC中,a=1,b=4,C=60°,则边长c=()
A.13 B. C. D.21
5.“”是“一元二次方程x2+x+m=0有实数解”的()
A.充分非必要条件B.充分必要条件
C.必要非充分条件D.非充分非必要条件
6.设S n为等比数列{a n}的前n项和,若a1=1,公比q=2,S k+2﹣S k=48,则k等于()
A.7 B.6 C.5 D.4
7.方程x2+2ax+y2=0(a≠0)表示的圆()
A.关于x轴对称B.关于y轴对称
C.关于直线y=x轴对称D.关于直线y=﹣x轴对称
8.不等式≤0的解集是()
A.(﹣∞,﹣1)∪(﹣1,2)B.[﹣1,2] C.(﹣∞,﹣1)∪[2,+∞)D.(﹣1,2]
9.设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)<0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|0<x<4}
10.函数f(x)=()x2﹣9的单调递减区间为()
A .(﹣∞,0)
B .(0,+∞)
C .(﹣9,+∞)
D .(﹣∞,﹣9) 11.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三
点共线,则的值是( ) A .1 B .2 C .-1 D .-2
12.若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )
A .∀x ∈R ,2x 2﹣1<0
B .∀x ∈R ,2x 2﹣1≤0
C .∃x ∈R ,2x 2﹣1≤0
D .∃x ∈R ,2x 2﹣1>0 二、填空题
13.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .
14.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数
a = .
15.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:
①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;
②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;
③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;
④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)
16.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .
17.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .。